work under progress

This commit is contained in:
Pierre-Francois Loos 2019-09-06 17:26:37 +02:00
parent 51ff6d1010
commit 6766543ef0
2 changed files with 55 additions and 50 deletions

View File

@ -24,17 +24,23 @@
\newcommand{\la}{\lambda}
\newcommand{\si}{\sigma}
% operators
\newcommand{\hHc}{\Hat{h}}
\newcommand{\hT}{\Hat{T}}
\newcommand{\vne}{\Hat{v}_\text{ne}}
\newcommand{\hWee}{\Hat{W}_\text{ee}}
% functionals, potentials, densities, etc
\newcommand{\eps}{\epsilon}
\newcommand{\e}[2]{\eps_\text{#1}^{#2}}
\renewcommand{\v}[2]{E_\text{#1}^{#2}}
\newcommand{\E}[2]{E_\text{#1}^{#2}}
\newcommand{\bE}[2]{\bar{E}_\text{#1}^{#2}}
\newcommand{\be}[2]{\bar{\eps}_\text{#1}^{#2}}
\newcommand{\bv}[2]{\bar{f}_\text{#1}^{#2}}
\newcommand{\n}[1]{n^{#1}}
\newcommand{\DD}[2]{\Delta_\text{#1}^{#2}}
\newcommand{\LZ}[2]{\Xi_\text{#1}^{#2}}
% energies
\newcommand{\EHF}{E_\text{HF}}
\newcommand{\Ec}{E_\text{c}}
@ -50,17 +56,17 @@
\newcommand{\bG}{\bm{G}}
\newcommand{\bS}{\bm{S}}
\newcommand{\bGamma}[1]{\bm{\Gamma}^{#1}}
\newcommand{\bHc}{\bm{H}^\text{c}}
\newcommand{\bHc}{\bm{h}}
\newcommand{\bF}[1]{\bm{F}^{#1}}
\newcommand{\Ex}[1]{\Omega^{#1}}
\newcommand{\E}[1]{E^{#1}}
% elements
\newcommand{\ew}[1]{w_{#1}}
\newcommand{\eG}[1]{G_{#1}}
\newcommand{\eS}[1]{S_{#1}}
\newcommand{\eGamma}[2]{\Gamma_{#1}^{#2}}
\newcommand{\eHc}[1]{H_{#1}^\text{c}}
\newcommand{\hGamma}[2]{\Hat{\Gamma}_{#1}^{#2}}
\newcommand{\eHc}[1]{h_{#1}}
\newcommand{\eF}[2]{F_{#1}^{#2}}
% Numbers
@ -72,7 +78,6 @@
\newcommand{\cMO}[2]{c_{#1}^{#2}}
\newcommand{\AO}[1]{\chi_{#1}}
% units
\newcommand{\IneV}[1]{#1~eV}
\newcommand{\InAU}[1]{#1~a.u.}
@ -159,18 +164,7 @@ Atomic units are used throughout.
\label{sec:geKS}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\alert{In eDFT, the ensemble energy
\begin{equation}
\E{\bw} = (1-\sum_{I>0}\ew{I})\E{(0)}+\sum_{I>0} \ew{I} \E{(I)}
\end{equation}
is obtained variationally as follows,
In analogy with ground-state generalized KS-DFT, we consider the following partitioning of the ensemble Levy-Lieb functional
\begin{equation}
F^{\bw}[n]=\underset{\hat{\Gamma}^{{w}}\rightarrow n}{\rm min}\left\{{\rm Tr}\left[\hat{\Gamma}^{{w}}(\hat{T}+\hat{W}_{ee})\right]\right\}
\end{equation}
\begin{equation}
F^{\mathbf{w}}[n]=\underset{\hat{\gamma}^{{w}}\rightarrow n}{\rm min}\left\{{\rm Tr}\left[\hat{\gamma}^{{w}}(\hat{T}+\hat{W}_{ee})\right]\right\}
\end{equation}}
\alert{Manu, you might want to add here details about the general KS-eDFT procedure.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{KS-eDFT for excited states}
@ -182,16 +176,16 @@ In order to take into account both single and double excitations simultaneously,
Generalization to a larger number of states is straightforward and is left for future work.
By definition, the ensemble energy is
\begin{equation}
\E{\bw} = (1 - \ew{1} - \ew{2}) \E{(0)} + \ew{1} \E{(1)} + \ew{2} \E{(2)}.
\E{}{\bw} = (1 - \ew{1} - \ew{2}) \E{}{(0)} + \ew{1} \E{}{(1)} + \ew{2} \E{}{(2)}.
\end{equation}
The $\E{(I)}$'s are individual energies, while $\ew{1}$ and $\ew{2}$ are the weights assigned to the single and double excitation, respectively.
The $\E{}{(I)}$'s are individual energies, while $\ew{1}$ and $\ew{2}$ are the weights assigned to the single and double excitation, respectively.
To ensure the GOK variational principle, \cite{Gross_1988a} the weights must fulfil the following conditions:
$0 \le \ew{1} \le 1/3$ and $\ew{2} \le \ew{1} \le (1-\ew{2})/2$.
Note that, in order to extract individual energies from a single eKS calculation (see below), the weights must remain independent.
Note that, in order to extract individual energies from a single KS-eDFT calculation (see below), the weights must remain independent.
By construction, the excitation energies are
\begin{equation}
\label{eq:Ex}
\Ex{(I)} = \pdv{\E{(I)}}{\ew{I}} = \E{(I)} - \E{(0)}.
\Ex{(I)} = \pdv{\E{}{(I)}}{\ew{I}} = \E{}{(I)} - \E{}{(0)}.
\end{equation}
In the following, the orbitals $\MO{p}{\bw}(\br)$ are defined as linear combination of basis functions $\AO{\mu}(\br)$, such as
\begin{equation}
@ -214,15 +208,15 @@ The coefficients $\cMO{\mu p}{\bw}$ used to construct the density matrix $\bGamm
\eF{\mu\nu}{\bw}
= \eHc{\mu\nu} + \sum_{\la\si} \eGamma{\la\si}{\bw} \eG{\mu\nu\la\si}
\\
+ \int \left. \fdv{\v{c}{\bw}[\n{}]}{\n{}(\br)} \right|_{\n{} = \n{\bw}(\br)} \AO{\mu}(\br) \AO{\nu}(\br) d\br,
+ \int \left. \fdv{\bE{Hxc}{\bw}[\n{}]}{\n{}(\br)} \right|_{\n{} = \n{\bw}(\br)} \AO{\mu}(\br) \AO{\nu}(\br) d\br,
\end{multline}
which itself depends on $\bGamma{\bw}$.
In Eq.~\eqref{eq:F}, $\bHc$ is the core Hamiltonian (including kinetic and electron-nucleus attraction terms), $\eG{\mu\nu\la\si} = (\mu\nu|\la\si) - (\mu\si|\la\nu)$,
In Eq.~\eqref{eq:F}, $\hHc$ is the core Hamiltonian (including kinetic and electron-nucleus attraction terms), $\eG{\mu\nu\la\si} = (\mu\nu|\la\si) - (\mu\si|\la\nu)$,
\begin{equation}
(\mu\nu|\la\si) = \iint \frac{\AO\mu(\br_1) \AO\nu(\br_1) \AO\la(\br_2) \AO\si(\br_2)}{\abs{\br_1 - \br_2}} d\br_1 d\br_2
\end{equation}
are two-electron repulsion integrals,
$\v{c}{\bw}[\n{}(\br)] = \n{}(\br) \e{c}{\bw}[\n{}(\br)]$ and $\e{c}{\bw}[\n{}(\br)]$ is the weight-dependent correlation functional to be built in the present study.
$\bE{Hxc}{\bw}[\n{}(\br)] = \n{}(\br) \be{Hxc}{\bw}[\n{}(\br)]$ and $\be{Hxc}{\bw}[\n{}(\br)]$ is the weight-dependent correlation functional to be built in the present study.
The one-electron ensemble density is
\begin{equation}
\n{\bw}(\br) = \sum_{\mu\nu} \AO{\mu}(\br) \, \eGamma{\mu\nu}{\bw} \, \AO{\nu}(\br),
@ -230,37 +224,37 @@ The one-electron ensemble density is
with a similar expression for $\n{(I)}(\br)$, while the ensemble energy reads
\begin{equation}
\label{eq:Ew}
\E{\bw}
\E{}{\bw}
= \Tr(\bGamma{\bw} \, \bHc)
+ \frac{1}{2} \Tr(\bGamma{\bw} \, \bG \, \bGamma{\bw})
% \\
% + \int \e{c}{\bw}[\n{\bw}(\br)] \n{\bw}(\br) d\br.
+ \int \v{c}{\bw}[\n{\bw}(\br)] d\br.
+ \int \bE{Hxc}{\bw}[\n{\bw}(\br)] d\br.
\end{equation}
The self-consistent process described above is carried on until $\max \abs{\bF{\bw} \, \bGamma{\bw} \, \bS - \bS \, \bGamma{\bw} \, \bF{\bw}} < \tau$, where $\tau$ is a user-defined threshold and $\eS{\mu\nu} = \braket{\AO{\mu}}{\AO{\nu}}$ are elements of the overlap matrix $\bS$.
\alert{Note that the weight-dependent energy given by Eq.~\eqref{eq:Ew} is polluted by the so-called ghost interaction. \cite{Gidopoulos_2002, Pastorczak_2014, Alam_2016, Alam_2017, Gould_2017} which makes the ensemble energy non linear.
Below, we propose a ghost-interaction correction in order to minimize this error.}
Note that because the second term of the RHS of Eq.~\eqref{eq:Ew} is quadratic in $\bGamma{\bw}$, the weight-dependent energy contains the so-called ghost interaction which makes the ensemble energy non linear. \cite{Gidopoulos_2002, Pastorczak_2014, Alam_2016, Alam_2017, Gould_2017}
Below, we propose a ghost-interaction correction in order to minimize this error.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Extracting individual energies}
\label{sec:ind_energy}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Following Deur and Fromager, \cite{Deur_2018b} it is possible to extract individual energies, $\E{(I)}$, from the ensemble energy [Eq.~\eqref{eq:Ew}] as follows:
Following Deur and Fromager, \cite{Deur_2018b} it is possible to extract individual energies, $\E{}{(I)}$, from the ensemble energy [see Eq.~\eqref{eq:Ew}] as follows:
\begin{multline}
\E{(I)} = \Tr(\bGamma{(I)} \, \bHc) + \frac{1}{2} \Tr(\bGamma{(I)} \, \bG \, \bGamma{(I)})
\E{}{(I)} = \Tr(\bGamma{(I)} \, \bHc) + \frac{1}{2} \Tr(\bGamma{(I)} \, \bG \, \bGamma{(I)})
\\
+ \int \left. \fdv{\v{c}{\bw}[\n{}]}{\n{}(\br)} \right|_{\n{} = \n{\bw}(\br)} \n{(I)}(\br) d\br
+ \LZ{c}{} + \DD{c}{(I)}.
+ \int \left. \fdv{\bE{Hxc}{\bw}[\n{}]}{\n{}(\br)} \right|_{\n{} = \n{\bw}(\br)} \n{(I)}(\br) d\br
+ \LZ{Hxc}{} + \DD{Hxc}{(I)}.
\end{multline}
Note that a \emph{single} eKS calculation is required to extract the three individual energies.
Note that a \emph{single} KS-eDFT calculation is required to extract the three individual energies.
The correlation part of the (state-independent) Levy-Zahariev shift and the so-called derivative discontinuity are given by
\begin{align}
\LZ{c}{} & = - \int \left. \fdv{\e{c}{\bw}[\n{}]}{\n{}(\br)} \right|_{\n{} = \n{\bw}(\br)} \n{\bw}(\br)^2 d\br,
\LZ{Hxc}{} & = - \int \left. \fdv{\be{Hxc}{\bw}[\n{}]}{\n{}(\br)} \right|_{\n{} = \n{\bw}(\br)} \n{\bw}(\br)^2 d\br,
\\
\DD{c}{(I)} & = \sum_{J>0} (\delta_{IJ} - \ew{J}) \int \left. \pdv{\e{c}{\bw}[\n{}]}{\ew{J}}\right|_{\n{} = \n{\bw}(\br)} \n{\bw}(\br) d\br.
\DD{Hxc}{(I)} & = \sum_{J>0} (\delta_{IJ} - \ew{J}) \int \left. \pdv{\be{Hxc}{\bw}[\n{}]}{\ew{J}}\right|_{\n{} = \n{\bw}(\br)} \n{\bw}(\br) d\br.
\end{align}
Because the Levy-Zahariev shift is state independent, it does not contribute to excitation energies [see Eq.~\eqref{eq:Ex}].
The only remaining piece of information to define at this stage is the weight-dependent correlation functional $\e{c}{\bw}(\n{})$.
The only remaining piece of information to define at this stage is the weight-dependent correlation functional $\be{Hxc}{\bw}(\n{})$.
\alert{Mention LIM?}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -301,10 +295,21 @@ This is a necessary condition for being able to model derivative discontinuities
\section{Density-functional approximations for ensembles}
\label{sec:eDFA}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
We decompose the weight-dependent functional $\be{Hxc}{\bw}(\n{})$ as
\begin{equation}
\be{Hxc}{\bw}(\n{}) = \be{Hx}{\bw}(\n{}) + \be{c}{\bw}(\n{}),
\end{equation}
where $\be{Hx}{\bw}(\n{})$ is an Hartree-exchange functional designed to correct the ghost interaction \cite{Gidopoulos_2002, Pastorczak_2014, Alam_2016, Alam_2017, Gould_2017} and $\be{c}{\bw}(\n{})$ is a weight-dependent correlation functional.
The construction of these two functionals is described below.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Weight-dependent DFAs}
\label{sec:wDFAs}
\subsection{Ghost-interaction correction}
\label{sec:GIC}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Weight-dependent correlation functional}
\label{sec:Ec}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The present weight-dependent eDFA is specifically designed for the calculation of excitation energies within eDFT.
As mentioned previously, we consider a three-state ensemble including the ground state ($I=0$), the first singly-excited state ($I=1$), and the first doubly-excited state ($I=2$) of the (spin-polarized) two-electron ringium system.

View File

@ -37296,7 +37296,7 @@ Cell[BoxData[
3.7533751885350037`*^9}, {3.753427363238578*^9, 3.753427443878433*^9}},
CellLabel->
"In[206]:=",ExpressionUUID->"06cbc894-5531-4a6e-b39f-fb7110953aad"]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
@ -43535,7 +43535,7 @@ oq8yS/cZzbNsHBmFxJ2u+6uZFplja5uW9u4HHE/0nX+P0OL/DABCymxFw4we
CellLabel->
"Out[196]=",ExpressionUUID->"2960c5a9-2484-4db9-93ab-7b90a8e7a40e"]
}, Open ]]
}, Open ]],
}, Closed]],
Cell[CellGroupData[{
@ -96275,7 +96275,7 @@ Cell[BoxData[
"Out[367]//TableForm=",ExpressionUUID->"c28bfbbf-aaba-4edf-86df-\
c936781415f2"]
}, Open ]]
}, Open ]],
}, Closed]],
Cell[CellGroupData[{
@ -96520,7 +96520,7 @@ Cell[BoxData[
7ae551e60491"]
}, Open ]]
}, Closed]]
}, Open ]],
}, Closed]],
Cell[CellGroupData[{
@ -146837,7 +146837,7 @@ Cell[1533272, 35734, 65579, 1371, 3516, "Input",ExpressionUUID->"11221944-5033-4
InitializationCell->True],
Cell[1598854, 37107, 10749, 190, 202, "Input",ExpressionUUID->"06cbc894-5531-4a6e-b39f-fb7110953aad",
InitializationCell->True]
}, Open ]]
}, Closed]]
}, Open ]],
Cell[CellGroupData[{
Cell[1609652, 37303, 216, 4, 67, "Section",ExpressionUUID->"7f116dc0-d26d-4a3b-8240-0f41c8301a9c"],
@ -146903,9 +146903,9 @@ Cell[CellGroupData[{
Cell[1743670, 40437, 5694, 130, 502, "Input",ExpressionUUID->"1a883756-8ff1-4d3f-9563-4a084568ffa3"],
Cell[1749367, 40569, 164535, 2966, 569, "Output",ExpressionUUID->"2960c5a9-2484-4db9-93ab-7b90a8e7a40e"]
}, Open ]]
}, Open ]],
}, Closed]],
Cell[CellGroupData[{
Cell[1913951, 43541, 192, 3, 54, "Subsection",ExpressionUUID->"19680b9a-e6ed-4fc2-aa15-72b80fcbd0ab"],
Cell[1913951, 43541, 192, 3, 38, "Subsection",ExpressionUUID->"19680b9a-e6ed-4fc2-aa15-72b80fcbd0ab"],
Cell[1914146, 43546, 457, 11, 89, "Input",ExpressionUUID->"75c0e938-eb67-4d7c-b553-62fa6f39140b",
InitializationCell->True],
Cell[1914606, 43559, 1512, 29, 215, "Input",ExpressionUUID->"5df0a514-6a2c-4f9a-a7f6-01a7a981b874",
@ -147323,9 +147323,9 @@ Cell[4503287, 96060, 2881, 68, 180, "Output",ExpressionUUID->"7c406f18-a662-45c6
Cell[4506171, 96130, 2995, 71, 180, "Output",ExpressionUUID->"5b1573bc-2217-4d7d-8f1c-11dc04d4cc56"],
Cell[4509169, 96203, 3034, 72, 180, "Output",ExpressionUUID->"c28bfbbf-aaba-4edf-86df-c936781415f2"]
}, Open ]]
}, Open ]],
}, Closed]],
Cell[CellGroupData[{
Cell[4512252, 96281, 157, 3, 45, "Subsubsection",ExpressionUUID->"dbf537e7-1c5d-45dc-af40-a300842cd416"],
Cell[4512252, 96281, 157, 3, 37, "Subsubsection",ExpressionUUID->"dbf537e7-1c5d-45dc-af40-a300842cd416"],
Cell[CellGroupData[{
Cell[4512434, 96288, 1151, 27, 79, "Input",ExpressionUUID->"e88cb52c-6f10-4cf4-b957-9da7481b69a2"],
Cell[4513588, 96317, 3919, 88, 170, "Output",ExpressionUUID->"33eb60cc-17fb-4ff9-bab1-65bfa6d27c54"]
@ -147335,9 +147335,9 @@ Cell[4517544, 96410, 1150, 27, 79, "Input",ExpressionUUID->"d5ed830c-adee-47b5-b
Cell[4518697, 96439, 3696, 80, 170, "Output",ExpressionUUID->"bbf784c3-4234-4ee9-8c97-7ae551e60491"]
}, Open ]]
}, Closed]]
}, Open ]],
}, Closed]],
Cell[CellGroupData[{
Cell[4522454, 96526, 155, 3, 54, "Subsection",ExpressionUUID->"42370903-32f2-402b-ae7f-df3a3b6bf3aa"],
Cell[4522454, 96526, 155, 3, 38, "Subsection",ExpressionUUID->"42370903-32f2-402b-ae7f-df3a3b6bf3aa"],
Cell[CellGroupData[{
Cell[4522634, 96533, 216, 4, 45, "Subsubsection",ExpressionUUID->"d67b63c0-2997-4cc2-afde-fb7d5b4cd7ca"],
Cell[CellGroupData[{