Manu: first fully written version of the exact theory section

This commit is contained in:
Emmanuel Fromager 2020-02-05 18:26:44 +01:00
parent 4d5b0948a9
commit 3f165a8bb8

View File

@ -97,6 +97,7 @@
\newcommand{\eeq}{\end{eqnarray}} \newcommand{\eeq}{\end{eqnarray}}
\newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector \newcommand{\bmk}{\bm{\kappa}} % orbital rotation vector
\newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector \newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector
\newcommand{\bxi}{\bm{\xi}}
\newcommand{\bfx}{\bf{x}} \newcommand{\bfx}{\bf{x}}
\newcommand{\bfr}{\bf{r}} \newcommand{\bfr}{\bf{r}}
\DeclareMathOperator*{\argmin}{arg\,min} \DeclareMathOperator*{\argmin}{arg\,min}
@ -206,12 +207,12 @@ Tr}$ denotes the trace and the trial ensemble density matrix operator reads
\opGamma{{\bw}}=\sum_{K\geq 0}w_K\ket{\Phi^{(K)}}\bra{\Phi^{(K)}}. \opGamma{{\bw}}=\sum_{K\geq 0}w_K\ket{\Phi^{(K)}}\bra{\Phi^{(K)}}.
\eeq \eeq
The determinants (or configuration state functions) $\Phi^{(K)}$ are all constructed from the same set of (ensemble Kohn--Sham) orbitals that is optimized variationally and the trial ensemble density is simply the weighted sum of the individual densities: The determinants (or configuration state functions) $\Phi^{(K)}$ are all constructed from the same set of (ensemble Kohn--Sham) orbitals that is optimized variationally and the trial ensemble density is simply the weighted sum of the individual densities:
\beq \beq\label{eq:KS_ens_density}
n_{\opGamma{\bw}}(\br)=\sum_{K\geq 0}w_Kn_{\Phi^{(K)}}(\br). n_{\opGamma{\bw}}(\br)=\sum_{K\geq 0}w_Kn_{\Phi^{(K)}}(\br).
\eeq \eeq
As readily seen from Eq.~(\ref{eq:var_ener_gokdft}), both Hartree-exchange and As readily seen from Eq.~(\ref{eq:var_ener_gokdft}), both Hartree-exchange and
correlation energies are described with density functionals that are {\it weight-dependent}. We focus here on the (exact) Hx part which is defined as follows: correlation energies are described with density functionals that are {\it weight-dependent}. We focus here on the (exact) Hx part which is defined as follows:
\beq \beq\label{eq:exact_ens_Hx}
{E}^{{\bw}}_{\rm {E}^{{\bw}}_{\rm
Hx}[n]=\sum_{K\geq 0}w_K\bra{\Phi^{(K)}[n]}\hat{W}_{\rm Hx}[n]=\sum_{K\geq 0}w_K\bra{\Phi^{(K)}[n]}\hat{W}_{\rm
ee}\ket{\Phi^{(K)}[n]} ee}\ket{\Phi^{(K)}[n]}
@ -227,8 +228,112 @@ In practice, one is not much interested in ensemble energies but rather in excit
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w_K\right)\dfrac{\partial E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w_K\right)\dfrac{\partial
E^{{\bw}}}{\partial w_K}, E^{{\bw}}}{\partial w_K},
\eeq \eeq
where, according to the variational ensemble energy expression of Eq.~(\ref{eq:var_ener_gokdft}), where, according to the {\it variational} ensemble energy expression of Eq.~(\ref{eq:var_ener_gokdft}), the derivative in $w_K$ can be evaluated from the minimizing KS wavefunctions $\Phi^{(K)}=\Phi^{(K),\bw}$ as follows:
\beq\label{eq:deriv_Ew_wk}
&&\dfrac{\partial
E^{{\bw}}}{\partial w_K}=\bra{\Phi^{(K)}}\hat{h}\ket{\Phi^{(K)}}-\bra{\Phi^{(0)}}\hat{h}\ket{\Phi^{(0)}}
\nonumber\\
&&+\Bigg[\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
Hx}\left[n\right]}{\delta
n({\br})}\left(n_{\Phi^{(K)}}(\br)-n_{\Phi^{(0)}}(\br)\right)
%\nonumber\\
%&&
+
%\left.
\dfrac{\partial {E}^{{\bw}}_{\rm
Hx}\left[n\right]}{\partial w_K}
%\right|_{n=n_{\opGamma{\bw}}}
\nonumber\\
&&+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
c}\left[n\right]}{\delta
n({\br})}\left(n_{\Phi^{(K)}}(\br)-n_{\Phi^{(0)}}(\br)\right)
%\nonumber\\
%&&
+
%\left.
\dfrac{\partial {E}^{{\bw}}_{\rm
c}\left[n\right]}{\partial w_K}
%\right|
\Bigg]_{n=n_{\opGamma{\bw}}}
.
\nonumber\\
\eeq
The Hx contribution to Eq.~(\ref{eq:deriv_Ew_wk}) can be rewritten as follows:
\beq\label{eq:_deriv_wk_Hx}
\left.\dfrac{\partial
}{\partial \xi_K}
\left({E}^{{\bxi}}_{\rm
Hx}\left[n^{\bxi,\bxi}\right]
-
{E}^{{\bw}}_{\rm
Hx}\left[n^{\bw,\bxi}\right]
\right)\right|_{\bxi=\bw},
\eeq
where $\bxi\equiv (\xi_1,\xi_2,\ldots,\xi_K,\ldots)$ and
\beq
n^{\bw,\bxi}(\br)=\sum_{K\geq 0}w_Kn_{\Phi^{(K),\bxi}}(\br).
\eeq
Since, for given ensemble weight $\bw$ and $\bxi$ values, the ensemble densities $n^{\bxi,\bxi}$ and $n^{\bw,\bxi}$ are generated from the {\it same} KS potential (which is unique up to a constant), it comes
from the exact expression in Eq.~(\ref{eq:exact_ens_Hx}) that
\beq
{E}^{{\bxi}}_{\rm
Hx}\left[n^{\bxi,\bxi}\right]=\sum_{K\geq 0}\xi_K\bra{\Phi^{(K),\bxi}}\hat{W}_{\rm
ee}\ket{\Phi^{(K),\bxi}}
\eeq
with $\xi_0=1-\sum_{K>0}\xi_K$
and
\beq
{E}^{{\bw}}_{\rm
Hx}\left[n^{\bw,\bxi}\right]=\sum_{K\geq 0}w_K\bra{\Phi^{(K),\bxi}}\hat{W}_{\rm
ee}\ket{\Phi^{(K),\bxi}},
\eeq
thus leading, according to Eqs.~(\ref{eq:deriv_Ew_wk}) and (\ref{eq:_deriv_wk_Hx}), to the simplified expression
\beq\label{eq:deriv_Ew_wk_simplified}
&&\dfrac{\partial
E^{{\bw}}}{\partial w_K}=\bra{\Phi^{(K)}}\hat{H}\ket{\Phi^{(K)}}-\bra{\Phi^{(0)}}\hat{H}\ket{\Phi^{(0)}}
\nonumber\\
&&+\Bigg[
\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
c}\left[n\right]}{\delta
n({\br})}\left(n_{\Phi^{(K)}}(\br)-n_{\Phi^{(0)}}(\br)\right)
%\nonumber\\
%&&
+
%\left.
\dfrac{\partial {E}^{{\bw}}_{\rm
c}\left[n\right]}{\partial w_K}
%\right|
\Bigg]_{n=n_{\opGamma{\bw}}}
.
\nonumber\\
\eeq
Since the ensemble energy can be evaluated as follows:
\beq
E^{{\bw}}=\sum_{K\geq 0}w_K\bra{\Phi^{(K)}}\hat{H}\ket{\Phi^{(K)}}+{E}^{{\bw}}_{\rm
c}\left[n_{\opGamma{\bw}}\right],
\eeq
with $\Phi^{(K)}=\Phi^{(K),\bw}$ [note that, when the minimum is reached
in Eq.~(\ref{eq:var_ener_gokdft}), $n_{\opGamma{\bw}}=n^{\bw,\bw}$],
we finally recover from Eqs.~(\ref{eq:KS_ens_density}) and
(\ref{eq:indiv_ener_from_ens}) the {\it exact} expression of Ref.~\cite{} for the $I$th energy level:
\beq
E^{(I)}&=&\bra{\Phi^{(I)}}\hat{H}\ket{\Phi^{(I)}}+{E}^{{\bw}}_{\rm
c}\left[n_{\opGamma{\bw}}\right]
\nonumber\\
&&+
\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
c}\left[n_{\opGamma{\bw}}\right]}{\delta
n({\br})}\left(n_{\Phi^{(I)}}(\br)-n_{\opGamma{\bw}}(\br)\right)
\nonumber\\
&&+
\sum_{K>0}\left(\delta_{IK}-w_K\right)\left.\dfrac{\partial {E}^{{\bw}}_{\rm
c}\left[n\right]}{\partial w_K}
\right|
_{n=n_{\opGamma{\bw}}}.
\eeq
%%%%%%%%%%%%%%%
%\subsection{Hybrid GOK-DFT} %\subsection{Hybrid GOK-DFT}
%%%%%%%%%%%%%%%
\subsection{Approximations} \subsection{Approximations}