Manu: polished theory and eLDA
This commit is contained in:
parent
9b03c58962
commit
5d87582f71
@ -457,7 +457,7 @@ and
|
|||||||
\n{\bGam{\bw}}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{\bw} \AO{\nu}(\br{}),
|
\n{\bGam{\bw}}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{\bw} \AO{\nu}(\br{}),
|
||||||
\eeq
|
\eeq
|
||||||
respectively.
|
respectively.
|
||||||
The individual energy expression in Eq.~\eqref{eq:exact_ener_level_dets} can then be rewritten as
|
The exact individual energy expression in Eq.~\eqref{eq:exact_ener_level_dets} can then be rewritten as
|
||||||
\beq\label{eq:exact_ind_ener_rdm}
|
\beq\label{eq:exact_ind_ener_rdm}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\E{}{(I)}
|
\E{}{(I)}
|
||||||
@ -936,7 +936,8 @@ Equation \eqref{eq:ec} provides three state-specific correlation DFAs based on a
|
|||||||
Combining these, one can build the following three-state weight-dependent correlation eDFA:
|
Combining these, one can build the following three-state weight-dependent correlation eDFA:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:ecw}
|
\label{eq:ecw}
|
||||||
\e{c}{\bw}(\n{}{}) = (1-\ew{1}-\ew{2}) \e{c}{(0)}(\n{}{}) + \ew{1} \e{c}{(1)}(\n{}{}) + \ew{2} \e{c}{(2)}(\n{}{}).
|
%\e{c}{\bw}(\n{}{})
|
||||||
|
\tilde{\epsilon}_{\rm c}^\bw(n)= (1-\ew{1}-\ew{2}) \e{c}{(0)}(\n{}{}) + \ew{1} \e{c}{(1)}(\n{}{}) + \ew{2} \e{c}{(2)}(\n{}{}).
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
@ -949,7 +950,7 @@ The weight-dependence of the correlation functional is then carried exclusively
|
|||||||
Following this simple strategy, which can be further theoretically justified by the generalized adiabatic connection formalism for ensembles (GACE) originally derived by Franck and Fromager, \cite{Franck_2014} we propose to \emph{shift} the two-electron-based eDFA defined in Eq.~\eqref{eq:ecw} as follows:
|
Following this simple strategy, which can be further theoretically justified by the generalized adiabatic connection formalism for ensembles (GACE) originally derived by Franck and Fromager, \cite{Franck_2014} we propose to \emph{shift} the two-electron-based eDFA defined in Eq.~\eqref{eq:ecw} as follows:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:becw}
|
\label{eq:becw}
|
||||||
\titou{\e{c}{\bw}(\n{}{})} = (1-\ew{1}-\ew{2}) \be{c}{(0)}(\n{}{}) + \ew{1} \be{c}{(1)}(\n{}{}) + \ew{2} \be{c}{(2)}(\n{}{}),
|
\tilde{\epsilon}_{\rm c}^\bw(n)\rightarrow{\e{c}{\bw}(\n{}{})} = (1-\ew{1}-\ew{2}) \be{c}{(0)}(\n{}{}) + \ew{1} \be{c}{(1)}(\n{}{}) + \ew{2} \be{c}{(2)}(\n{}{}),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where
|
where
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -979,7 +980,7 @@ recast Eq.~\eqref{eq:becw} as
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:eLDA}
|
\label{eq:eLDA}
|
||||||
\begin{split}
|
\begin{split}
|
||||||
\titou{\e{c}{\bw}(\n{}{})}
|
{\e{c}{\bw}(\n{}{})}
|
||||||
& = \e{c}{\text{LDA}}(\n{}{})
|
& = \e{c}{\text{LDA}}(\n{}{})
|
||||||
\\
|
\\
|
||||||
& + \ew{1} \qty[\e{c}{(1)}(\n{}{})-\e{c}{(0)}(\n{}{})] + \ew{2} \qty[\e{c}{(2)}(\n{}{})-\e{c}{(0)}(\n{}{})],
|
& + \ew{1} \qty[\e{c}{(1)}(\n{}{})-\e{c}{(0)}(\n{}{})] + \ew{2} \qty[\e{c}{(2)}(\n{}{})-\e{c}{(0)}(\n{}{})],
|
||||||
@ -988,7 +989,7 @@ recast Eq.~\eqref{eq:becw} as
|
|||||||
or, equivalently,
|
or, equivalently,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:eLDA_gace}
|
\label{eq:eLDA_gace}
|
||||||
\titou{\e{c}{\bw}(\n{}{})}
|
{\e{c}{\bw}(\n{}{})}
|
||||||
= \e{c}{\text{LDA}}(\n{}{})
|
= \e{c}{\text{LDA}}(\n{}{})
|
||||||
+ \sum_{K>0}\int_0^{\ew{K}}
|
+ \sum_{K>0}\int_0^{\ew{K}}
|
||||||
\qty[\e{c}{(K)}(\n{}{})-\e{c}{(0)}(\n{}{})]d\xi_K,
|
\qty[\e{c}{(K)}(\n{}{})-\e{c}{(0)}(\n{}{})]d\xi_K,
|
||||||
@ -996,18 +997,14 @@ or, equivalently,
|
|||||||
where the $K$th correlation excitation energy (per electron) is integrated over the
|
where the $K$th correlation excitation energy (per electron) is integrated over the
|
||||||
ensemble weight $\xi_K$ at fixed (uniform) density $\n{}{}$.
|
ensemble weight $\xi_K$ at fixed (uniform) density $\n{}{}$.
|
||||||
Equation \eqref{eq:eLDA_gace} nicely highlights the centrality of the LDA in the present eDFA.
|
Equation \eqref{eq:eLDA_gace} nicely highlights the centrality of the LDA in the present eDFA.
|
||||||
In particular, $\titou{\e{c}{(0,0)}(\n{}{})} = \e{c}{\text{LDA}}(\n{}{})$.
|
In particular, ${\e{c}{(0,0)}(\n{}{})} = \e{c}{\text{LDA}}(\n{}{})$.
|
||||||
Consequently, in the following, we name this correlation functional ``eLDA'' as it is a natural extension of the LDA for ensembles.
|
Consequently, in the following, we name this correlation functional ``eLDA'' as it is a natural extension of the LDA for ensembles.
|
||||||
Finally, we note that, by construction,
|
Finally, we note that, by construction,
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\titou{\pdv{\e{c}{\bw}(\n{}{})}{\ew{J}} = \e{c}{(J)}(\n{}{}) - \e{c}{(0)}(\n{}{}).}
|
{\pdv{\e{c}{\bw}(\n{}{})}{\ew{J}} = \e{c}{(J)}(\n{}{}) - \e{c}{(0)}(\n{}{}).}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
%Manu: I guess that the "overlines" and the dependence in $\bf r$ of the
|
|
||||||
%densities on the RHS should be removed. The final expression should be
|
|
||||||
%\beq
|
|
||||||
%\pdv{\be{c}{\bw}(\n{}{})}{\ew{J}} = \e{c}{(J)}(\n{}{}) - \e{c}{(0)}(\n{}{}).
|
|
||||||
%\eeq
|
|
||||||
%}
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\section{Computational details}
|
\section{Computational details}
|
||||||
\label{sec:comp_details}
|
\label{sec:comp_details}
|
||||||
|
Loading…
Reference in New Issue
Block a user