donw 1st step cleaning

This commit is contained in:
Pierre-Francois Loos 2020-02-15 16:01:16 +01:00
parent 379dcd173d
commit 56a27fa2e3

View File

@ -38,6 +38,7 @@
\newcommand{\hT}{\Hat{T}}
\newcommand{\vne}{v_\text{ne}}
\newcommand{\hWee}{\Hat{W}_\text{ee}}
\newcommand{\WHF}{W_\text{HF}}
% functionals, potentials, densities, etc
\newcommand{\eps}{\epsilon}
@ -262,7 +263,7 @@ from the exact expression in Eq.~\ref{eq:exact_ens_Hx} that
\beq
\E{Hx}{\bxi}[\n{}{\bxi,\bxi}] = \sum_{K \geq 0} \xi_K \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}}
\eeq
with $\xi_0=1-\sum_{K>0}\xi_K$
with $\xi_0 = 1 - \sum_{K>0}\xi_K$
and
\beq
\E{Hx}{\bw}[\n{}{\bw,\bxi}] = \sum_{K \geq 0} \ew{K} \mel*{\Det{(K),\bxi}}{\hWee}{\Det{(K),\bxi}},
@ -317,12 +318,12 @@ ensemble KS spinorbitals [from which the latter are constructed] in an atomic or
then the density matrix elements obtained from the
determinant $\Det{(K)}$ can be expressed as follows in the AO basis:
\beq
\bmg^{(K)} \equiv \eGam{\mu\nu}{(K)} = \sum_{\SO{p}{} \in (K)} \cMO{\mu p}{} \cMO{\nu p}{},
\bGam{(K)} \equiv \eGam{\mu\nu}{(K)} = \sum_{\SO{p}{} \in (K)} \cMO{\mu p}{} \cMO{\nu p}{},
\eeq
where the summation runs over the spinorbitals that are occupied in $\Det{(K)}$.
Note that the density of the $K$th KS state reads
\beq
\n{\bmg^{(K)}}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{(K)} \AO{\nu}(\br{}).
\n{\bGam{(K)}}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{(K)} \AO{\nu}(\br{}).
\eeq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Manu's derivation %%%
@ -347,29 +348,29 @@ p}}c^\sigma_{{\nu p}}
We can then construct the ensemble density matrix
and the ensemble density as follows:
\beq
\bmg^{\bw}
= \sum_{K\geq 0} \ew{K} \bmg^{(K)}
\bGam{\bw}
= \sum_{K\geq 0} \ew{K} \bGam{(K)}
\equiv \eGam{\mu\nu}{\bw}
= \sum_{K\geq 0} \ew{K} \eGam{\mu\nu}{(K)}
\eeq
and
\beq
\n{\bmg^\bw}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{\bw} \AO{\nu}(\br{}),
\n{\bGam{\bw}}{}(\br{}) = \sum_{\mu\nu} \AO{\mu}(\br{}) \eGam{\mu\nu}{\bw} \AO{\nu}(\br{}),
\eeq
respectively. The exact energy level expression in Eq.~\eqref{eq:exact_ener_level_dets} can be
rewritten as follows:
\beq\label{eq:exact_ind_ener_rdm}
\begin{split}
\E{}{(I)}
& =\Tr[\bmg^{(I)} \bh]
+ \frac{1}{2} \Tr[\bmg^{(I)} \bG \bmg^{(I)}]
+ \E{c}{{\bw}}[\n{\bmg^{\bw}}{}]
& =\Tr[\bGam{(I)} \bh]
+ \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
+ \E{c}{{\bw}}[\n{\bGam{\bw}}{}]
\\
& + \int d\br{} \fdv{\E{c}{\bw}[\n{\bmg^{\bw}}{}]}{\n{}{}(\br{})}
\qty[ \n{\bmg^{(I)}}{}(\br{}) - \n{\bmg^{\bw}}{}(\br{}) ]
& + \int d\br{} \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})}
\qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ]
\\
& + \sum_{K>0} \qty(\delta_{IK} - \ew{K})
\left. \pdv{\E{c}{\bw}[\n{}{}]}{\ew{K}}\right|_{\n{}{} = \n{\bmg^{\bw}}{}}
\left. \pdv{\E{c}{\bw}[\n{}{}]}{\ew{K}}\right|_{\n{}{} = \n{\bGam{\bw}}{}}
,
\end{split}
\eeq
@ -380,20 +381,18 @@ where
denote the one-electron integrals matrix.
The individual Hx energy is obtained from the following trace
\beq
\Tr(\bmg^{(K)} \bG \bmg^{(L)})
= \sum_{\mu\nu\lambda\omega}\sum_{\sigma=\alpha,\beta}\sum_{\tau=\alpha,\beta}G_{\mu\nu\lambda\omega}^{\sigma\tau}
\eGam{\mu\nu}{(K)\sigma} \eGam{\lambda\omega}{(L)\tau}
\nonumber\\
\Tr[\bGam{(K)} \bG \bGam{(L)}]
= \sum_{\mu\nu\la\si} \eGam{\mu\nu}{(K)} \eG{\mu\nu\la\si} \eGam{\la\si}{(L)},
\eeq
where the two-electron Coulomb-exchange integrals read
\beq
G_{\mu\nu\lambda\omega} =
\dbERI{\mu\nu}{\la\si}
G_{\mu\nu\la\omega}
= \dbERI{\mu\nu}{\la\si}
= \ERI{\mu\nu}{\la\si} - \ERI{\mu\si}{\la\nu},
\eeq
with
\beq
\ERI{\mu\nu}{\la\si} = \iint \frac{\AO{\mu}(\br{1}) \AO{\nu}(\br{1}) \AO{\la}(\br{2}) \AO{\si}(\br{2})}{\abs{\br{1} - \br{2}}} d\br{1} d\br{2}.
\ERI{\mu\nu}{\la\si} = \iint \frac{\AO{\mu}(\br{1}) \AO{\nu}(\br{1}) \AO{\la}(\br{2}) \AO{\si}(\br{2})}{\abs{\br{1} - \br{2}}} d\br{1} d\br{2}.
\eeq
%Note that, in Sec.~\ref{sec:results}, the theory is applied to (1D) spin
%polarized systems in which $\eGam{\mu\nu}{(K)\beta}=0$ and
@ -493,18 +492,15 @@ As Hartree and exchange energies cannot be separated in the
one-dimension systems considered in the rest of this work, we will substitute the Hartree--Fock
density-matrix-functional interaction energy,
\beq\label{eq:eHF-dens_mat_func}
W_{\rm
HF}\left[{\bmg}\right]=\frac{1}{2} \Tr(\bmg \, \bG \, \bmg),
\WHF[\bGam{}] = \frac{1}{2} \Tr[\bGam{} \bG \bGam{}],
\eeq
for the Hx density-functional energy in the variational energy
expression of Eq.~\eqref{eq:var_ener_gokdft}:
\beq
{\bmg}^{\bw}
\bGam{\bw}
\approx \argmin_{\bgam{\bw}}
\qty{
\Tr[\bgam{\bw} \bh ]
+ W_{\rm HF}[ \bgam{\bw}]
+ \E{c}{\bw}[\n{\bgam{\bw}}{}]
\Tr[\bgam{\bw} \bh ] + \WHF[ \bgam{\bw}] + \E{c}{\bw}[\n{\bgam{\bw}}{}]
}.
\eeq
The minimizing ensemble density matrix fulfills the following
@ -514,12 +510,12 @@ stationarity condition
\eeq
where $\bS \equiv \eS{\mu\nu} = \braket*{\AO{\mu}}{\AO{\nu}}$ is the metric and the ensemble Fock-like matrix reads
\beq
\eF{\mu\nu}{\bw} = \eh{\mu\nu}{\bw} + \sum_{\lambda\si} \eG{\mu\nu\la\si} \eGam{\la\si}{\bw}
\eF{\mu\nu}{\bw} = \eh{\mu\nu}{\bw} + \sum_{\la\si} \eG{\mu\nu\la\si} \eGam{\la\si}{\bw}
\eeq
with
\beq
\eh{\mu\nu}{\bw}
= \eh{\mu\nu}{} + \int d\br{} \AO{\mu}(\br{}) \fdv{\E{c}{\bw}[\n{\bmg^\bw}{}]}{\n{}{}(\br{})} \AO{\nu}(\br{}).
= \eh{\mu\nu}{} + \int d\br{} \AO{\mu}(\br{}) \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})} \AO{\nu}(\br{}).
\eeq
%%%%%%%%%%%%%%%
@ -649,19 +645,17 @@ optimized from a non-local exchange potential [rather than a local one,
as expected from Eq.~\eqref{eq:var_ener_gokdft}] is applicable to real
(three-dimension) systems. As readily seen from
Eq.~\eqref{eq:eHF-dens_mat_func}, \textit{ghost interactions}~\cite{Gidopoulos_2002, Pastorczak_2014, Alam_2016, Alam_2017, Gould_2017}
and curvature~\cite{} will be
introduced in the Hx energy:
and curvature~\cite{} will be introduced in the Hx energy:
\beq
\begin{split}
W_{\rm HF}[{\bmg}^\bw]
& = \frac{1}{2}\sum_{K\geq 0} \ew{K}^2
\Tr(\bmg^{(K)} \bG \bmg^{(K)})
\WHF[\bGam{\bw}]
& = \frac{1}{2} \sum_{K\geq 0} \ew{K}^2 \Tr[\bGam{(K)} \bG \bGam{(K)}]
\\
& + \sum_{L>K\geq 0} \ew{K} \ew{L}\Tr(\bmg^{(K)} \bG \bmg^{(L)}).
& + \sum_{L>K\geq 0} \ew{K} \ew{L}\Tr[\bGam{(K)} \bG \bGam{(L)}].
\end{split}
\eeq
These errors will be removed when computing individual energies
according to Eq.~\eqref{eq:exact_ind_ener_rdm}.\\
according to Eq.~\eqref{eq:exact_ind_ener_rdm}.
Turning to the density-functional ensemble correlation energy, the
following eLDA will be employed:
@ -677,17 +671,16 @@ within eLDA:
\beq
\begin{split}
\E{}{(I)}
& \approx \Tr[\bmg^{(I)} \bh]
+ \frac{1}{2} \Tr(\bmg^{(I)} \bG \bmg^{(I)})
& \approx \Tr[\bGam{(I)} \bh] + \frac{1}{2} \Tr[\bGam{(I)} \bG \bGam{(I)}]
\\
& + \int d\br{} \e{c}{\bw}(\n{\bmg^{\bw}}{}(\br{})) \n{\bmg^{(I)}}{}(\br{})
& + \int d\br{} \e{c}{\bw}[\n{\bGam{\bw}}{}(\br{})] \n{\bGam{(I)}}{}(\br{})
\\
&
+ \int d\br{} \n{\bmg^{\bw}}{}(\br{}) \qty[ \n{\bmg^{(I)}}{}(\br{}) - \n{\bmg^{\bw}}{}(\br{}) ]
\left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = n{\bmg^{\bw}}{}(\br{})}
+ \int d\br{} \n{\bGam{\bw}}{}(\br{}) \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{\bw}}{}(\br{}) ]
\left. \pdv{\e{c}{{\bw}}(\n{}{})}{\n{}{}} \right|_{\n{}{} = \n{\bGam{\bw}}{}(\br{})}
\\
& + \int d\br{} \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bmg^{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bmg^{\bw}}{}(\br{})}.
& + \int d\br{} \sum_{K>0} \qty(\delta_{IK} - \ew{K} ) \n{\bGam{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})}.
\end{split}
\eeq