Manu: saving work

This commit is contained in:
Emmanuel Fromager 2019-09-10 17:10:12 +02:00
parent c1f4eb75df
commit 0d01c4376d

View File

@ -180,7 +180,7 @@ KS scheme, a HF-like Hartree-exchange energy is employed. This
formulation is in principle exact and applicable to higher dimensions. formulation is in principle exact and applicable to higher dimensions.
Let us start from the analog for ensembles of Levy's universal Let us start from the analog for ensembles of Levy's universal
functional, functional,
\beq \beq\label{eq:ens_LL_func}
F^{\bw}[n]&=& F^{\bw}[n]&=&
\underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm \underset{\hat{\gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
Tr}\left[\hat{\gamma}^{{\bw}}\left(\hat{T}+\hat{W}_{\rm Tr}\left[\hat{\gamma}^{{\bw}}\left(\hat{T}+\hat{W}_{\rm
@ -188,17 +188,19 @@ ee}\right)\right]\right\}
\eeq \eeq
where ${\rm where ${\rm
Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators Tr}$ denotes the trace. The minimization over trial ensemble density matrix operators
$\hat{\gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$ $\hat{\gamma}^{{\bw}}=\sum_{K\geq0}w^{(K)}\vert\Psi^{(K)}\rangle\langle\Psi^{(K)}\vert$
is performed under the following density constraint: is performed under the following density constraint:
\beq \beq
{\rm {\rm
Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum^M_{K=0}w^{(K)}n_{\Psi^{(K)}}(\br)=n(\br), Tr}\left[\hat{\gamma}^{{\bw}}\hat{n}(\br)\right]=\sum_{K\geq0}w^{(K)}n_{\Psi^{(K)}}(\br)=n(\br),
\eeq \eeq
where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the where $\hat{n}(\br)$ is the density operator, $n_{\Psi}$ denotes the
density of wavefunction $\Psi$, and density of wavefunction $\Psi$, and
$\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of $\bw\equiv\left(w^{(1)},w^{(2)},\ldots\right)$ is the collection of
(decreasing) ensemble weights assigned to the excited states. Note that (decreasing) ensemble weights assigned to the excited states. Note that
$w^{(0)}=1-\sum^M_{K>0}w^{(K)}\geq 0$. $w^{(0)}=1-\sum_{K>0}w^{(K)}\geq 0$.\\
Ground-state theory:
\beq \beq
F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min} F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
@ -206,7 +208,8 @@ F^{\bw=0}[n]=F[n]=\underset{\Psi\rightarrow n}{\rm min}
ee}\ket{\Psi} ee}\ket{\Psi}
\eeq \eeq
\beq
\beq\label{eq:generalized_KS-DFT_decomp}
F[n]&=& F[n]&=&
\underset{\Phi\rightarrow n}{\rm min} \underset{\Phi\rightarrow n}{\rm min}
\bra{\Phi}\hat{T}+\hat{W}_{\rm \bra{\Phi}\hat{T}+\hat{W}_{\rm
@ -228,77 +231,102 @@ W_{\rm
HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg) HF}\left[{\bmg}\right]\equiv\frac{1}{2} \Tr(\bmg \, \bG \, \bmg)
\eeq \eeq
is the conventional density-matrix functional HF Hartree-exchange is the conventional density-matrix functional HF Hartree-exchange
energy. By analogy with Eq.~(\ref{}), energy. By analogy with Eq.~(\ref{eq:generalized_KS-DFT_decomp}), we
decompose the ensemble universal functional as follows:
\beq \beq
F^{\bw}_{\rm HF}[n]&=& F^{\bw}[n]&=&
\underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm \underset{\hat{\Gamma}^{{\bw}}\rightarrow n}{\rm min}\left\{{\rm
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]+W_{\rm Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]
+W_{\rm
HF}\left[{\bmg}^{\bw}\right]\right\} HF}\left[{\bmg}^{\bw}\right]\right\}
+\overline{E}^{{\bw}}_{\rm
Hxc}[n]
\nonumber\\ \nonumber\\
&=&{\rm &=&
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{T}\right]+W_{\rm \underset{{\bmg}^{{\bw}}\rightarrow n}{\rm min}
HF}\left[{\bmg}^{\bw}[n]\right] \left\{
{\rm Tr}
\left[{\bmg}^{\bw}{\bm t}\right]
+W_{\rm HF}\left[{\bmg}^{\bw}\right]
\right\}+
\overline{E}^{\bw}_{\rm Hxc}[n]
\eeq \eeq
where where the minimization in Eq.~(\ref{eq:ens_LL_func}) has been restricted
$\hat{\Gamma}^{{\bw}}=\sum^M_{K=0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum^M_{K=0}w^{(K)}\hat{\Gamma}^{(K)}$ is an ensemble density matrix operator constructed to density matrix operators
from Slater determinants, the ensemble 1RDM elements are $\Gamma_{pq}^{\bw}={\rm
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right]$,
and $W_{\rm
HF}\left[{\bmg}\right]=\frac{1}{2}\sum_{pqrs}\langle \varphi_p\varphi_q\vert\vert
\varphi_r\varphi_s\rangle
%\times
\Gamma_{pr}\Gamma_{qs}$.\\
In-principle-exact decomposition:
\beq \beq
F^{\bw}[n]= F^{\bw}_{\rm HF}[n]+\overline{E}^{{\bw}}_{\rm \hat{\Gamma}^{{\bw}}=\sum_{K\geq 0}w^{(K)}\vert\Phi^{(K)}\rangle\langle\Phi^{(K)}\vert=\sum_{K\geq 0}w^{(K)}\hat{\Gamma}^{(K)}
Hx}[n]+\overline{E}^{{\bw}}_{\rm c}[n]
\eeq \eeq
that are constructed from single Slater
determinants $\Phi^{(K)}$.
The complementary ensemble Hx energy removes the ghost-interaction The complementary ensemble Hx energy removes the ghost-interaction
errors introduced in $W_{\rm errors introduced in $W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right]$: HF}\left[{\bmg}^{\bw}[n]\right]$:
\beq \beq
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hx}[n]=\sum^M_{K=0}w^{(K)}W_{\rm Hx}[n]&=&\sum_{K\geq0}w^{(K)}W_{\rm
HF}\left[{\bmg}^{(K)}[n]\right] HF}\left[{\bmg}^{(K)}[n]\right]
-W_{\rm -W_{\rm
HF}\left[{\bmg}^{\bw}[n]\right], HF}\left[{\bmg}^{\bw}[n]\right].
\eeq
which gives in the canonical orbital basis
\beq
&&\overline{E}^{{\bw}}_{\rm
Hx}[n]=
\dfrac{1}{2}\sum_{pq}
\langle \varphi^{{\bw}}_p[n]\varphi^{{\bw}}_q[n]\vert\vert
\varphi^{{\bw}}_p[n]\varphi^{{\bw}}_q[n]\rangle
\nonumber\\ \nonumber\\
&&\times\left[\sum^M_{K=0}w^{(K)}\nu^{(K)}_p \left(\nu^{(K)}_q &=&
-\sum^M_{L=0}w^{(L)} \nu^{(L)}_q\right)\right] {\rm
.\eeq Tr}\left[\hat{\Gamma}^{{\bw}}[n]\hat{W}_{\rm ee}\right]-W_{\rm
\manu{I would guess that, in a uniform system, the GOK-DFT and our HF}\left[{\bmg}^{\bw}[n]\right]
canonical orbitals are the same. This is nice since we can construct \eeq
in a clean way density-functional approximations for both $\overline{E}^{{\bw}}_{\rm
Hx}[n]$ and $E^{{\bw}}_{\rm c}[n]$ functionals. Am I right ?} Note that $\overline{E}^{{\bw}=0}_{\rm
Hx}[n]=0$.\\
Ensemble correlation energy:
Variational expression for the ensemble energy:
\beq \beq
E^{{\bw}}=\underset{\hat{\Gamma}^{{\bw}}}{\rm min}\Big\{ \overline{E}^{{\bw}}_{\rm
&&{\rm c}[n]&=&
Tr}\left[\hat{\Gamma}^{{\bw}}\hat{T}\right]+W_{\rm {\rm
Tr}\left[\hat{\gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
ee}\right)\right]
\nonumber\\
&&-
{\rm
Tr}\left[\hat{\Gamma}^{{\bw}}[n]\left(\hat{T}+\hat{W}_{\rm
ee}\right)\right]
\eeq
Variational expression of the ensemble energy:
\beq
E^{{\bw}}=\underset{{\bmg}^{{\bw}}}{\rm min}\Big\{
{\rm
Tr}\left[{\bmg}^{{\bw}}{\bm h}\right]+W_{\rm
HF}\left[{\bmg}^{\bw}\right] HF}\left[{\bmg}^{\bw}\right]
+ +
\overline{E}^{{\bw}}_{\rm \overline{E}^{{\bw}}_{\rm
Hxc}\left[n_{\hat{\Gamma}^{{\bw}}}\right] Hxc}\left[n_{{\bmg}^{{\bw}}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right] %+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right]
\nonumber\\
&&
+\int d{\br}\;v_{\rm ext}({\bfr})n_{\hat{\Gamma}^{{\bw}}}({\bfr})
\Big\} \Big\}
\eeq \eeq
For $K>0$
\alert{
\beq
\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}&=&{\rm
Tr}\left[{\bmg}^{(K)}{\bm h}\right]-{\rm
Tr}\left[{\bmg}^{(0)}{\bm h}\right]
\nonumber\\
&&+\Tr(\bmg^{(K)} \, \bG \, \bmg^{\bw})
-\Tr(\bmg^{(0)} \, \bG \, \bmg^{\bw})
+...
\eeq
\beq
E^{(I)}&=&E^{{\bw}}+\sum_{K>0}\left(\delta_{IK}-w^{(K)}\right)\dfrac{\partial E^{{\bw}}}{\partial w^{(K)}}
\nonumber\\
&=&
...+\dfrac{1}{2}\Tr(\bmg^{\bw} \, \bG \, \bmg^{\bw})
+...
\eeq
}
Note that, if we use orbital rotations, the gradient of the DFT energy Note that, if we use orbital rotations, the gradient of the DFT energy
contributions can be expressed as follows, contributions can be expressed as follows,
\beq \beq