This commit is contained in:
Pierre-Francois Loos 2020-03-08 22:38:15 +01:00
parent e08b595e3b
commit 01cac269de
8 changed files with 6929 additions and 4324 deletions

View File

@ -1,3 +1,8 @@
168.1946 44.0662 12.0035 3.4747 1.0896 0.3719 0.1367
330.2471 85.0890 22.5112 6.2247 1.8355 0.5845 0.2006
809.9972 204.9840 52.4777 13.7252 3.7248 1.0696 0.3300
162.0525 41.0228 10.5078 2.7500 0.7458 0.2125 0.0639
641.8026 160.9177 40.4743 10.2505 2.6352 0.6977 0.1933
-0.0397 -0.0391 -0.0380 -0.0361 -0.0323 -0.0236 -0.0397 -0.0391 -0.0380 -0.0361 -0.0323 -0.0236
0.0215 0.0213 0.0210 0.0200 0.0159 0.0102 0.0215 0.0213 0.0210 0.0200 0.0159 0.0102
-0.0426 -0.0425 -0.0419 -0.0387 -0.0250 -0.0045 -0.0426 -0.0425 -0.0419 -0.0387 -0.0250 -0.0045

View File

@ -1,3 +1,8 @@
475.6891 125.7776 34.8248 10.3536 3.3766 1.2126 0.4721
702.8330 183.3370 49.5922 14.2255 4.4269 1.5105 0.5606
1379.3128 353.5967 92.7398 25.3135 7.3546 2.3203 0.7990
227.1438 57.5594 14.7674 3.8720 1.0504 0.2979 0.0885
903.6236 227.8191 57.9150 14.9599 3.9780 1.1077 0.3269
-0.0481 -0.0478 -0.0473 -0.0463 -0.0446 -0.0387 -0.0257 -0.0481 -0.0478 -0.0473 -0.0463 -0.0446 -0.0387 -0.0257
0.0343 0.0336 0.0321 0.0292 0.0220 0.0084 0.0008 0.0343 0.0336 0.0321 0.0292 0.0220 0.0084 0.0008
0.0277 0.0267 0.0247 0.0216 0.0187 0.0208 0.0209 0.0277 0.0267 0.0247 0.0216 0.0187 0.0208 0.0209

View File

@ -1,3 +1,8 @@
1020.3778 270.0849 74.9426 22.3790 7.3595 2.6798 1.0633
1312.2776 344.0184 93.8936 27.3398 8.7021 3.0600 1.1764
2183.4399 563.5949 149.6753 41.7213 12.5052 4.1033 1.4749
291.8998 73.9335 18.9510 4.9608 1.3426 0.3802 0.1131
1163.0621 293.5099 74.7326 19.3423 5.1457 1.4235 0.4116
-0.0541 -0.0539 -0.0537 -0.0534 -0.0529 -0.0504 -0.0386 -0.0541 -0.0539 -0.0537 -0.0534 -0.0529 -0.0504 -0.0386
0.0413 0.0406 0.0390 0.0362 0.0304 0.0159 0.0008 0.0413 0.0406 0.0390 0.0362 0.0304 0.0159 0.0008
0.0642 0.0622 0.0586 0.0517 0.0399 0.0254 0.0149 0.0642 0.0622 0.0586 0.0517 0.0399 0.0254 0.0149

View File

@ -1,11 +1,13 @@
1867.6344 493.6760 136.7020 40.7244 13.3763 4.8811 1.9492
2224.11488 583.8981 159.7957 46.7553 15.0029 5.3399 2.0855
3289.2022 852.4249 228.0415 64.3597 19.6613 6.6206 2.4547
356.4804 90.2221 23.0937 6.0308 1.6266 0.4588 0.1363
1421.56773 358.7489 91.3395 23.6352 6.2850 1.7395 0.5055
-0.0587 -0.0586 -0.0587 -0.0588 -0.0591 -0.0590 -0.0506 -0.0587 -0.0586 -0.0587 -0.0588 -0.0591 -0.0590 -0.0506
0.0457 0.0450 0.0435 0.0409 0.0362 0.0241 0.0033 0.0457 0.0450 0.0435 0.0409 0.0362 0.0241 0.0033
0.0861 0.0838 0.0793 0.0712 0.0571 0.0377 0.0196 0.0861 0.0838 0.0793 0.0712 0.0571 0.0377 0.0196
0.1044 0.1036 0.1022 0.0997 0.0953 0.0830 0.0540 0.1044 0.1036 0.1022 0.0997 0.0953 0.0830 0.0540
0.1447 0.1424 0.1380 0.1300 0.1162 0.0966 0.0703 0.1447 0.1424 0.1380 0.1300 0.1162 0.0966 0.0703
-0.1356 -0.1342 -0.1314 -0.1264 -0.1176 -0.1037 -0.0849
-0.1356 -0.1342 -0.1314 -0.1263 -0.1174 -0.1031 -0.0834
-0.1356 -0.1341 -0.1314 -0.1262 -0.1172 -0.1026 -0.0824
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0172 0.0163 0.0147 0.0117 0.0067 -0.0004 -0.0080 0.0172 0.0163 0.0147 0.0117 0.0067 -0.0004 -0.0080
0.0416 0.0402 0.0376 0.0329 0.0253 0.0140 0.0005 0.0416 0.0402 0.0376 0.0329 0.0253 0.0140 0.0005
@ -14,9 +16,6 @@
0.1080 0.1056 0.1011 0.0925 0.0772 0.0538 0.0325 0.1080 0.1056 0.1011 0.0925 0.0772 0.0538 0.0325
0.0092 0.0081 0.0060 0.0022 -0.0035 -0.0081 -0.0047 0.0092 0.0081 0.0060 0.0022 -0.0035 -0.0081 -0.0047
0.1010 0.0986 0.0943 0.0862 0.0719 0.0523 0.0373 0.1010 0.0986 0.0943 0.0862 0.0719 0.0523 0.0373
-0.1160 -0.1154 -0.1141 -0.1115 -0.1069 -0.0991 -0.0870
-0.1160 -0.1154 -0.1140 -0.1115 -0.1069 -0.0991 -0.0872
-0.1160 -0.1153 -0.1140 -0.1115 -0.1069 -0.0991 -0.0871
-0.0196 -0.0188 -0.0174 -0.0148 -0.0106 -0.0044 0.0029 -0.0196 -0.0188 -0.0174 -0.0148 -0.0106 -0.0044 0.0029
-0.0024 -0.0025 -0.0027 -0.0032 -0.0040 -0.0050 -0.0056 -0.0024 -0.0025 -0.0027 -0.0032 -0.0040 -0.0050 -0.0056
0.0220 0.0213 0.0201 0.0180 0.0146 0.0093 0.0027 0.0220 0.0213 0.0201 0.0180 0.0146 0.0093 0.0027

View File

@ -1,3 +1,8 @@
3082.5386 813.0910 224.3734 66.5257 21.7454 7.9136 3.1633
3503.4911 919.5487 251.5842 73.6145 23.6504 8.4487 3.3217
4762.0921 1236.8257 332.1993 94.3988 29.1455 9.9582 3.7572
420.9525 106.4577 27.2108 7.0888 1.9050 0.5351 0.1583
1679.5536 423.7347 107.8259 27.8731 7.4001 2.0446 0.5938
-0.0626 -0.0627 -0.0628 -0.0632 -0.0641 -0.0654 -0.0612 -0.0626 -0.0627 -0.0628 -0.0632 -0.0641 -0.0654 -0.0612
0.0486 0.0477 0.0465 0.0440 0.0400 0.0308 0.0078 0.0486 0.0477 0.0465 0.0440 0.0400 0.0308 0.0078
0.1017 0.0992 0.0946 0.0862 0.0718 0.0507 0.0271 0.1017 0.0992 0.0946 0.0862 0.0718 0.0507 0.0271

View File

@ -1,3 +1,8 @@
4729.98018 1244.7753 342.1796 100.8943 32.7728 11.8683 4.7359
5215.3307 1367.4316 373.4897 109.0326 34.9524 12.4779 4.9156
6667.18516 1733.3319 466.4133 132.9686 41.2715 14.2096 5.4146
485.3505 122.6563 31.3101 8.1382 2.1796 0.6096 0.1797
1937.2050 488.5566 124.2336 32.0743 8.4987 2.3413 0.6787
-0.0664 -0.0666 -0.0667 -0.0672 -0.0684 -0.0707 -0.0702 -0.0664 -0.0666 -0.0667 -0.0672 -0.0684 -0.0707 -0.0702
0.0502 0.0495 0.0482 0.0459 0.0423 0.0355 0.0131 0.0502 0.0495 0.0482 0.0459 0.0423 0.0355 0.0131
0.1122 0.1104 0.1061 0.0979 0.0836 0.0635 0.0360 0.1122 0.1104 0.1061 0.0979 0.0836 0.0635 0.0360

View File

@ -897,19 +897,20 @@ while the uncorrected KS-eLDA ensemble energy obtained via Eq.~\eqref{eq:min_wit
%This shows clearly that there is a correction due to the correlation functional itself as well as a correction due to the ensemble correlation derivative %This shows clearly that there is a correction due to the correlation functional itself as well as a correction due to the ensemble correlation derivative
The corresponding excitation energies are The corresponding excitation energies are
\beq\label{eq:Om-eLDA} \beq\label{eq:Om-eLDA}
\begin{split}
\Ex{eLDA}{(I)} \Ex{eLDA}{(I)}
& = =
\Ex{HF}{(I)} \Ex{HF}{(I)}
\\ + \int \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})}
& + \int \fdv{\E{c}{\bw}[\n{\bGam{\bw}}{}]}{\n{}{}(\br{})}
\qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{(0)}}{}(\br{}) ] d\br{} \qty[ \n{\bGam{(I)}}{}(\br{}) - \n{\bGam{(0)}}{}(\br{}) ] d\br{}
\\ + \DD{c}{(I)},
& + \int \n{\bGam{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{I}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{},
\end{split}
\eeq \eeq
with $\Ex{HF}{(I)} = \E{HF}{(I)} - \E{HF}{(0)}$, where the last term is the ensemble correlation derivative contribution to the excitation energy. with $\Ex{HF}{(I)} = \E{HF}{(I)} - \E{HF}{(0)}$, and where
\beq\label{eq:DD-eLDA}
\DD{c}{(I)}
= \int \n{\bGam{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{I}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
\eeq
is the ensemble correlation derivative contribution to the excitation energy.
} }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Density-functional approximations for ensembles} \section{Density-functional approximations for ensembles}
@ -1307,30 +1308,25 @@ electrons.
\includegraphics[width=\linewidth]{EvsL_5_HF} \includegraphics[width=\linewidth]{EvsL_5_HF}
\caption{ \caption{
\label{fig:EvsLHF} \label{fig:EvsLHF}
Error with respect to FCI (in \%) associated with the single excitation $\Ex{}{(1)}$ (bottom) and double excitation $\Ex{}{(2)}$ (top) as a function of the box length $L$ for 5-boxium at the KS-eLDA (solid lines) and eHF (dashed lines) levels. Error with respect to FCI (in \%) associated with the single excitation $\Ex{}{(1)}$ (bottom) and double excitation $\Ex{}{(2)}$ (top) as a function of the box length $L$ for 3-boxium at the KS-eLDA (solid lines) and eHF (dashed lines) levels.
Zero-weight (\ie, $\ew{1} = \ew{2} = 0$, red lines) and state-averaged (\ie, $\ew{1} = \ew{2} = 1/3$, blue lines) calculations are reported. Zero-weight (\ie, $\ew{1} = \ew{2} = 0$, red lines) and equi-weight (\ie, $\ew{1} = \ew{2} = 1/3$, blue lines) calculations are reported.
} }
\end{figure} \end{figure}
%%% %%% %%% %%% %%% %%%
\titou{T2: there is a micmac with the derivative discontinuity as it is It is also interesting to investigate the influence of the ensemble correlation derivative $\DD{c}{I}$ [defined in Eq.~\eqref{eq:DD-eLDA}] on both the single and double excitations.
only defined at zero weight. We should clean up this.}\manu{I will!} To do so, we have reported in Fig.~\ref{fig:EvsLHF}, in the case of 3-boxium, the error percentage (with respect to FCI) as a function of the box length $L$
It is also interesting to investigate the influence of the derivative discontinuity on both the single and double excitations. on the excitation energies obtained at the KS-eLDA with and without $\DD{c}{I}$ [\ie, the last term in Eq.~\eqref{eq:Om-eLDA}].
To do so, we have reported in Fig.~\ref{fig:EvsLHF} the error percentage %\manu{Manu: there is something I do not understand. If you want to
(with respect to FCI) on the excitation energies obtained at the KS-eLDA %evaluate the importance of the ensemble correlation derivatives you
and HF\manu{-like} levels [see Eqs.~\eqref{eq:EI-eLDA} and %should only remove the following contribution from the $K$th KS-eLDA
\eqref{eq:ind_HF-like_ener}, respectively] as a function of the box %excitation energy:
length $L$ in the case of 5-boxium. %\beq\label{eq:DD_term_to_compute}
\manu{Manu: there is something I do not understand. If you want to %\int \n{\bGam{\bw}}{}(\br{})
evaluate the importance of the ensemble correlation derivatives you % \left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
should only remove the following contribution from the $K$th KS-eLDA %\eeq
excitation energy: %%rather than $E^{(I)}_{\rm HF}$
\beq\label{eq:DD_term_to_compute} %}
\int \n{\bGam{\bw}}{}(\br{})
\left. \pdv{\e{c}{\bw}(\n{}{})}{\ew{K}} \right|_{\n{}{}=\n{\bGam{\bw}}{}(\br{})} d\br{}
\eeq
%rather than $E^{(I)}_{\rm HF}$
}
The influence of the ensemble correlation derivative is clearly more important in the strong correlation regime. The influence of the ensemble correlation derivative is clearly more important in the strong correlation regime.
Its contribution is also significantly larger in the case of the single Its contribution is also significantly larger in the case of the single
excitation; the ensemble correlation derivative hardly influences the double excitation. excitation; the ensemble correlation derivative hardly influences the double excitation.
@ -1339,11 +1335,12 @@ derivative is much smaller in the case of equal-weight calculations (as compared
This could explain why equiensemble calculations are clearly more This could explain why equiensemble calculations are clearly more
accurate as it reduces the influence of the ensemble correlation derivative: accurate as it reduces the influence of the ensemble correlation derivative:
for a given method, equiensemble orbitals partially remove the burden for a given method, equiensemble orbitals partially remove the burden
of modeling properly the ensemble correlation derivative.\manu{Manu: well, we of modeling properly the ensemble correlation derivative.
would need the exact derivative value to draw such a conclusion. We can %\manu{Manu: well, we
only speculate. Let us first see how important the contribution in %would need the exact derivative value to draw such a conclusion. We can
Eq.~\eqref{eq:DD_term_to_compute} is. What follows should also be %only speculate. Let us first see how important the contribution in
updated in the light of the new results.} %Eq.~\eqref{eq:DD_term_to_compute} is. What follows should also be
%updated in the light of the new results.}
%%% FIG 6 %%% %%% FIG 6 %%%
\begin{figure} \begin{figure}
@ -1352,7 +1349,7 @@ updated in the light of the new results.}
\label{fig:EvsN_HF} \label{fig:EvsN_HF}
Error with respect to FCI in single and double excitation energies for $\nEl$-boxium (with a box length of $L=8\pi$) as a function of the number of electrons $\nEl$ at the KS-eLDA (solid lines) and eHF (dashed lines) levels. Error with respect to FCI in single and double excitation energies for $\nEl$-boxium (with a box length of $L=8\pi$) as a function of the number of electrons $\nEl$ at the KS-eLDA (solid lines) and eHF (dashed lines) levels.
Zero-weight (\ie, $\ew{1} = \ew{2} = 0$, black and red lines) and Zero-weight (\ie, $\ew{1} = \ew{2} = 0$, black and red lines) and
equal-weight (\ie, $\ew{1} = \ew{2} = 1/3$, blue and green lines) calculations are reported. equi-weight (\ie, $\ew{1} = \ew{2} = 1/3$, blue and green lines) calculations are reported.
} }
\end{figure} \end{figure}
%%% %%% %%% %%% %%% %%%

File diff suppressed because it is too large Load Diff