Manu: done with II
This commit is contained in:
parent
cb8eb27818
commit
73b850693c
@ -480,7 +480,7 @@ where $\bx{}=(\omega,\br{})$ is a composite coordinate gathering spin and spatia
|
|||||||
}
|
}
|
||||||
\fi%%%%%%%%%%%%%%%%%%%%%
|
\fi%%%%%%%%%%%%%%%%%%%%%
|
||||||
then the density matrix of the
|
then the density matrix of the
|
||||||
determinant $\Det{(K)}$ can be expressed as follows in the AO basis
|
determinant $\Det{(K)}$ can be expressed as follows in the AO basis:
|
||||||
\beq
|
\beq
|
||||||
\bGam{(K)} \equiv \eGam{\mu\nu}{(K)} = \sum_{\SO{p}{} \in (K)} \cMO{\mu p}{} \cMO{\nu p}{},
|
\bGam{(K)} \equiv \eGam{\mu\nu}{(K)} = \sum_{\SO{p}{} \in (K)} \cMO{\mu p}{} \cMO{\nu p}{},
|
||||||
\eeq
|
\eeq
|
||||||
@ -832,11 +832,12 @@ as well as \textit{curvature}:\cite{Alam_2016,Alam_2017}
|
|||||||
\eeq
|
\eeq
|
||||||
The ensemble energy is of course expected to vary linearly with the ensemble
|
The ensemble energy is of course expected to vary linearly with the ensemble
|
||||||
weights [see Eq.~\eqref{eq:exact_GOK_ens_ener}].
|
weights [see Eq.~\eqref{eq:exact_GOK_ens_ener}].
|
||||||
These errors are essentially removed when evaluating the individual energy
|
\manu{
|
||||||
levels on the basis of Eq.~\eqref{eq:exact_ind_ener_rdm}.
|
The explicit linear weight dependence of the ensemble Hx energy is actually restored when evaluating the individual energy
|
||||||
|
levels on the basis of Eq.~\eqref{eq:exact_ind_ener_rdm}.}
|
||||||
|
|
||||||
Turning to the density-functional ensemble correlation energy, the
|
Turning to the density-functional ensemble correlation energy, the
|
||||||
following ensemble local-density \textit{approximation} (eLDA) will be employed
|
following ensemble local-density approximation (eLDA) will be employed
|
||||||
\beq\label{eq:eLDA_corr_fun}
|
\beq\label{eq:eLDA_corr_fun}
|
||||||
\E{c}{\bw}[\n{}{}]\approx \int \n{}{}(\br{}) \e{c}{\bw}(\n{}{}(\br{})) d\br{},
|
\E{c}{\bw}[\n{}{}]\approx \int \n{}{}(\br{}) \e{c}{\bw}(\n{}{}(\br{})) d\br{},
|
||||||
\eeq
|
\eeq
|
||||||
@ -844,7 +845,7 @@ where the ensemble correlation energy per particle
|
|||||||
\beq\label{eq:decomp_ens_correner_per_part}
|
\beq\label{eq:decomp_ens_correner_per_part}
|
||||||
\e{c}{\bw}(\n{}{})=\sum_{K\geq 0}w_K\be{c}{(K)}(\n{}{})
|
\e{c}{\bw}(\n{}{})=\sum_{K\geq 0}w_K\be{c}{(K)}(\n{}{})
|
||||||
\eeq
|
\eeq
|
||||||
is \titou{explicitly} \textit{weight dependent}.
|
is explicitly \textit{weight dependent}.
|
||||||
As shown in Sec.~\ref{sec:eDFA}, the latter can be constructed
|
As shown in Sec.~\ref{sec:eDFA}, the latter can be constructed
|
||||||
from a finite uniform electron gas model.
|
from a finite uniform electron gas model.
|
||||||
%\titou{Manu, I think we should clearly define here what the expression of the ensemble energy with and without GOC.
|
%\titou{Manu, I think we should clearly define here what the expression of the ensemble energy with and without GOC.
|
||||||
@ -859,8 +860,10 @@ reads
|
|||||||
%Manu, would it be useful to add this equation and the corresponding text?
|
%Manu, would it be useful to add this equation and the corresponding text?
|
||||||
%I think it is useful for the discussion later on when we talk about the different contributions to the excitation energies.
|
%I think it is useful for the discussion later on when we talk about the different contributions to the excitation energies.
|
||||||
%This shows clearly that there is a correction due to the correlation functional itself as well as a correction due to the ensemble correlation derivative
|
%This shows clearly that there is a correction due to the correlation functional itself as well as a correction due to the ensemble correlation derivative
|
||||||
Combining Eq.~\eqref{eq:exact_ind_ener_rdm} with Eq.~\eqref{eq:eLDA_corr_fun} leads to our \titou{final expression of the KS-eLDA energy level}
|
Combining Eq.~\eqref{eq:exact_ind_ener_rdm} with
|
||||||
\titou{\beq\label{eq:EI-eLDA}
|
Eq.~\eqref{eq:eLDA_corr_fun} leads to our final expression of the
|
||||||
|
KS-eLDA energy levels
|
||||||
|
\beq\label{eq:EI-eLDA}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\E{{eLDA}}{(I)}
|
\E{{eLDA}}{(I)}
|
||||||
=
|
=
|
||||||
@ -868,12 +871,12 @@ Combining Eq.~\eqref{eq:exact_ind_ener_rdm} with Eq.~\eqref{eq:eLDA_corr_fun} le
|
|||||||
+ \Xi_\text{c}^{(I)}
|
+ \Xi_\text{c}^{(I)}
|
||||||
+ \Upsilon_\text{c}^{(I)},
|
+ \Upsilon_\text{c}^{(I)},
|
||||||
\end{split}
|
\end{split}
|
||||||
\eeq}
|
\eeq
|
||||||
where
|
where
|
||||||
\beq\label{eq:ind_HF-like_ener}
|
\beq\label{eq:ind_HF-like_ener}
|
||||||
\E{HF}{(I)}=\Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
|
\E{HF}{(I)}=\Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
|
||||||
\eeq
|
\eeq
|
||||||
is the analog for ground and excited states (within an ensemble) of the HF energy, \titou{and
|
is the analog for ground and excited states (within an ensemble) of the HF energy, and
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\Xi_\text{c}^{(I)}
|
\Xi_\text{c}^{(I)}
|
||||||
@ -881,24 +884,25 @@ is the analog for ground and excited states (within an ensemble) of the HF energ
|
|||||||
\\
|
\\
|
||||||
&
|
&
|
||||||
+ \int \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ]
|
+ \int \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ]
|
||||||
\left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})} d\br{}
|
\left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} =
|
||||||
|
\n{\bGam{\bw}}{}(\br{})} d\br{},
|
||||||
\\
|
\\
|
||||||
\end{split}
|
\end{split}
|
||||||
\\
|
\\
|
||||||
\Upsilon_\text{c}^{(I)}
|
\Upsilon_\text{c}^{(I)}
|
||||||
= \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
= \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
||||||
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}.
|
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}.
|
||||||
\end{gather}}
|
\end{gather}
|
||||||
|
|
||||||
If, for analysis purposes, we Taylor expand the density-functional
|
If, for analysis purposes, we Taylor expand the density-functional
|
||||||
correlation contributions
|
correlation contributions
|
||||||
around the $I$th KS state density
|
around the $I$th KS state density
|
||||||
$\n{\bGam{(I)}}{}(\br{})$, the sum of
|
$\n{\bGam{(I)}}{}(\br{})$, the
|
||||||
the \titou{second term} on the right-hand side
|
second term on the right-hand side
|
||||||
of Eq.~\eqref{eq:EI-eLDA} can be simplified as follows through first order in
|
of Eq.~\eqref{eq:EI-eLDA} can be simplified as follows through first order in
|
||||||
$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
||||||
\beq\label{eq:Taylor_exp_ind_corr_ener_eLDA}
|
\beq\label{eq:Taylor_exp_ind_corr_ener_eLDA}
|
||||||
\titou{\Xi_\text{c}^{(I)}}
|
\Xi_\text{c}^{(I)}
|
||||||
= \int \e{c}{\bw}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{}
|
= \int \e{c}{\bw}(\n{\bGam{(I)}}{}(\br{})) \n{\bGam{(I)}}{}(\br{}) d\br{}
|
||||||
+ \order{[\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})]^2}.
|
+ \order{[\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})]^2}.
|
||||||
\eeq
|
\eeq
|
||||||
@ -912,13 +916,13 @@ Let us stress that, to the best of our knowledge, eLDA is the first
|
|||||||
density-functional approximation that incorporates ensemble weight
|
density-functional approximation that incorporates ensemble weight
|
||||||
dependencies explicitly, thus allowing for the description of derivative
|
dependencies explicitly, thus allowing for the description of derivative
|
||||||
discontinuities [see Eq.~\eqref{eq:excited_ener_level_gs_lim} and the
|
discontinuities [see Eq.~\eqref{eq:excited_ener_level_gs_lim} and the
|
||||||
comment that follows] {\it via} the \titou{third term} on the right-hand side
|
comment that follows] {\it via} the third term on the right-hand side
|
||||||
of Eq.~\eqref{eq:EI-eLDA}. According to the decomposition of
|
of Eq.~\eqref{eq:EI-eLDA}. According to the decomposition of
|
||||||
the ensemble
|
the ensemble
|
||||||
correlation energy per particle in Eq.
|
correlation energy per particle in Eq.
|
||||||
\eqref{eq:decomp_ens_correner_per_part}, the latter can be recast
|
\eqref{eq:decomp_ens_correner_per_part}, the latter can be recast
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\titou{\Upsilon_\text{c}^{(I)}}
|
\Upsilon_\text{c}^{(I)}
|
||||||
%&=
|
%&=
|
||||||
%\int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
%\int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
||||||
%\Big(\be{c}{(K)}(\n{\bGam{\bw}}{}(\br{}))
|
%\Big(\be{c}{(K)}(\n{\bGam{\bw}}{}(\br{}))
|
||||||
@ -939,7 +943,7 @@ thus leading to the following Taylor expansion through first order in
|
|||||||
$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
$\n{\bGam{\bw}}{}(\br{})-\n{\bGam{(I)}}{}(\br{})$:
|
||||||
\beq\label{eq:Taylor_exp_DDisc_term}
|
\beq\label{eq:Taylor_exp_DDisc_term}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\titou{\Upsilon_\text{c}^{(I)}}
|
\Upsilon_\text{c}^{(I)}
|
||||||
%& = \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
%& = \int \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
|
||||||
% \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
|
% \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
|
||||||
%\\
|
%\\
|
||||||
@ -966,11 +970,10 @@ d\br{}
|
|||||||
\end{split}
|
\end{split}
|
||||||
\eeq
|
\eeq
|
||||||
As readily seen from Eqs. \eqref{eq:Taylor_exp_ind_corr_ener_eLDA} and \eqref{eq:Taylor_exp_DDisc_term}, the
|
As readily seen from Eqs. \eqref{eq:Taylor_exp_ind_corr_ener_eLDA} and \eqref{eq:Taylor_exp_DDisc_term}, the
|
||||||
role of the correlation ensemble derivative \titou{$\Upsilon_\text{c}^{(I)}$}
|
role of the correlation ensemble derivative contribution $\Upsilon_\text{c}^{(I)}$ is, through zeroth order, to substitute the expected
|
||||||
\trashPFL{[last term on the right-hand side of Eq.~\eqref{eq:EI-eLDA}]} is, through zeroth order, to substitute the expected
|
|
||||||
individual correlation energy per particle for the ensemble one.
|
individual correlation energy per particle for the ensemble one.
|
||||||
|
|
||||||
Let us finally note that, while the weighted sum of the
|
Let us finally mention that, while the weighted sum of the
|
||||||
individual KS-eLDA energy levels delivers a \textit{ghost-interaction-corrected} (GIC) version of
|
individual KS-eLDA energy levels delivers a \textit{ghost-interaction-corrected} (GIC) version of
|
||||||
the KS-eLDA ensemble energy, \ie,
|
the KS-eLDA ensemble energy, \ie,
|
||||||
\beq\label{eq:Ew-eLDA}
|
\beq\label{eq:Ew-eLDA}
|
||||||
@ -983,7 +986,7 @@ the KS-eLDA ensemble energy, \ie,
|
|||||||
\end{split}
|
\end{split}
|
||||||
\eeq
|
\eeq
|
||||||
the excitation energies computed from the KS-eLDA individual energy level
|
the excitation energies computed from the KS-eLDA individual energy level
|
||||||
expressions in Eq. \eqref{eq:EI-eLDA} simply reads
|
expressions in Eq. \eqref{eq:EI-eLDA} can be simplified as follows:
|
||||||
\beq\label{eq:Om-eLDA}
|
\beq\label{eq:Om-eLDA}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\Ex{eLDA}{(I)}
|
\Ex{eLDA}{(I)}
|
||||||
|
Loading…
Reference in New Issue
Block a user