diff --git a/Manuscript/eDFT.tex b/Manuscript/eDFT.tex index 8e905dd..612e4cc 100644 --- a/Manuscript/eDFT.tex +++ b/Manuscript/eDFT.tex @@ -97,6 +97,7 @@ \newcommand{\bmg}{\bm{\Gamma}} % orbital rotation vector \newcommand{\bfx}{\bf{x}} \newcommand{\bfr}{\bf{r}} +\DeclareMathOperator*{\argmin}{arg\,min} %%%% \begin{document} @@ -636,7 +637,16 @@ functional where (i) the ghost-interaction correction functional $\overline{E}^{ Hx}[n]$ in Eq.~(\ref{eq:exact_GIC}) is neglected, for simplicity, and (ii) the weight-dependent correlation -energy is descrive at the local density level of approximation. More +energy is described at the local density level of approximation. +At this +level of approximation, the two correlation functionals $\overline{E}^{{\bw}}_{\rm +c}[n]$ and ${E}^{{\bw}}_{\rm +c}[n]$ are actually identical and can be expressed as +\beq +{E}^{{\bw}}_{\rm +c}[n]=\int d\br\;n(\br)\epsilon_{c}^{\bw}(n(\br)). +\eeq +More details about the construction of such a functional will be given in the following. In order to remove ghost interactions from the variational energy expression used in the first step, we then employ the (in-principle-exact) @@ -645,6 +655,36 @@ step, the response of the individual density matrices to weight variations (last term on the right-hand side of Eq.~(\ref{eq:exact_ind_ener_OEP-like})) is neglected. The complete GIC procedure can be summarized as follows, +\beq +{\bmg}^{\bw}\approx\argmin_{{\bm\gamma}^{\bw}} +\Big\{ +{\rm +Tr}\left[{\bm \gamma}^{{\bw}}{\bm h}\right]+W_{\rm +HF}\left[{\bm\gamma}^{\bw}\right] ++ +{E}^{{\bw}}_{\rm +c}\left[n_{\bm\gamma^{\bw}}\right] +%+E^{{\bw}}_{\rm c}\left[n_{\hat{\Gamma}^{{\bw}}}\right] +\Big\}, +\nonumber\\ +\eeq +and +\beq +E^{(I)}&&\approx{\rm +Tr}\left[{\bmg}^{(I)}{\bm h}\right] ++\frac{1}{2} \Tr(\bmg^{(I)} \, \bG \, +\bmg^{(I)}) +\nonumber\\ +&&+{E}^{{\bw}}_{\rm +c}\left[n_{\bmg^{\bw}}\right] ++\int d\br\,\dfrac{\delta {E}^{{\bw}}_{\rm +c}\left[n_{\bmg^{\bw}}\right]}{\delta +n({\br})}\left(n_{\bmg^{(I)}}(\br)-n_{\bmg^{\bw}}(\br)\right) +\nonumber\\ +&&+\sum_{K>0}\left(\delta_{IK}-w_K\right)\left. \dfrac{\partial {E}^{{\bw}}_{\rm +c}\left[n\right]}{\partial w_K}\right|_{n=n_{\bmg^{\bw}}} +. +\eeq \alert{Secs. \ref{sec:KS-eDFT}-\ref{sec:E_I} should maybe be moved to an appendix or merged with the theory section (?)}