Manu: started polishing the theory section
This commit is contained in:
parent
90a16fc541
commit
11dfd3fc66
@ -98,6 +98,7 @@
|
||||
\newcommand{\bfx}{\bf{x}}
|
||||
\newcommand{\bfr}{\bf{r}}
|
||||
\DeclareMathOperator*{\argmin}{arg\,min}
|
||||
\newcommand{\blue}[1]{{\textcolor{blue}{#1}}}
|
||||
%%%%
|
||||
|
||||
\begin{document}
|
||||
@ -169,33 +170,9 @@ Atomic units are used throughout.
|
||||
\label{sec:eDFT}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Kohn--Sham formulation of GOK-DFT}
|
||||
\subsection{GOK-DFT}
|
||||
|
||||
Let us start from the analog for ensembles of Levy's universal
|
||||
functional,
|
||||
\beq\label{eq:ens_LL_func}
|
||||
F^{\bw}[n]&=&
|
||||
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]\right\}
|
||||
\eeq
|
||||
where ${\rm
|
||||
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
|
||||
$\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w_K\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
|
||||
is performed under the following density constraint:
|
||||
\beq
|
||||
{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w_Kn_{\Psi^{(K)}}(\br)=n(\br),
|
||||
\eeq
|
||||
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
|
||||
density of wavefunction $\Psi$, and
|
||||
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
|
||||
(decreasing) ensemble weights assigned to the excited states. Note that
|
||||
$w_0=1-\sum_{K>0}w_K\geq 0$.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Hybrid GOK-DFT}
|
||||
\label{sec:geKS}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Since Hartree and exchange energy contributions cannot be separated in
|
||||
the one-dimensional case, we introduce in the following an alternative
|
||||
@ -268,28 +245,8 @@ determinants $\Phi^{(K)}$. Note that the density matrices
|
||||
${\bmg}^{(K)}={\bmg}^{\Phi^{(K)}}$ are idempotent and diagonal in the
|
||||
same spin-orbital basis). On the other hand, the ensemble
|
||||
density matrix ${\bmg}^{{\bw}}=\sum_{K\geq 0}w_K{\bmg}^{(K)}$, which is a convex combination of the ${\bmg}^{(K)}$
|
||||
matrices, is {\it not} idempotent, unless ${\bw}=0$. Indeed,
|
||||
\beq
|
||||
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&\sum_{K\geq
|
||||
0}\left(w_K\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&
|
||||
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
||||
0}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&{\bmg}^{{\bw}}+w_0{\bmg}^{(0)}\times\sum_{K>0}w_K\left(2{\bmg}^{(K)}-1\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K, L >0
|
||||
}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&\neq&{\bmg}^{{\bw}}
|
||||
.
|
||||
\eeq
|
||||
This is of course expected since using an ensemble is, in this context,
|
||||
matrices, is {\it not} idempotent, unless ${\bw}=0$.
|
||||
Using an ensemble is, in this context,
|
||||
analogous to assigning
|
||||
fractional occupation numbers (which are determined from the ensemble
|
||||
weights) to the KS orbitals.\\
|
||||
@ -532,6 +489,120 @@ Hxc}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
|
||||
\eeq
|
||||
}
|
||||
|
||||
\subsection{Approximations}
|
||||
|
||||
In order to compute (approximate) energy levels within generalized
|
||||
GOK-DFT we use a two-step procedure. The first step consists in
|
||||
optimizing variationally the ensemble density matrix according to
|
||||
Eq.~(\ref{eq:var_princ_Gamma_ens}) with an approximate Hxc ensemble
|
||||
functional where (i) the ghost-interaction correction functional $\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]$ in
|
||||
Eq.~(\ref{eq:exact_GIC}) is
|
||||
neglected, for simplicity, and (ii) the weight-dependent correlation
|
||||
energy is described at the local density level of approximation.
|
||||
At this
|
||||
level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm
|
||||
c}[n]$ and ${E}^{{\bw}}_{\rm
|
||||
c}[n]$ are actually identical and can be expressed as
|
||||
\beq\label{eq:eLDA_corr_fun}
|
||||
{E}^{{\bw}}_{\rm
|
||||
c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)).
|
||||
\eeq
|
||||
More
|
||||
details about the construction of such a functional will be given in the
|
||||
following. In order to remove ghost interactions from the variational energy
|
||||
expression used in the first step, we then employ the (in-principle-exact)
|
||||
expression in Eq.~(\ref{eq:exact_ind_ener_OEP-like}). In this second
|
||||
step, the response of the individual density matrices to weight
|
||||
variations (last term on the right-hand side of
|
||||
Eq.~(\ref{eq:exact_ind_ener_OEP-like})) is neglected. The complete GIC
|
||||
procedure can be summarized as follows,
|
||||
\beq
|
||||
{\bmg}^{\bw}\approx\argmin_{{\bm\gamma}^{\bw}}
|
||||
\Big\{
|
||||
{\rm
|
||||
Tr}\left[{\bm \gamma}^{{\bw}}{\bm h}\right]+W_{\rm
|
||||
HF}\left[{\bm\gamma}^{\bw}\right]
|
||||
+
|
||||
{E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\bm\gamma^{\bw}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\Big\},
|
||||
\nonumber\\
|
||||
\eeq
|
||||
and
|
||||
\beq
|
||||
E^{(I)}&&\approx{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
||||
\bmg^{(I)})
|
||||
\nonumber\\
|
||||
&&+{E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\bmg^{\bw}}\right]
|
||||
+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\bmg^{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
|
||||
,
|
||||
\eeq
|
||||
thus leading to the final implementable expression [see Eq.~(\ref{eq:eLDA_corr_fun})]
|
||||
\beq
|
||||
E^{(I)}&&\approx{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
||||
\bmg^{(I)})
|
||||
\nonumber\\
|
||||
&&+\int d\br\,
|
||||
{\epsilon}^{{\bw}}_{\rm
|
||||
c}(n_{\bmg^{\bw}}(\br))\,n_{\bmg^{(I)}}(\br)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\left.\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
|
||||
c}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
|
||||
\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
|
||||
c}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
|
||||
\eeq
|
||||
|
||||
\blue{$================================$}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Theory (old)}
|
||||
\label{sec:eDFT_old}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Kohn--Sham formulation of GOK-DFT}
|
||||
|
||||
Let us start from the analog for ensembles of Levy's universal
|
||||
functional,
|
||||
\beq\label{eq:ens_LL_func}
|
||||
F^{\bw}[n]&=&
|
||||
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\left(\hat{T}+\hat{W}_{\rm
|
||||
ee}\right)\right]\right\}
|
||||
\eeq
|
||||
where ${\rm
|
||||
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
|
||||
$\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w_K\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
|
||||
is performed under the following density constraint:
|
||||
\beq
|
||||
{\rm
|
||||
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w_Kn_{\Psi^{(K)}}(\br)=n(\br),
|
||||
\eeq
|
||||
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
|
||||
density of wavefunction $\Psi$, and
|
||||
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
|
||||
(decreasing) ensemble weights assigned to the excited states. Note that
|
||||
$w_0=1-\sum_{K>0}w_K\geq 0$.
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Hybrid GOK-DFT}
|
||||
\label{sec:geKS}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\subsection{Exact ensemble exchange in hybrid GOK-DFT}
|
||||
|
||||
|
||||
@ -635,82 +706,6 @@ Tr}\left[{\bm F}^{(L)}\frac{\partial \bmg^{(L)}}{\partial w_K}\right]
|
||||
correlation LDA and ghost interaction correction
|
||||
}
|
||||
|
||||
In order to compute (approximate) energy levels within generalized
|
||||
GOK-DFT we use a two-step procedure. The first step consists in
|
||||
optimizing variationally the ensemble density matrix according to
|
||||
Eq.~(\ref{eq:var_princ_Gamma_ens}) with an approximate Hxc ensemble
|
||||
functional where (i) the ghost-interaction correction functional $\overline{E}^{{\bw}}_{\rm
|
||||
Hx}[n]$ in
|
||||
Eq.~(\ref{eq:exact_GIC}) is
|
||||
neglected, for simplicity, and (ii) the weight-dependent correlation
|
||||
energy is described at the local density level of approximation.
|
||||
At this
|
||||
level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm
|
||||
c}[n]$ and ${E}^{{\bw}}_{\rm
|
||||
c}[n]$ are actually identical and can be expressed as
|
||||
\beq\label{eq:eLDA_corr_fun}
|
||||
{E}^{{\bw}}_{\rm
|
||||
c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)).
|
||||
\eeq
|
||||
More
|
||||
details about the construction of such a functional will be given in the
|
||||
following. In order to remove ghost interactions from the variational energy
|
||||
expression used in the first step, we then employ the (in-principle-exact)
|
||||
expression in Eq.~(\ref{eq:exact_ind_ener_OEP-like}). In this second
|
||||
step, the response of the individual density matrices to weight
|
||||
variations (last term on the right-hand side of
|
||||
Eq.~(\ref{eq:exact_ind_ener_OEP-like})) is neglected. The complete GIC
|
||||
procedure can be summarized as follows,
|
||||
\beq
|
||||
{\bmg}^{\bw}\approx\argmin_{{\bm\gamma}^{\bw}}
|
||||
\Big\{
|
||||
{\rm
|
||||
Tr}\left[{\bm \gamma}^{{\bw}}{\bm h}\right]+W_{\rm
|
||||
HF}\left[{\bm\gamma}^{\bw}\right]
|
||||
+
|
||||
{E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\bm\gamma^{\bw}}\right]
|
||||
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
|
||||
\Big\},
|
||||
\nonumber\\
|
||||
\eeq
|
||||
and
|
||||
\beq
|
||||
E^{(I)}&&\approx{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
||||
\bmg^{(I)})
|
||||
\nonumber\\
|
||||
&&+{E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\bmg^{\bw}}\right]
|
||||
+\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm
|
||||
c}\left[n_{\bmg^{\bw}}\right]}{\delta
|
||||
n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm
|
||||
c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}}
|
||||
,
|
||||
\eeq
|
||||
thus leading to the final implementable expression [see Eq.~(\ref{eq:eLDA_corr_fun})]
|
||||
\beq
|
||||
E^{(I)}&&\approx{\rm
|
||||
Tr}\left[{\bmg}^{(I)}{\bm h}\right]
|
||||
+\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \,
|
||||
\bmg^{(I)})
|
||||
\nonumber\\
|
||||
&&+\int d\br\,
|
||||
{\epsilon}^{{\bw}}_{\rm
|
||||
c}(n_{\bmg^{\bw}}(\br))\,n_{\bmg^{(I)}}(\br)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\left.\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
|
||||
c}(n)}{\partial n}\right|_{n=n_{\bmg^{\bw}}(\br)}n_{\bmg^{\bw}}(\br)\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right)
|
||||
\nonumber\\
|
||||
&&
|
||||
+\int d\br\,\sum_{K>0}\left(\delta_{IK}-w_K\right)n_{\bmg^{\bw}}(\br)\left.
|
||||
\dfrac{\partial {\epsilon}^{{\bw}}_{\rm
|
||||
c}(n)}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}(\br)}.
|
||||
\eeq
|
||||
|
||||
\alert{Secs. \ref{sec:KS-eDFT}-\ref{sec:E_I} should maybe be moved to an appendix or merged
|
||||
with the theory section (?)}
|
||||
@ -1062,6 +1057,34 @@ E.~F.~thanks the \textit{Agence Nationale de la Recherche} (MCFUNEX project, Gra
|
||||
\end{acknowledgements}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%%%% REMOVED FROM THE MAIN TEXT by Manu %%%%%%%%%%%%
|
||||
\iffalse%%%%
|
||||
Indeed,
|
||||
\beq
|
||||
\left[{\bmg}^{{\bw}}\right]^2&=&\sum_{K,L\geq
|
||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&\sum_{K\geq
|
||||
0}\left(w_K\right)^2{\bmg}^{(K)}+\sum_{K\neq L\geq
|
||||
0}w_Kw_L{\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&
|
||||
{\bmg}^{{\bw}}+\sum_{K,L\geq
|
||||
0}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&=&{\bmg}^{{\bw}}+w_0{\bmg}^{(0)}\times\sum_{K>0}w_K\left(2{\bmg}^{(K)}-1\right)
|
||||
\nonumber\\
|
||||
&&+\sum_{K, L >0
|
||||
}w_K\left(w_L-\delta_{KL}\right){\bmg}^{(K)}{\bmg}^{(L)}
|
||||
\nonumber\\
|
||||
&\neq&{\bmg}^{{\bw}}
|
||||
.
|
||||
\eeq
|
||||
%%%% End -- REMOVED FROM THE MAIN TEXT by Manu %%%%%%%%%%%%
|
||||
\fi%%%
|
||||
|
||||
|
||||
|
||||
\bibliography{eDFT}
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user