2019-09-05 10:37:42 +02:00
\documentclass [aip,jcp,reprint,noshowkeys,superscriptaddress] { revtex4-1}
2019-06-16 22:35:10 +02:00
\usepackage { graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable}
\usepackage { mathpazo,libertine}
\newcommand { \alert } [1]{ \textcolor { red} { #1} }
\definecolor { darkgreen} { RGB} { 0, 180, 0}
\usepackage { hyperref}
\hypersetup {
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
%useful stuff
\newcommand { \cdash } { \multicolumn { 1} { c} { ---} }
\newcommand { \mc } { \multicolumn }
\newcommand { \mr } { \multirow }
\newcommand { \fnm } { \footnotemark }
\newcommand { \fnt } { \footnotetext }
\newcommand { \tabc } [1]{ \multicolumn { 1} { c} { #1} }
\newcommand { \la } { \lambda }
\newcommand { \si } { \sigma }
% functionals, potentials, densities, etc
\newcommand { \eps } { \epsilon }
\newcommand { \e } [2]{ \eps _ \text { #1} ^ { #2} }
\renewcommand { \v } [2]{ v_ \text { #1} ^ { #2} }
\newcommand { \be } [2]{ \bar { \eps } _ \text { #1} ^ { #2} }
\newcommand { \bv } [2]{ \bar { f} _ \text { #1} ^ { #2} }
\newcommand { \n } [1]{ n^ { #1} }
\newcommand { \DD } [2]{ \Delta _ \text { #1} ^ { #2} }
\newcommand { \LZ } [2]{ \Xi _ \text { #1} ^ { #2} }
% energies
\newcommand { \EHF } { E_ \text { HF} }
\newcommand { \Ec } { E_ \text { c} }
\newcommand { \Ecat } { E_ \text { cat} }
\newcommand { \Eneu } { E_ \text { neu} }
\newcommand { \Eani } { E_ \text { ani} }
\newcommand { \EPT } { E_ \text { PT2} }
\newcommand { \EFCI } { E_ \text { FCI} }
% matrices
\newcommand { \br } { \bm { r} }
\newcommand { \bw } { \bm { w} }
\newcommand { \bG } { \bm { G} }
\newcommand { \bS } { \bm { S} }
\newcommand { \bGamma } [1]{ \bm { \Gamma } ^ { #1} }
\newcommand { \bH } { \bm { H} }
\newcommand { \bHc } { \bm { H} ^ \text { c} }
\newcommand { \bF } [1]{ \bm { F} ^ { #1} }
\newcommand { \Ex } [1]{ \Omega ^ { #1} }
\newcommand { \E } [1]{ E^ { #1} }
% elements
\newcommand { \ew } [1]{ w_ { #1} }
\newcommand { \eG } [1]{ G_ { #1} }
\newcommand { \eS } [1]{ S_ { #1} }
\newcommand { \eGamma } [2]{ \Gamma _ { #1} ^ { #2} }
\newcommand { \eHc } [1]{ H_ { #1} ^ \text { c} }
\newcommand { \eF } [2]{ F_ { #1} ^ { #2} }
% Numbers
\newcommand { \Nel } { N}
\newcommand { \Nbas } { K}
% Ao and MO basis
\newcommand { \MO } [2]{ \phi _ { #1} ^ { #2} }
\newcommand { \cMO } [2]{ c_ { #1} ^ { #2} }
\newcommand { \AO } [1]{ \chi _ { #1} }
% units
\newcommand { \IneV } [1]{ #1~eV}
\newcommand { \InAU } [1]{ #1~a.u.}
\newcommand { \InAA } [1]{ #1~\AA }
\newcommand { \SI } { \textcolor { blue} { supplementary material} }
\newcommand { \LCPQ } { Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\' e de Toulouse, CNRS, UPS, France}
\newcommand { \LCQ } { Laboratoire de Chimie Quantique, Institut de Chimie, CNRS, Universit\' e de Strasbourg, Strasbourg, France}
%%%% added by Manu %%%%%
\newcommand { \manu } [1]{ { \textcolor { blue} { Manu: #1 } } }
\newcommand { \beq } { \begin { eqnarray} }
\newcommand { \eeq } { \end { eqnarray} }
%
\newcommand { \bmk } { \bm { \kappa } } % orbital rotation vector
\newcommand { \bmg } { \bm { \gamma } } % orbital rotation vector
\newcommand { \bfx } { \bf { x} }
\newcommand { \bfr } { \bf { r} }
%%%%
\begin { document}
\title { Supplementary Material for ``Weight-dependent local density-functional approximations for ensembles''}
\author { Pierre-Fran\c { c} ois Loos}
\email { loos@irsamc.ups-tlse.fr}
\affiliation { \LCPQ }
\author { Emmanuel Fromager}
\email { fromagere@unistra.fr}
\affiliation { \LCQ }
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin { abstract}
\end { abstract}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { Ensemble Hartree--Fock method}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The Hartree--Fock (HF) ensemble energy can be written
as
\beq \label { eq:eHF_ ener}
& & E^ { \bw } _ { \rm
HF} ({ \bm \kappa } )=
\sum _ { pq} \langle
\varphi _ p(\bmk )\vert \hat { h} \vert \varphi _ q(\bmk )\rangle \sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { pq}
\nonumber \\
& & +\dfrac { 1} { 2} \sum _ { pqrs} \langle \varphi _ p(\bmk )\varphi _ q(\bmk )\vert \vert
\varphi _ r(\bmk )\varphi _ s(\bmk )\rangle
%\times
\sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { pr} D^ { (K)} _ { qs} ,
\nonumber \\
\eeq
where the one- and antisymmetrized two-electron integrals read,
\beq
\langle
\varphi _ p({ \bmk } )\vert \hat { h} \vert
\varphi _ q({ \bmk } )\rangle =\int d{ \bfx } \;
\varphi _ p({ \bmk } ,{ \bfx } )\hat { h} \varphi _ q({ \bmk } ,{ \bfx } )
\eeq
with $ \hat { h } \equiv - \frac { \nabla _ { \bfr } ^ 2 } { 2 } + v _ { \rm
ext} (\bfr )$
and
\beq
& & \langle \varphi _ p(\bmk )\varphi _ q(\bmk )\vert \vert
\varphi _ r(\bmk )\varphi _ s(\bmk )\rangle =
\nonumber \\
& & \int d{ \bfx } _ 1\int d{ \bfx } _ 2\;
\varphi _ p({ \bmk } ,{ \bfx } _ 1)\varphi _ q({ \bmk } ,{ \bfx } _ 2)\frac { 1} { \vert
{ \bfr } _ 1-{ \bfr } _ 2\vert }
\nonumber
\\
& & \times \Big [\varphi _ r({ \bmk } ,{ \bfx } _ 1)\varphi _ s({ \bmk } ,{ \bfx } _ 2)
-\varphi _ s({ \bmk } ,{ \bfx } _ 1)\varphi _ r({ \bmk } ,{ \bfx } _ 2)\Big ]
,
\eeq
respectively. Note that we use { \it real algebra} and the shorthand
notation $ \int d { \bfx } \equiv \int
d{ \bfr } \sum _ { \sigma } $ for integration over space and
summation over spin.
% normalization condition
%$\sum^M_{K=0}w^{(K)}=1$
%.
The antihermitian $ \bmk \equiv \{ \kappa _ { pq } \} _ { p>q } $ matrix which appears in the integrals controls
the rotation of the spin-orbitals as follows,
\beq \label { eq:orb_ taylor_ expansion}
& & \varphi _ p({ \bmk } ,{ \bfx } )=\sum _ q\left [e^{-{\bmk}}\right] _ { qp} \varphi _ q({ \bfx } )
\nonumber \\
& & =
\varphi _ p({ \bfx } )+\sum _ { q<p} \kappa _ { pq} \varphi _ q({ \bfx } )-\sum _ { q>p} \kappa _ { qp} \varphi _ q({ \bfx } )
+\mathcal { O} \left ({ \bmk } ^ 2\right ).
\eeq
The ($ { \bmk } $ -independent) one-electron reduced density matrices (1RDMs)
in Eq.~(\ref { eq:eHF_ ener} ) are defined in the unrotated molecular
spin-orbital basis for each (unrotated) determinant $ \Phi ^ { ( K ) } $ belonging to
the ensemble as follows: $ D ^ { ( K ) } _ { pr } = \delta _ { pr } $ if $ \varphi _ p $ and
$ \varphi _ r $ are both
occupied in $ \Phi ^ { ( K ) } $ , otherwise $ D ^ { ( K ) } _ { pr } = 0 $ . If the unrotated
spin-orbitals are the minimizing ensemble HF ones, then the following
stationarity condition is fulfilled,
\beq \label { eq:station_ cond}
\left .\dfrac { \partial E^ { \bw } _ { \rm
HF} ({ \bm \kappa } )} { \partial \kappa _ { lm} }
\right |_ { { \bmk } =0} =0,
\eeq
with $ l>m $ . Since, according to Eq.~(\ref { eq:orb_ taylor_ expansion} ),
\beq
\left .\dfrac { \partial
\varphi _ p({ \bmk } ,{ \bfx } )} { \partial \kappa _ { lm} }
\right |_ { { \bmk } =0} =\delta _ { lp} \varphi _ m({ \bfx } )-\delta _ { mp} \varphi _ l({ \bfx } ),
\eeq
Eq.~(\ref { eq:station_ cond} ) can be written more explicitly as the
following commutation relation,
\iffalse %%%%%
%%%%%% intermediate steps ... %%%%
\beq
\sum ^ M_ { K=0} w^ { (K)} \sum _ qD^ { (K)} _ { mq} f^ { (K)} _ { lq}
-
\sum ^ M_ { K=0} w^ { (K)} \sum _ qf^ { (K)} _ { mq} D^ { (K)} _ { lq} =0
\eeq
% original %%
\iffalse %%%
\beq
& &
2\sum _ q\langle \varphi _ m\vert \hat { h} \vert \varphi _ q\rangle \sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { lq}
\nonumber \\
& & -
2\sum _ q\langle \varphi _ l\vert \hat { h} \vert \varphi _ q\rangle \sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { mq}
\nonumber \\
& & +2\sum _ { qrs} \langle \varphi _ m\varphi _ q\vert \vert
\varphi _ r\varphi _ s\rangle
%\times
\sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { lr} D^ { (K)} _ { qs}
\nonumber \\
& & -2\sum _ { qrs} \langle \varphi _ l\varphi _ q\vert \vert
\varphi _ r\varphi _ s\rangle
%\times
\sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { mr} D^ { (K)} _ { qs}
\nonumber \\
& & =0\eeq
\fi %%%%
%%%%%%%
\beq
& &
2\sum _ q\langle \varphi _ m\vert \hat { h} \vert \varphi _ q\rangle \sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { lq}
\nonumber \\
& & -
2\sum _ q\langle \varphi _ l\vert \hat { h} \vert \varphi _ q\rangle \sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { mq}
\nonumber \\
& & +2\sum _ { qrs} \langle \varphi _ m\varphi _ r\vert \vert
\varphi _ q\varphi _ s\rangle
%\times
\sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { lq} D^ { (K)} _ { rs}
\nonumber \\
& & -2\sum _ { qrs} \langle \varphi _ l\varphi _ r\vert \vert
\varphi _ q\varphi _ s\rangle
%\times
\sum ^ M_ { K=0} w^ { (K)} D^ { (K)} _ { mq} D^ { (K)} _ { rs}
\nonumber \\
& & =0\eeq
%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%
\fi %%%%
%%%%%%%
\beq \label { eq:stat_ cond_ commut_ ind}
\sum ^ M_ { K=0} w^ { (K)} \left [{\bm f}^{(K)},{\bm D}^{(K)}\right] =0,
\eeq
where the $ K $ th Fock matrix elements read
\beq
f^ { (K)} _ { mq} =\langle \varphi _ m\vert \hat { h} \vert \varphi _ q\rangle
+
\sum _ { rs} \langle \varphi _ m\varphi _ r\vert \vert
\varphi _ q\varphi _ s\rangle D^ { (K)} _ { rs} .
\eeq
In the minimizing ensemble HF spin-orbital basis, Eq.~(\ref { eq:stat_ cond_ commut_ ind} ) reads
\beq
\sum ^ M_ { K=0} w^ { (K)} \Big (\nu ^ { (K)} _ m-\nu _ l^ { (K)} \Big )f^ { (K)} _ { lm} =0,
\eeq
where $ \nu ^ { ( K ) } _ m $ is the occupation of the spin-orbital $ \varphi _ m $ in the
determinant $ \Phi ^ { ( K ) } $ .\\
Note that, in more conventional ensemble calculations, the following HF
energy expression is employed,
\beq \label { eq:GI_ ensHF_ ener}
& & \tilde { E} ^ { \bw } _ { \rm
HF} ({ \bm \kappa } )=
\sum _ { pq} \langle
\varphi _ p(\bmk )\vert \hat { h} \vert \varphi _ q(\bmk )\rangle D^ { \bw } _ { pq}
\nonumber \\
& &
+\dfrac { 1} { 2} \sum _ { pqrs} \langle \varphi _ p(\bmk )\varphi _ q(\bmk )\vert \vert
\varphi _ r(\bmk )\varphi _ s(\bmk )\rangle
%\times
D^ { \bw } _ { pr} D^ { \bw } _ { qs} ,
\eeq
where $ { \bm D } ^ { \bw } = \sum ^ M _ { K = 0 } w ^ { ( K ) } { \bm D } ^ { ( K ) } $ is the ensemble
1RDM. In this case, the stationarity condition simply reads
\beq
\left [{\bm f}^{\bw},{\bm D}^{\bw}\right] =0,
\eeq
where the ensemble Fock matrix elements are defined as follows,
\beq
f^ { \bw } _ { mq} =\langle \varphi _ m\vert \hat { h} \vert \varphi _ q\rangle
+
\sum _ { rs} \langle \varphi _ m\varphi _ r\vert \vert
\varphi _ q\varphi _ s\rangle D^ { \bw } _ { rs} .
\eeq
The major issue with the expression of the ensemble energy in
Eq.~(\ref { eq:GI_ ensHF_ ener} ) is the
ghost-interaction error from which our expression (see
Eq.~(\ref { eq:eHF_ ener} )) is free. Note also
that, by construction, the ensemble energy in Eq.~(\ref { eq:GI_ ensHF_ ener} ) is quadratic in the
ensemble weights while ours, like the exact one, varies linearly with
the weights.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { Ensemble Hartree--Fock exchange and density-functional
ghost-interaction correction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\beq
F^ { \bw } _ { \rm HF} [n]& =&
\underset { \hat { \gamma } ^ { { \bw } } \rightarrow n} { \rm min} \left \{ { \rm
Tr} \left [\hat{\gamma}^{{\bw}}\hat{T}\right] +W_ { \rm
HF} \left [{\bmg}^{\bw}\right] \right \}
\nonumber \\
& =& { \rm
Tr} \left [\hat{\gamma}^{{\bw}}[n] \hat { T} \right ]+W_ { \rm
HF} \left [{\bmg}^{\bw}[n] \right ]
\eeq
where
$ \hat { \gamma } ^ { { \bw } } = \sum ^ M _ { K = 0 } w ^ { ( K ) } \vert \Phi ^ { ( K ) } \rangle \langle \Phi ^ { ( K ) } \vert = \sum ^ M _ { K = 0 } w ^ { ( K ) } \hat { \gamma } ^ { ( K ) } $ is an ensemble density matrix operator constructed
from Slater determinants, the ensemble 1RDM elements are $ \gamma _ { pq } ^ { \bw } = { \rm
Tr} \left [\hat{\gamma}^{{\bw}}\hat{a}^\dagger_p\hat{a}_q\right] $ ,
and $ W _ { \rm
HF} \left [{\bmg}\right] =\frac { 1} { 2} \sum _ { pqrs} \langle \varphi _ p\varphi _ q\vert \vert
\varphi _ r\varphi _ s\rangle
%\times
\gamma _ { pr} \gamma _ { qs} $ . \\
In-principle-exact decomposition:
\beq
F^ { \bw } [n]= F^ { \bw } _ { \rm HF} [n]+\overline { E} ^ { { \bw } } _ { \rm
Hx} [n]+\overline { E} ^ { { \bw } } _ { \rm c} [n]
\eeq
The complementary ensemble Hx energy removes the ghost-interaction
errors introduced in $ W _ { \rm
HF} \left [{\bmg}^{\bw}[n] \right ]$ :
\beq
\overline { E} ^ { { \bw } } _ { \rm
Hx} [n]=\sum ^ M_ { K=0} w^ { (K)} W_ { \rm
HF} \left [{\bmg}^{(K)}[n] \right ]
-W_ { \rm
HF} \left [{\bmg}^{\bw}[n] \right ],
\eeq
which gives in the canonical orbital basis
\beq
& & \overline { E} ^ { { \bw } } _ { \rm
Hx} [n]=
\dfrac { 1} { 2} \sum _ { pq}
\langle \varphi ^ { { \bw } } _ p[n]\varphi ^ { { \bw } } _ q[n]\vert \vert
\varphi ^ { { \bw } } _ p[n]\varphi ^ { { \bw } } _ q[n]\rangle
\nonumber \\
& & \times \left [\sum ^ M_ { K=0} w^ { (K)} \nu ^ { (K)} _ p \left (\nu ^ { (K)} _ q
-\sum ^ M_ { L=0} w^ { (L)} \nu ^ { (L)} _ q\right )\right ]
.\eeq
\manu { I would guess that, in a uniform system, the GOK-DFT and our
canonical orbitals are the same. This is nice since we can construct
in a clean way density-functional approximations for both $ \overline { E } ^ { { \bw } } _ { \rm
Hx} [n]$ and $ E^ { { \bw } } _ { \rm c} [n]$ functionals. Am I right ? }
Variational expression for the ensemble energy:
\beq
E^ { { \bw } } =\underset { \hat { \gamma } ^ { { \bw } } } { \rm min} \Big \{
& & { \rm
Tr} \left [\hat{\gamma}^{{\bw}}\hat{T}\right] +W_ { \rm
HF} \left [{\bmg}^{\bw}\right]
+
\overline { E} ^ { { \bw } } _ { \rm
Hxc} \left [n_{\hat{\gamma}^{{\bw}}}\right]
%+E^{{\bw}}_{\rm c}\left[n_{\hat{\gamma}^{{\bw}}}\right]
\nonumber \\
& &
+\int d{ \br } \; v_ { \rm ext} ({ \bfr } )n_ { \hat { \gamma } ^ { { \bw } } } ({ \bfr } )
\Big \}
\eeq
Note that, if we use orbital rotations, the gradient of the DFT energy
contributions can be expressed as follows,
\beq
\left .\dfrac { \partial
\overline { E} ^ { { \bw } } _ { \rm Hxc} \left [n^{{\bw}}({\bmk})\right]
} { \partial \kappa _ { lm} }
\right |_ { { \bmk } =0} =\int d{ \br } \dfrac { \delta \overline { E} ^ { { \bw } } _ { \rm
Hxc} \left [n^{{\bw}}\right] } { \delta
n({ \br } )} \left .\dfrac { \partial n^ { { \bw } } ({ \bmk } ,{ \br } )} { \partial \kappa _ { lm} }
\right |_ { { \bmk } =0} ,
\eeq
where
\beq
n^ { { \bw } } ({ \bmk } ,{ \br } )=\sum _ \sigma \sum _ { pq} \varphi _ p({ \bmk } ,{ \bfx } )\varphi _ q({ \bmk } ,{ \bfx } )\gamma _ { pq} ^ { \bw }
\eeq
thus leading to
\beq
& & \left .\dfrac { \partial
\overline { E} ^ { { \bw } } _ { \rm Hxc} \left [n^{{\bw}}({\bmk})\right]
} { \partial \kappa _ { lm} }
\right |_ { { \bmk } =0} =
\sum _ { pq} \gamma _ { pq} ^ { \bw }
\nonumber \\
& & \times \left .\dfrac { \partial }
{ \partial \kappa _ { lm} }
\Big [\left \langle \varphi _ p(\bmk )\middle \vert \hat { \overline { v} } ^ { { \bw } } _ { \rm
Hxc}
\middle \vert \varphi _ q(\bmk )\right \rangle
\Big ]
\right |_ { { \bmk } =0} .
\eeq
In conclusion, the minimizing canonical orbitals fulfill the following
hybrid HF/GOK-DFT equation,
\beq
& & \left (-\frac { \nabla _ { \bfr } ^ 2} { 2} +v_ { \rm
ext} ({ \bfr } )+\hat { u} _ { \rm HF} \left [\gamma^{\bw}\right]
+\dfrac { \delta \overline { E} ^ { { \bw } } _ { \rm Hxc} \left [n^{{\bw}}\right] } { \delta
n({ \br } )} \right )\varphi ^ { { \bw } } _ p({ \bfx } )
\nonumber
\\
& & =\varepsilon ^ { { \bw } } _ p\varphi ^ { { \bw } } _ p({ \bfx } ).
\eeq
Since $ \partial \gamma _ { pq } ^ { \bw } / \partial
w^ { (I)} =\gamma _ { pq} ^ { (I)} -\gamma _ { pq} ^ { (0)} $ , it comes
\manu { just for me ...
\beq
& & +\dfrac { 1} { 2}
\sum _ { pqrs} \langle \varphi _ p\varphi _ q\vert \vert
\varphi _ r\varphi _ s\rangle
%\times
\left (\gamma _ { pr} ^ { (I)} -\gamma _ { pr} ^ { (0)} \right )\gamma ^ { \bw } _ { qs}
\nonumber \\
& & +\dfrac { 1} { 2} \sum _ { pqrs} \langle \varphi _ q\varphi _ p\vert \vert
\varphi _ s\varphi _ r\rangle
%\times
\gamma ^ { \bw } _ { pr} \left (\gamma _ { qs} ^ { (I)} -\gamma _ { qs} ^ { (0)} \right )
\nonumber \\
& & =
\sum _ { pqrs} \langle \varphi _ p\varphi _ q\vert \vert
\varphi _ r\varphi _ s\rangle
%\times
\left (\gamma _ { pr} ^ { (I)} -\gamma _ { pr} ^ { (0)} \right )\gamma ^ { \bw } _ { qs}
\nonumber \\
& & =
\sum _ { pr} \left [\hat{u}_{\rm HF}\left[\gamma^{\bw}\right] \right ]_ { pr} \left (\gamma _ { pr} ^ { (I)} -\gamma _ { pr} ^ { (0)} \right )
\nonumber \\
& & =
\sum _ p\left [\hat { u} _ { \rm
HF} \left [\gamma^{\bw}\right] \right ]_ { pp} \left (\nu _ p^ { (I)} -\nu _ p^ { (0)} \right )
\eeq
}
\beq
\dfrac { dE^ { \bw } } { dw^ { (I)} } =\sum _ p\varepsilon ^ { { \bw } } _ p\left (\nu _ p^ { (I)} -\nu _ p^ { (0)} \right )+\left .\dfrac { \partial \overline { E} ^ { { \bw } } _ { \rm
Hxc} \left [n\right] } { \partial w^ { (I)} } \right |_ { n=n^ { { \bw } } } .
\eeq
LZ shift in this context: $ \varepsilon ^ { { \bw } } _ p \rightarrow
\overline { \varepsilon } ^ { { \bw } } _ p=\varepsilon ^ { { \bw } } _ p+\overline { \Delta } _ { \rm
LZ} ^ { { \bw } } $ where
\beq
N\overline { \Delta } _ { \rm
LZ} ^ { { \bw } } & =& \overline { E} ^ { { \bw } } _ { \rm Hxc} \left [n^{{\bw}}\right]
-\int d{ \br } \dfrac { \delta \overline { E} ^ { { \bw } } _ { \rm
Hxc} \left [n^{{\bw}}\right] } { \delta
n({ \br } )} n^ { { \bw } } ({ \bfr } )
\nonumber \\
& &
-W_ { \rm
HF} \left [{\bmg}^{\bw}\right]
\eeq
such that
\beq
E^ { { \bw } } =\sum ^ M_ { K=0} w^ { (K)} \sum _ p\nu _ p^ { (K)} \overline { \varepsilon } ^ { { \bw } } _ p.
\eeq
Thus we conclude that individual energies can be expressed in principle
exactly as follows,
\beq
E^ { (K)} =\sum _ p\nu _ p^ { (K)} \overline { \varepsilon } ^ { { \bw } } _ p+\sum ^ M_ { I>0} \left (\delta _ { IK} -w^ { (I)} \right )\left .\dfrac { \partial \overline { E} ^ { { \bw } } _ { \rm
Hxc} \left [n\right] } { \partial w^ { (I)} } \right |_ { n=n^ { { \bw } } } .
\eeq
%%%%%%%%%%%%%%
\iffalse %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { Generalized GOK-DFT}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The energy to be minimized in a generalized GOK-DFT approach can be
written as
\beq
\eeq
\fi %%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section { Construction of the density-functional approximations}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The density-functional approximations designed in this manuscript are based on highly-accurate energies for the ground state ($ I = 0 $ ), the first singly-excited state ($ I = 1 $ ), and the first doubly-excited state ($ I = 2 $ ) of the (spin-polarized) two-electron ringium system.
We refer the interested reader to Refs.~\onlinecite { Loos_ 2012, Loos_ 2013a, Loos_ 2014b} for more details about this paradigm.
The reduced (i.e.~per electron) HF energy for these three states is:
\begin { subequations}
\begin { align}
\e { HF} { (0)} (n) & = \frac { \pi ^ 2} { 8} n^ 2 + n,
\\
\e { HF} { (1)} (n) & = \frac { \pi ^ 2} { 2} n^ 2 + \frac { 4} { 3} n,
\\
\e { HF} { (2)} (n) & = \frac { 9\pi ^ 2} { 8} n^ 2 + \frac { 23} { 15} n.
\end { align}
\end { subequations}
All these states have the same (uniform) density $ n = 2 / ( 2 \pi R ) $ where $ R $ is the radius of the ring on which the electrons are confined.
The total energy of the ground and doubly-excited states are given by the two lowest eigenvalues of the Hamiltonian $ \bH $ with elements
\begin { equation}
\begin { split}
H_ { ij}
& = \int _ 0^ \pi \qty [ \frac{\psi_i(\omega)}{R} \frac{\psi_j(\omega)}{R} + \frac{\psi_i(\omega)\psi_j(\omega)}{2R\sin(\omega/2)} ] d\omega
\\
& = \frac { \sqrt { \pi } } { 2 R} \qty [ \frac{\Gamma\qty(\frac{i+j}{2})}{\Gamma\qty(\frac{i+j+1}{2})} + \frac{ij}{4R} \frac{\Gamma\qty(\frac{i+j-1}{2})}{\Gamma\qty(\frac{i+j+2}{2})} ] ,
\end { split}
\end { equation}
2019-09-05 10:37:42 +02:00
where $ \omega = \theta _ 1 - \theta _ 2 $ is the interelectronic angle, $ \Gamma ( x ) $ is the Gamma function, \cite { NISTbook} and
2019-06-16 22:35:10 +02:00
\begin { equation}
\psi _ i(\omega ) = \sin (\omega /2) \sin ^ { i-1} (\omega /2), \quad i=1,\ldots ,M
\end { equation}
are (non-orthogonal) explicitly-correlated basis functions with overlap matrix elements
\begin { equation}
S_ { ij}
= \int _ 0^ \pi \psi _ i(\omega )\psi _ j(\omega ) d\omega
= \sqrt { \pi } \frac { \Gamma \qty (\frac { i+j+1} { 2} )} { \Gamma \qty (\frac { i+j+2} { 2} )} .
\end { equation}
Thanks to this explicitly-correlated basis, the convergence rate of the energy is exponential with respect to $ M $ .
Therefore, high accuracy is reached with a very small number of basis functions.
Here, we typically use $ M = 10 $ .
For the singly-excited state, one has to modify the basis functions as
\begin { equation}
\psi _ i(\omega ) = \cos (\omega /2) \sin ^ { i-1} (\omega /2),
\end { equation}
and its energy is obtained by the lowest root of the Hamiltonian in this basis, and the matrix elements reads
\begin { align}
H_ { ij} & = \frac { \sqrt { \pi } } { 4 R} \qty [ \frac{\Gamma\qty(\frac{i+j}{2})}{\Gamma\qty(\frac{i+j+1}{3})} + \frac{3ij+i+j-1}{4R} \frac{\Gamma\qty(\frac{i+j-1}{2})}{\Gamma\qty(\frac{i+j+4}{2})} ] ,
\\
S_ { ij} & = \frac { \sqrt { \pi } } { 2} \frac { \Gamma \qty (\frac { i+j+1} { 2} )} { \Gamma \qty (\frac { i+j+4} { 2} )} .
\end { align}
The numerical values of the correlation energy for various $ R $ are reported in Table \ref { tab:Ref} for the three states of interest.
%%% FIG 1 %%%
\begin { figure}
\includegraphics [width=\linewidth] { Ec}
\caption {
$ \e { c } { ( I ) } $ [see Eq.~\eqref { eq:ec} ] as a function of $ R = 1 / ( \pi n ) $ for the ground state ($ I = 0 $ ), the first singly-excited state ($ I = 1 $ ), and the first doubly-excited state ($ I = 2 $ ) of the (spin-polarized) two-electron ringium system.
The data gathered in Table \ref { tab:Ref} are also reported.
}
\label { fig:Ec}
\end { figure}
%%% %%% %%%
%%% TABLE I %%%
\begin { turnpage}
\begin { squeezetable}
\begin { table*}
\caption {
\label { tab:Ref}
$ - \e { c } { ( I ) } $ as a function of the radius of the ring $ R $ for the ground state ($ I = 0 $ ), the first singly-excited state ($ I = 1 $ ), and the first doubly-excited state ($ I = 2 $ ) of the (spin-polarized) two-electron ringium system.
}
\begin { ruledtabular}
\begin { tabular} { lcddddddddddd}
State & $ I $ & \mc { 11} { c} { Ring's radius $ R = 1 / ( \pi n ) $ } \\
\cline { 3-13}
& & \tabc { $ 0 $ } & \tabc { $ 1 / 10 $ } & \tabc { $ 1 / 5 $ } & \tabc { $ 1 / 2 $ } & \tabc { $ 1 $ } & \tabc { $ 2 $ } & \tabc { $ 5 $ } & \tabc { $ 10 $ } & \tabc { $ 20 $ } & \tabc { $ 50 $ } & \tabc { $ 100 $ } \\
\hline
Ground state & $ 0 $ & 0.013708 & 0.012859 & 0.012525 & 0.011620 & 0.010374 & 0.008558 & 0.005673 & 0.003697 & 0.002226 & 0.001046 & 0.000567 \\
Singly-excited state & $ 1 $ & 0.0238184 & 0.023392 & 0.022979 & 0.021817 & 0.020109 & 0.017371 & 0.012359 & 0.008436 & 0.005257 & 0.002546 & 0.001399 \\
Doubly-excited state & $ 2 $ & 0.018715 & 0.018653 & 0.018576 & 0.018300 & 0.017743 & 0.016491 & 0.013145 & 0.009670 & 0.006365 & 0.003231 & 0.001816 \\
\end { tabular}
\end { ruledtabular}
\end { table*}
\end { squeezetable}
\end { turnpage}
Based on these highly-accurate calculations, one can write down, for each state, an accurate analytical expression of the reduced correlation energy \cite { Loos_ 2013a, Loos_ 2014a} via the following Pad\' e approximant
\begin { equation}
\label { eq:ec}
\e { c} { (I)} (n) = \frac { a^ { (I)} \, n} { n + b^ { (I)} \sqrt { n} + c^ { (I)} } ,
\end { equation}
where $ b ^ { ( I ) } $ and $ c ^ { ( I ) } $ are state-specific fitting parameters, which are provided in Table I of the manuscript.
2019-09-05 10:37:42 +02:00
The value of $ a ^ { ( I ) } $ is obtained via the exact high-density expansion of the correlation energy. \cite { Loos_ 2013a, Loos_ 2014a}
2019-06-16 22:35:10 +02:00
Equation \eqref { eq:ec} is depicted in Fig.~\ref { fig:Ec} for each state alongside the data gathered in Table \ref { tab:Ref} .
%%% FIG 2 %%%
\begin { figure*}
\includegraphics [height=0.25\linewidth] { EvsL_ 2}
\includegraphics [height=0.25\linewidth] { EvsL_ 3}
\includegraphics [height=0.25\linewidth] { EvsL_ 4}
\includegraphics [height=0.25\linewidth] { EvsL_ 5}
\includegraphics [height=0.25\linewidth] { EvsL_ 6}
\includegraphics [height=0.25\linewidth] { EvsL_ 7}
\caption {
Error with respect to FCI in single and double excitation energies of $ N $ -boxium as a function of the box length $ L $ for various methods.
}
\label { fig:EvsL}
\end { figure*}
%%% %%% %%%
%%% FIG 1 %%%
\begin { figure*}
\includegraphics [height=0.25\linewidth] { EvsN_ 0125}
\includegraphics [height=0.25\linewidth] { EvsN_ 025}
\includegraphics [height=0.25\linewidth] { EvsN_ 05}
\includegraphics [height=0.25\linewidth] { EvsN_ 1}
\includegraphics [height=0.25\linewidth] { EvsN_ 2}
\includegraphics [height=0.25\linewidth] { EvsN_ 4}
\includegraphics [height=0.25\linewidth] { EvsN_ 8}
\caption {
Error with respect to FCI in single and double excitation energies of $ N $ -boxium as a function of the number of electrons $ N $ for various methods and box length $ L $ .
}
\label { fig:EvsL}
\end { figure*}
%%% %%% %%%
%%% TABLE I %%%
\begin { table*}
\caption {
\label { tab:OptGap}
Deviation from the FCI quantities (in hartree) of the individual energies, $ \E { ( I ) } $ , and the corresponding excitation energies, $ \Ex { ( I ) } $ , for the ground ($ I = 0 $ ), singly-excited ($ I = 1 $ ) and doubly-excited ($ I = 2 $ ) states of $ \Nel = 4 $ electrons in a box of length $ L $ .
The values of the derivative discontinuity $ \DD { c } { ( I ) } $ and the Levy-Zahariev shift $ \LZ { c } { } $ are also reported.
}
\begin { ruledtabular}
\begin { tabular} { lclddddddd}
& & & \mc { 7} { c} { $ L / \pi $ } \\
\cline { 4-10}
Method & $ \bw $ & State & 1/8 & 1/4 & 1/2 & 1 & 2 & 4 & 8 \\
\hline
FCI & & $ \E { ( 0 ) } $ & 168.1946 & 44.0662 & 12.0035 & 3.4747 & 1.0896 & 0.3719 & 0.1367 \\
& & $ \E { ( 1 ) } $ & 330.2471 & 85.0890 & 22.5112 & 6.2247 & 1.8355 & 0.5845 & 0.2006 \\
& & $ \E { ( 2 ) } $ & 809.9972 & 204.9840 & 52.4777 & 13.7252 & 3.7248 & 1.0696 & 0.3300 \\
& & $ \Ex { ( 1 ) } $ & 162.0525 & 41.0228 & 10.5078 & 2.7500 & 0.7458 & 0.2125 & 0.0639 \\
& & $ \Ex { ( 2 ) } $ & 641.8026 & 160.9177 & 40.4743 & 10.2505 & 2.6352 & 0.6977 & 0.1933 \\
\\
CIS & & $ \Ex { ( 1 ) } $ & 0.0104 & 0.0102 & 0.0099 & 0.0092 & 0.0077 & 0.0051 & 0.0022 \\
\\
TDHF & & $ \Ex { ( 1 ) } $ & 0.0019 & 0.0021 & 0.0023 & 0.0027 & 0.0029 & 0.0023 & 0.0011 \\
\\
TDA-TDLDA& & $ \Ex { ( 1 ) } $ & 0.0099 & 0.0088 & 0.0058 & -0.0041 & -0.0316 & -0.0467 & \\
\\
TDLDA & & $ \Ex { ( 1 ) } $ & 0.0015 & 0.0006 & -0.0018 & -0.0106 & -0.0370 & -0.0518 & \\
\\
eDFT & $ ( 0 , 0 ) $ & $ \E { ( 0 ) } $ & -0.0397 & -0.0391 & -0.0380 & -0.0361 & -0.0323 & -0.0236 \\
& & $ \E { ( 1 ) } $ & 0.0215 & 0.0213 & 0.0210 & 0.0200 & 0.0159 & 0.0102 \\
& & $ \E { ( 2 ) } $ & -0.0426 & -0.0425 & -0.0419 & -0.0386 & -0.0249 & -0.0044 \\
& & $ \Ex { ( 1 ) } $ & 0.0612 & 0.0604 & 0.0590 & 0.0561 & 0.0483 & 0.0338 \\
& & $ \Ex { ( 2 ) } $ & -0.0029 & -0.0034 & -0.0039 & -0.0025 & 0.0074 & 0.0191 \\
& & $ \DD { c } { ( 0 ) } $ & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & $ \DD { c } { ( 1 ) } $ & 0.0064 & 0.0056 & 0.0043 & 0.0022 & -0.0007 & -0.0037 & \\
& & $ \DD { c } { ( 2 ) } $ & 0.0159 & 0.0147 & 0.0126 & 0.0093 & 0.0046 & -0.0009 & \\
& & $ \LZ { c } { } $ & 0.0013 & 0.0024 & 0.0043 & 0.0070 & 0.0100 & 0.0121 & \\
\\
eDFT & $ ( 1 / 3 , 1 / 3 ) $ & $ \E { ( 0 ) } $ & 0.0031 & 0.0036 & 0.0044 & 0.0054 & 0.0042 & -0.0025 \\
& & $ \E { ( 1 ) } $ & 0.0090 & 0.0087 & 0.0083 & 0.0076 & 0.0070 & 0.0071 \\
& & $ \E { ( 2 ) } $ & -0.0005 & -0.0009 & -0.0015 & -0.0023 & -0.0030 & -0.0026 \\
& & $ \Ex { ( 1 ) } $ & 0.0058 & 0.0052 & 0.0039 & 0.0022 & 0.0028 & 0.0096 \\
& & $ \Ex { ( 2 ) } $ & -0.0036 & -0.0045 & -0.0058 & -0.0077 & -0.0072 & 0.0000 \\
& & $ \DD { c } { ( 0 ) } $ & -0.0074 & -0.0067 & -0.0055 & -0.0036 & -0.0010 & 0.0019 & \\
& & $ \DD { c } { ( 1 ) } $ & -0.0010 & -0.0011 & -0.0014 & -0.0017 & -0.0021 & -0.0022& \\
& & $ \DD { c } { ( 2 ) } $ & 0.0084 & 0.0079 & 0.0069 & 0.0053 & 0.0031 & 0.0003 & \\
& & $ \LZ { c } { } $ & 0.0007 & 0.0013 & 0.0023 & 0.0040 & 0.0063 & 0.0087 & \\
\end { tabular}
\end { ruledtabular}
\end { table*}
%%% TABLE II %%%
\begin { table*}
\caption {
\label { tab:OptGap}
Deviation from the FCI quantities (in hartree) of the individual energies, $ \E { ( I ) } $ , and the corresponding excitation energies, $ \Ex { ( I ) } $ , for the ground ($ I = 0 $ ), singly-excited ($ I = 1 $ ) and doubly-excited ($ I = 2 $ ) states of $ \Nel = 4 $ electrons in a box of length $ L $ .
The values of the derivative discontinuity $ \DD { c } { ( I ) } $ and the Levy-Zahariev shift $ \LZ { c } { } $ are also reported.
}
\begin { ruledtabular}
\begin { tabular} { lclddddddd}
& & & \mc { 7} { c} { $ L / \pi $ } \\
\cline { 4-10}
Method & $ \bw $ & State & 1/8 & 1/4 & 1/2 & 1 & 2 & 4 & 8 \\
\hline
FCI & & $ \E { ( 0 ) } $ & 475.6891 & 125.7776 & 34.8248 & 10.3536 & 3.3766 & 1.2126 & 0.4721 \\
& & $ \E { ( 1 ) } $ & 702.8330 & 183.3370 & 49.5922 & 14.2255 & 4.4269 & 1.5105 & 0.5606 \\
& & $ \E { ( 2 ) } $ & 1379.3128 & 353.5967 & 92.7398 & 25.3135 & 7.3546 & 2.3203 & 0.7990 \\
& & $ \Ex { ( 1 ) } $ & 227.1438 & 57.5594 & 14.7674 & 3.8720 & 1.0504 & 0.2979 & 0.0885 \\
& & $ \Ex { ( 2 ) } $ & 903.6236 & 227.8191 & 57.9150 & 14.9599 & 3.9780 & 1.1077 & 0.3269 \\
\\
CIS & & $ \Ex { ( 1 ) } $ & 0.0163 & 0.0161 & 0.0157 & 0.0149 & 0.0133 & 0.0102 & 0.0057 \\
\\
TDHF & & $ \Ex { ( 1 ) } $ & 0.0013 & 0.0013 & 0.0014 & 0.0014 & 0.0013 & 0.0010 & 0.0007 \\
\\
TDA-TDLDA& & $ \Ex { ( 1 ) } $ & 0.0162 & 0.0157 & 0.0146 & 0.0110 & -0.0049 & -0.0344 & -0.0378 \\
\\
TDLDA & & $ \Ex { ( 1 ) } $ & 0.0262 & 0.0264 & 0.0264 & 0.0269 & 0.0273 & 0.0206 & -0.0116 \\
\\
eDFT & $ ( 0 , 0 ) $ & $ \E { ( 0 ) } $ & -0.0481 & -0.0478 & -0.0473 & -0.0463 & -0.0446 & -0.0387 & -0.0257 \\
& & $ \E { ( 1 ) } $ & 0.0343 & 0.0336 & 0.0321 & 0.0292 & 0.0220 & 0.0084 & 0.0008 \\
& & $ \E { ( 2 ) } $ & 0.0277 & 0.0267 & 0.0247 & 0.0216 & 0.0187 & 0.0208 & 0.0209 \\
& & $ \Ex { ( 1 ) } $ & 0.0824 & 0.0814 & 0.0794 & 0.0755 & 0.0666 & 0.0471 & 0.0266 \\
& & $ \Ex { ( 2 ) } $ & 0.0759 & 0.0745 & 0.0720 & 0.0679 & 0.0633 & 0.0595 & 0.0467 \\
& & $ \DD { c } { ( 0 ) } $ & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & $ \DD { c } { ( 1 ) } $ & 0.0100 & 0.0092 & 0.0077 & 0.0051 & 0.0012 & -0.0034 & -0.0072 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0244 & 0.0231 & 0.0208 & 0.0168 & 0.0108 & 0.0029 & -0.0050 \\
& & $ \LZ { c } { } $ & 0.0014 & 0.0026 & 0.0048 & 0.0083 & 0.0127 & 0.0169 & 0.01860 \\
\\
eDFT & $ ( 1 / 3 , 1 / 3 ) $ & $ \E { ( 0 ) } $ & 0.0078 & 0.0080 & 0.0082 & 0.0085 & 0.0081 & 0.0024 & -0.0022 \\
& & $ \E { ( 1 ) } $ & 0.0172 & 0.0162 & 0.0144 & 0.0112 & 0.0064 & 0.0019 & 0.0004 \\
& & $ \E { ( 2 ) } $ & 0.0645 & 0.0636 & 0.0621 & 0.0590 & 0.0530 & 0.0420 & 0.0300 \\
& & $ \Ex { ( 1 ) } $ & 0.0094 & 0.0083 & 0.0062 & 0.0027 & -0.0018 & -0.0004 & 0.0026 \\
& & $ \Ex { ( 2 ) } $ & 0.0567 & 0.0557 & 0.0539 & 0.0506 & 0.0449 & 0.0397 & 0.0323 \\
& & $ \DD { c } { ( 0 ) } $ & -0.0115 & -0.0107 & -0.0094 & -0.0072 & -0.0038 & 0.0005 & 0.0045 \\
& & $ \DD { c } { ( 1 ) } $ & -0.0015 & -0.0016 & -0.0018 & -0.0022 & -0.0028 & -0.0033 & -0.0032 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0129 & 0.0123 & 0.0113 & 0.0094 & 0.0066 & 0.0028 & -0.0013 \\
& & $ \LZ { c } { } $ & 0.0007 & 0.0013 & 0.0025 & 0.0044 & 0.0074 & 0.0110 & 0.0143 \\
\end { tabular}
\end { ruledtabular}
\end { table*}
%%% TABLE III %%%
\begin { table*}
\caption {
\label { tab:OptGap}
Deviation from the FCI quantities (in hartree) of the individual energies, $ \E { ( I ) } $ , and the corresponding excitation energies, $ \Ex { ( I ) } $ , for the ground ($ I = 0 $ ), singly-excited ($ I = 1 $ ) and doubly-excited ($ I = 2 $ ) states of $ \Nel = 4 $ electrons in a box of length $ L $ .
The values of the derivative discontinuity $ \DD { c } { ( I ) } $ and the Levy-Zahariev shift $ \LZ { c } { } $ are also reported.
}
\begin { ruledtabular}
\begin { tabular} { lclddddddd}
& & & \mc { 7} { c} { $ L / \pi $ } \\
\cline { 4-10}
Method & $ \bw $ & State & 1/8 & 1/4 & 1/2 & 1 & 2 & 4 & 8 \\
\hline
FCI & & $ \E { ( 0 ) } $ & 1020.3778 & 270.0849 & 74.9426 & 22.3790 & 7.3595 & 2.6798 & 1.0633 \\
& & $ \E { ( 1 ) } $ & 1312.2776 & 344.0184 & 93.8936 & 27.3398 & 8.7021 & 3.0600 & 1.1764 \\
& & $ \E { ( 2 ) } $ & 2183.4399 & 563.5949 & 149.6753 & 41.7213 & 12.5052 & 4.1033 & 1.4749 \\
& & $ \Ex { ( 1 ) } $ & 291.8998 & 73.9335 & 18.9510 & 4.9608 & 1.3426 & 0.3802 & 0.1131 \\
& & $ \Ex { ( 2 ) } $ & 1163.0621 & 293.5099 & 74.7326 & 19.3423 & 5.1457 & 1.4235 & 0.4116 \\
\\
CIS & & $ \Ex { ( 1 ) } $ & 0.0203 & 0.0202 & 0.0200 & 0.0195 & 0.0187 & 0.0167 & 0.0116 \\
\\
TDHF & & $ \Ex { ( 1 ) } $ & 0.0008 & 0.0008 & 0.0009 & 0.0009 & 0.0008 & 0.0008 & 0.0007 \\
\\
TDA-TDLDA& & $ \Ex { ( 1 ) } $ & 0.0203 & 0.0201 & 0.0195 & 0.0181 & 0.0106 & -0.0178 & -0.0369 \\
\\
TDLDA & & $ \Ex { ( 1 ) } $ & 0.0008 & 0.0007 & 0.0004 & -0.0006 & -0.0074 & -0.0360 & -0.0653 \\
\\
eDFT & $ ( 0 , 0 ) $ & $ \E { ( 0 ) } $ & -0.0541 & -0.0539 & -0.0537 & -0.0534 & -0.0529 & -0.0504 & -0.0386 \\
& & $ \E { ( 1 ) } $ & 0.0413 & 0.0406 & 0.0390 & 0.0362 & 0.0304 & 0.0159 & 0.0008 \\
& & $ \E { ( 2 ) } $ & 0.0642 & 0.0622 & 0.0586 & 0.0517 & 0.0399 & 0.0254 & 0.0149 \\
& & $ \Ex { ( 1 ) } $ & 0.0954 & 0.0945 & 0.0927 & 0.0896 & 0.0833 & 0.0663 & 0.0394 \\
& & $ \Ex { ( 2 ) } $ & 0.1182 & 0.1162 & 0.1123 & 0.1051 & 0.0928 & 0.0758 & 0.0534 \\
& & $ \DD { c } { ( 0 ) } $ & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & $ \DD { c } { ( 1 ) } $ & 0.0136 & 0.0127 & 0.0111 & 0.0083 & 0.0038 & -0.0022 & -0.0080 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0330 & 0.0316 & 0.0291 & 0.0248 & 0.0178 & 0.0080 & -0.0028 \\
& & $ \LZ { c } { } $ & 0.0014 & 0.0027 & 0.0051 & 0.0091 & 0.0147 & 0.0207 & 0.0245 \\
\\
eDFT & $ ( 1 / 3 , 1 / 3 ) $ & $ \E { ( 0 ) } $ & 0.0085 & 0.0085 & 0.0084 & 0.0082 & 0.0072 & 0.0021 & -0.0015 \\
& & $ \E { ( 1 ) } $ & 0.0164 & 0.0152 & 0.0129 & 0.0087 & 0.0020 & -0.0050 & -0.0044 \\
& & $ \E { ( 2 ) } $ & 0.0936 & 0.0917 & 0.0880 & 0.0807 & 0.0664 & 0.0434 & 0.0300 \\
& & $ \Ex { ( 1 ) } $ & 0.0079 & 0.0067 & 0.0045 & 0.0006 & -0.0051 & -0.0071 & -0.0029 \\
& & $ \Ex { ( 2 ) } $ & 0.0851 & 0.0832 & 0.0796 & 0.0725 & 0.0593 & 0.0413 & 0.0315 \\
& & $ \DD { c } { ( 0 ) } $ & -0.0155 & -0.0148 & -0.0134 & -0.0110 & -0.0071 & -0.0017 & 0.0040 \\
& & $ \DD { c } { ( 1 ) } $ & -0.0020 & -0.0021 & -0.0023 & -0.0027 & -0.0034 & -0.0042 & -0.0044 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0175 & 0.0168 & 0.0157 & 0.0137 & 0.0105 & 0.0059 & 0.0004 \\
& & $ \LZ { c } { } $ & 0.0007 & 0.0013 & 0.0025 & 0.0047 & 0.0081 & 0.0127 & 0.0175 \\
\end { tabular}
\end { ruledtabular}
\end { table*}
%%% TABLE IV %%%
\begin { table*}
\caption {
\label { tab:OptGap}
Deviation from the FCI quantities (in hartree) of the individual energies, $ \E { ( I ) } $ , and the corresponding excitation energies, $ \Ex { ( I ) } $ , for the ground ($ I = 0 $ ), singly-excited ($ I = 1 $ ) and doubly-excited ($ I = 2 $ ) states of $ \Nel = 4 $ electrons in a box of length $ L $ .
The values of the derivative discontinuity $ \DD { c } { ( I ) } $ and the Levy-Zahariev shift $ \LZ { c } { } $ are also reported.
}
\begin { ruledtabular}
\begin { tabular} { lclddddddd}
& & & \mc { 7} { c} { $ L / \pi $ } \\
\cline { 4-10}
Method & $ \bw $ & State & 1/8 & 1/4 & 1/2 & 1 & 2 & 4 & 8 \\
\hline
FCI & & $ \E { ( 0 ) } $ & 1867.6344 & 493.6760 & 136.7020 & 40.7244 & 13.3763 & 4.8811 & 1.9492 \\
& & $ \E { ( 1 ) } $ & 2224.11488 & 583.8981 & 159.7957 & 46.7553 & 15.0029 & 5.3399 & 2.0855 \\
& & $ \E { ( 2 ) } $ & 3289.2022 & 852.4249 & 228.0415 & 64.3597 & 19.6613 & 6.6206 & 2.4547 \\
& & $ \Ex { ( 1 ) } $ & 356.4804 & 90.2221 & 23.0937 & 6.0308 & 1.6266 & 0.4588 & 0.1363 \\
& & $ \Ex { ( 2 ) } $ & 1421.56773 & 358.7489 & 91.3395 & 23.6352 & 6.2850 & 1.7395 & 0.5055 \\
\\
CIS & & $ \Ex { ( 1 ) } $ & 0.0230 & 0.0230 & 0.0229 & 0.0229 & 0.0230 & 0.0225 & 0.0182 \\
\\
TDHF & & $ \Ex { ( 1 ) } $ & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0006 \\
\\
TDA-TDLDA& & $ \Ex { ( 1 ) } $ & 0.0230 & 0.0230 & 0.0228 & 0.0223 & 0.0192 & -0.0015 & -0.0309 \\
\\
TDLDA & & $ \Ex { ( 1 ) } $ & 0.0005 & 0.0005 & 0.0004 & 0.0000 & -0.0033 & -0.0248 & -0.0650 \\
\\
eDFT & $ ( 0 , 0 ) $ & $ \E { ( 0 ) } $ & -0.0587 & -0.0586 & -0.0587 & -0.0588 & -0.0591 & -0.0590 & -0.0506 \\
& & $ \E { ( 1 ) } $ & 0.0457 & 0.0450 & 0.0435 & 0.0409 & 0.0362 & 0.0241 & 0.0033 \\
& & $ \E { ( 2 ) } $ & 0.0861 & 0.0838 & 0.0793 & 0.0712 & 0.0571 & 0.0377 & 0.0196 \\
& & $ \Ex { ( 1 ) } $ & 0.1044 & 0.1036 & 0.1022 & 0.0997 & 0.0953 & 0.0830 & 0.0540 \\
& & $ \Ex { ( 2 ) } $ & 0.1447 & 0.1424 & 0.1380 & 0.1300 & 0.1162 & 0.0966 & 0.0703 \\
& & $ \DD { c } { ( 0 ) } $ & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & $ \DD { c } { ( 1 ) } $ & 0.0172 & 0.0163 & 0.0147 & 0.0117 & 0.0067 & -0.0004 & -0.0080 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0416 & 0.0402 & 0.0376 & 0.0329 & 0.0253 & 0.0140 & 0.0005 \\
& & $ \LZ { c } { } $ & 0.0015 & 0.0028 & 0.0053 & 0.0096 & 0.0161 & 0.0238 & 0.0297 \\
\\
eDFT & $ ( 1 / 3 , 1 / 3 ) $ & $ \E { ( 0 ) } $ & 0.0070 & 0.0070 & 0.0068 & 0.0063 & 0.0053 & 0.0015 & -0.0049 \\
& & $ \E { ( 1 ) } $ & 0.0162 & 0.0151 & 0.0128 & 0.0086 & 0.0018 & -0.0066 & -0.0095 \\
& & $ \E { ( 2 ) } $ & 0.1080 & 0.1056 & 0.1011 & 0.0925 & 0.0772 & 0.0538 & 0.0325 \\
& & $ \Ex { ( 1 ) } $ & 0.0092 & 0.0081 & 0.0060 & 0.0022 & -0.0035 & -0.0081 & -0.0047 \\
& & $ \Ex { ( 2 ) } $ & 0.1010 & 0.0986 & 0.0943 & 0.0862 & 0.0719 & 0.0523 & 0.0373 \\
& & $ \DD { c } { ( 0 ) } $ & -0.0196 & -0.0188 & -0.0174 & -0.0148 & -0.0106 & -0.0044 & 0.0029 \\
& & $ \DD { c } { ( 1 ) } $ & -0.0024 & -0.0025 & -0.0027 & -0.0032 & -0.0040 & -0.0050 & -0.0056 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0220 & 0.0213 & 0.0201 & 0.0180 & 0.0146 & 0.0093 & 0.0027 \\
& & $ \LZ { c } { } $ & 0.0007 & 0.0013 & 0.0026 & 0.0049 & 0.0087 & 0.0141 & 0.0202 \\
\end { tabular}
\end { ruledtabular}
\end { table*}
%%% TABLE V %%%
\begin { table*}
\caption {
\label { tab:OptGap}
Deviation from the FCI quantities (in hartree) of the individual energies, $ \E { ( I ) } $ , and the corresponding excitation energies, $ \Ex { ( I ) } $ , for the ground ($ I = 0 $ ), singly-excited ($ I = 1 $ ) and doubly-excited ($ I = 2 $ ) states of $ \Nel = 4 $ electrons in a box of length $ L $ .
The values of the derivative discontinuity $ \DD { c } { ( I ) } $ and the Levy-Zahariev shift $ \LZ { c } { } $ are also reported.
}
\begin { ruledtabular}
\begin { tabular} { lclddddddd}
& & & \mc { 7} { c} { $ L / \pi $ } \\
\cline { 4-10}
Method & $ \bw $ & State & 1/8 & 1/4 & 1/2 & 1 & 2 & 4 & 8 \\
\hline
FCI & & $ \E { ( 0 ) } $ & 3082.5386 & 813.0910 & 224.3734 & 66.5257 & 21.7454 & 7.9136 & 3.1633 \\
& & $ \E { ( 1 ) } $ & 3503.4911 & 919.5487 & 251.5842 & 73.6145 & 23.6504 & 8.4487 & 3.3217 \\
& & $ \E { ( 2 ) } $ & 4762.0921 & 1236.8257 & 332.1993 & 94.3988 & 29.1455 & 9.9582 & 3.7572 \\
& & $ \Ex { ( 1 ) } $ & 420.9525 & 106.4577 & 27.2108 & 7.0888 & 1.9050 & 0.5351 & 0.1583 \\
& & $ \Ex { ( 2 ) } $ & 1679.5536 & 423.7347 & 107.8259 & 27.8731 & 7.4001 & 2.0446 & 0.5938 \\
\\
CIS & & $ \Ex { ( 1 ) } $ & 0.0249 & 0.0248 & 0.0250 & 0.0253 & 0.0261 & 0.0272 & 0.0248 \\
\\
TDHF & & $ \Ex { ( 1 ) } $ & 0.0002 & 0.0000 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0004 \\
\\
TDA-TDLDA& & $ \Ex { ( 1 ) } $ & 0.0249 & 0.0248 & 0.0250 & 0.0250 & 0.0242 & 0.0114 & -0.0223 \\
\\
TDLDA & & $ \Ex { ( 1 ) } $ & 0.0002 & 0.0000 & 0.0002 & 0.0000 & -0.0016 & -0.0162 & -0.0612 \\
\\
eDFT & $ ( 0 , 0 ) $ & $ \E { ( 0 ) } $ & -0.0626 & -0.0627 & -0.0628 & -0.0632 & -0.0641 & -0.0654 & -0.0612 \\
& & $ \E { ( 1 ) } $ & 0.0486 & 0.0477 & 0.0465 & 0.0440 & 0.0400 & 0.0308 & 0.0078 \\
& & $ \E { ( 2 ) } $ & 0.1017 & 0.0992 & 0.0946 & 0.0862 & 0.0718 & 0.0507 & 0.0271 \\
& & $ \Ex { ( 1 ) } $ & 0.1112 & 0.1104 & 0.1093 & 0.1072 & 0.1041 & 0.0962 & 0.0690 \\
& & $ \Ex { ( 2 ) } $ & 0.1643 & 0.1619 & 0.1575 & 0.1494 & 0.1358 & 0.1162 & 0.0884 \\
& & $ \DD { c } { ( 0 ) } $ & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & $ \DD { c } { ( 1 ) } $ & 0.0208 & 0.0199 & 0.0182 & 0.0151 & 0.0098 & 0.0018 & -0.0075 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0503 & 0.0488 & 0.0460 & 0.0412 & 0.0330 & 0.0205 & 0.0046 \\
& & $ \LZ { c } { } $ & 0.0015 & 0.0029 & 0.0054 & 0.0100 & 0.0172 & 0.0264 & 0.0344 \\
\\
eDFT & $ ( 1 / 3 , 1 / 3 ) $ & $ \E { ( 0 ) } $ & 0.0046 & 0.0045 & 0.0043 & 0.0039 & 0.0031 & 0.0006 & -0.0067 \\
& & $ \E { ( 1 ) } $ & 0.0157 & 0.0144 & 0.0123 & 0.0080 & 0.0009 & -0.0091 & -0.0160 \\
& & $ \E { ( 2 ) } $ & 0.1167 & 0.1142 & 0.1095 & 0.1007 & 0.0853 & 0.0616 & 0.0355 \\
& & $ \Ex { ( 1 ) } $ & 0.0112 & 0.0099 & 0.0080 & 0.0041 & -0.0022 & -0.0097 & -0.0093 \\
& & $ \Ex { ( 2 ) } $ & 0.1121 & 0.1097 & 0.1051 & 0.0968 & 0.0822 & 0.0610 & 0.0423 \\
& & $ \DD { c } { ( 0 ) } $ & -0.0237 & -0.0229 & -0.0214 & -0.0188 & -0.0142 & -0.0073 & 0.0013 \\
& & $ \DD { c } { ( 1 ) } $ & -0.0029 & -0.0030 & -0.0032 & -0.0037 & -0.0045 & -0.0057 & -0.0066 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0266 & 0.0259 & 0.0246 & 0.0224 & 0.0187 & 0.0130 & 0.0053 \\
& & $ \LZ { c } { } $ & 0.0007 & 0.0013 & 0.0026 & 0.0050 & 0.0091 & 0.0151 & 0.0224 \\
\end { tabular}
\end { ruledtabular}
\end { table*}
%%% TABLE VI %%%
\begin { table*}
\caption {
\label { tab:OptGap}
Deviation from the FCI quantities (in hartree) of the individual energies, $ \E { ( I ) } $ , and the corresponding excitation energies, $ \Ex { ( I ) } $ , for the ground ($ I = 0 $ ), singly-excited ($ I = 1 $ ) and doubly-excited ($ I = 2 $ ) states of $ \Nel = 4 $ electrons in a box of length $ L $ .
The values of the derivative discontinuity $ \DD { c } { ( I ) } $ and the Levy-Zahariev shift $ \LZ { c } { } $ are also reported.
}
\begin { ruledtabular}
\begin { tabular} { lclddddddd}
& & & \mc { 7} { c} { $ L / \pi $ } \\
\cline { 4-10}
Method & $ \bw $ & State & 1/8 & 1/4 & 1/2 & 1 & 2 & 4 & 8 \\
\hline
FCI & & $ \E { ( 0 ) } $ & 4729.98018 & 1244.7753 & 342.1796 & 100.8943 & 32.7728 & 11.8683 & 4.7359 \\
& & $ \E { ( 1 ) } $ & 5215.3307 & 1367.4316 & 373.4897 & 109.0326 & 34.9524 & 12.4779 & 4.9156 \\
& & $ \E { ( 2 ) } $ & 6667.18516 & 1733.3319 & 466.4133 & 132.9686 & 41.2715 & 14.2096 & 5.4146 \\
& & $ \Ex { ( 1 ) } $ & 485.3505 & 122.6563 & 31.3101 & 8.1382 & 2.1796 & 0.6096 & 0.1797 \\
& & $ \Ex { ( 2 ) } $ & 1937.2050 & 488.5566 & 124.2336 & 32.0743 & 8.4987 & 2.3413 & 0.6787 \\
\\
CIS & & $ \Ex { ( 1 ) } $ & 0.0262 & 0.0264 & 0.0265 & 0.0270 & 0.0283 & 0.0308 & 0.0309 \\
\\
TDHF & & $ \Ex { ( 1 ) } $ & 0.0000 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0003 \\
\\
TDA-TDLDA& & $ \Ex { ( 1 ) } $ & 0.0262 & 0.0264 & 0.0264 & 0.0269 & 0.0273 & 0.0206 & -0.0116 \\
\\
TDLDA & & $ \Ex { ( 1 ) } $ & 0.0000 & 0.0001 & 0.0000 & -0.0001 & -0.0009 & -0.0107 & -0.0539 \\
\\
eDFT & $ ( 0 , 0 ) $ & $ \E { ( 0 ) } $ & -0.0664 & -0.0666 & -0.0667 & -0.0672 & -0.0684 & -0.0707 & -0.0702 \\
& & $ \E { ( 1 ) } $ & 0.0502 & 0.0495 & 0.0482 & 0.0459 & 0.0423 & 0.0355 & 0.0131 \\
& & $ \E { ( 2 ) } $ & 0.1122 & 0.1104 & 0.1061 & 0.0979 & 0.0836 & 0.0635 & 0.0360 \\
& & $ \Ex { ( 1 ) } $ & 0.1165 & 0.1161 & 0.1149 & 0.1131 & 0.1108 & 0.1062 & 0.0834 \\
& & $ \Ex { ( 2 ) } $ & 0.1785 & 0.1769 & 0.1728 & 0.1652 & 0.1520 & 0.1342 & 0.1063 \\
& & $ \DD { c } { ( 0 ) } $ & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
& & $ \DD { c } { ( 1 ) } $ & 0.0244 & 0.0235 & 0.0218 & 0.0186 & 0.0130 & 0.0043 & -0.0065 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0589 & 0.0574 & 0.0546 & 0.0496 & 0.0410 & 0.0275 & 0.0095 \\
& & $ \LZ { c } { } $ & 0.0015 & 0.0029 & 0.0055 & 0.0103 & 0.0180 & 0.0284 & 0.038555 \\
\\
eDFT & $ ( 1 / 3 , 1 / 3 ) $ & $ \E { ( 0 ) } $ & 0.0014 & 0.0013 & 0.0012 & 0.0009 & 0.0003 & -0.0013 & -0.0079 \\
& & $ \E { ( 1 ) } $ & 0.0149 & 0.0138 & 0.0115 & 0.0072 & -0.0001 & -0.0110 & -0.0209 \\
& & $ \E { ( 2 ) } $ & 0.1217 & 0.1198 & 0.1154 & 0.1069 & 0.0917 & 0.0691 & 0.0389 \\
& & $ \Ex { ( 1 ) } $ & 0.0135 & 0.0125 & 0.0103 & 0.0063 & -0.0005 & -0.0096 & -0.0130 \\
& & $ \Ex { ( 2 ) } $ & 0.1203 & 0.1185 & 0.1142 & 0.1060 & 0.0914 & 0.0705 & 0.0469 \\
& & $ \DD { c } { ( 0 ) } $ & -0.0278 & -0.0270 & -0.0255 & -0.0227 & -0.0180 & -0.0105 & -0.0007 \\
& & $ \DD { c } { ( 1 ) } $ & -0.0034 & -0.0034 & -0.0037 & -0.0041 & -0.0050 & -0.0063 & -0.0076 \\
& & $ \DD { c } { ( 2 ) } $ & 0.0311 & 0.0304 & 0.0291 & 0.0268 & 0.0230 & 0.0168 & 0.0083 \\
& & $ \LZ { c } { } $ & 0.0007 & 0.0013 & 0.0027 & 0.0051 & 0.0094 & 0.0159 & 0.0242 \\
\end { tabular}
\end { ruledtabular}
\end { table*}
\bibliography { ../eDFT}
\end { document}