diff --git a/TrUEGs.nb b/TrUEGs.nb new file mode 100644 index 0000000..bbce0f0 --- /dev/null +++ b/TrUEGs.nb @@ -0,0 +1,13601 @@ +(* Content-type: application/vnd.wolfram.mathematica *) + +(*** Wolfram Notebook File ***) +(* http://www.wolfram.com/nb *) + +(* CreatedBy='Mathematica 11.2' *) + +(*CacheID: 234*) +(* Internal cache information: +NotebookFileLineBreakTest +NotebookFileLineBreakTest +NotebookDataPosition[ 158, 7] +NotebookDataLength[ 602081, 13593] +NotebookOptionsPosition[ 585499, 13328] +NotebookOutlinePosition[ 585892, 13344] +CellTagsIndexPosition[ 585849, 13341] +WindowFrame->Normal*) + +(* Beginning of Notebook Content *) +Notebook[{ + +Cell[CellGroupData[{ +Cell["Initialization", "Title", + CellChangeTimes->{{3.726041770598298*^9, + 3.726041773223225*^9}},ExpressionUUID->"f14a9b83-4155-4933-b4bd-\ +86482283a3f0"], + +Cell[BoxData[{ + RowBox[{"Needs", "[", "\"\\"", "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"SetOptions", "[", + RowBox[{"MaTeX", ",", + RowBox[{"\"\\"", "\[Rule]", + RowBox[{ + "{", "\"\<\\\\usepackage{amssymb,amsmath,latexsym,amsfonts,amsthm,\ +mathpazo,xcolor,bm,mhchem}\>\"", "}"}]}]}], "]"}], ";"}]}], "Input", + InitializationCell->True, + CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, { + 3.733131339213026*^9, 3.733131352923026*^9}}, + CellLabel->"In[1]:=",ExpressionUUID->"f63df8ff-a805-43cf-b25e-970437446449"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"J3", "[", + RowBox[{"i_", ",", "a_", ",", "l_"}], "]"}], ":=", + RowBox[{"ThreeJSymbol", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"i", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"a", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"l", ",", "0"}], "}"}]}], "]"}]}], ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{{3.600453124069656*^9, 3.6004531282446003`*^9}, { + 3.60048222016492*^9, 3.6004822548645678`*^9}}, + CellLabel->"In[3]:=",ExpressionUUID->"06b69520-f042-4fc6-9314-22d2e79542d6"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"J6", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a_", ",", "b_", ",", "c_"}], "}"}], ",", + RowBox[{"{", + RowBox[{"e_", ",", "f_", ",", "g_"}], "}"}]}], "]"}], ":=", + RowBox[{"SixJSymbol", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", + RowBox[{"{", + RowBox[{"e", ",", "f", ",", "g"}], "}"}]}], "]"}]}], ";"}]], "Input", + InitializationCell->True, + CellLabel->"In[4]:=",ExpressionUUID->"a8c11cd4-a9a5-4079-8595-5294b1fb94c7"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]_", ",", "m_"}]], "[", + RowBox[{"\[Theta]_", ",", "\[Phi]_"}], "]"}], "=", + RowBox[{"SphericalHarmonicY", "[", + RowBox[{"\[ScriptL]", ",", "m", ",", "\[Theta]", ",", "\[Phi]"}], "]"}]}], + ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{{3.6167931952908697`*^9, 3.616793207770255*^9}}, + CellLabel->"In[5]:=",ExpressionUUID->"e29c6d12-164d-461c-b102-761d687a35f0"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", "\[ScriptL]_"], "[", "\[Theta]_", "]"}], "=", + RowBox[{"SphericalHarmonicY", "[", + RowBox[{"\[ScriptL]", ",", "0", ",", "\[Theta]", ",", "0"}], "]"}]}], + ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{{3.6167931952908697`*^9, 3.616793207770255*^9}, { + 3.743229365082172*^9, 3.743229372894492*^9}}, + CellLabel->"In[6]:=",ExpressionUUID->"74769596-3e6e-4ca2-8edd-d3dad7f9f8d1"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]_"], "[", "\[Theta]_", "]"}], "=", + RowBox[{"LegendreP", "[", + RowBox[{"\[ScriptL]", ",", "\[Theta]"}], "]"}]}], ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{{3.6167931952908697`*^9, 3.616793207770255*^9}, { + 3.7428781062377253`*^9, 3.74287811954315*^9}}, + CellLabel->"In[7]:=",ExpressionUUID->"1fff622e-e162-45b8-93d8-03e2f95f6a4a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[ScriptCapitalY]", + RowBox[{"\[ScriptL]_", ",", "m_"}]], "[", + RowBox[{"\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=", + RowBox[{"FullSimplify", "[", + RowBox[{ + RowBox[{"Which", "[", + RowBox[{ + RowBox[{"m", "<", "0"}], ",", + RowBox[{ + FractionBox["\[ImaginaryI]", + SqrtBox["2"]], + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], "-", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "m"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", + RowBox[{"-", "m"}]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}]}]}], ")"}]}], ",", + RowBox[{"m", "\[Equal]", "0"}], ",", + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], ",", + RowBox[{"m", ">", "0"}], ",", + RowBox[{ + FractionBox["1", + SqrtBox["2"]], + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], "+", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "m"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", + RowBox[{"-", "m"}]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}]}]}], ")"}]}]}], "]"}], + ",", + RowBox[{ + RowBox[{"0", "<", "\[Theta]", "<", "\[Pi]"}], "&&", + RowBox[{"0", "<", "\[Phi]", "<", + RowBox[{"2", "\[Pi]"}]}]}]}], "]"}]}], ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{ + 3.617400433527934*^9, {3.6174039018984203`*^9, 3.617403963513486*^9}, { + 3.617404074545025*^9, 3.6174041117104883`*^9}}, + CellLabel->"In[8]:=",ExpressionUUID->"7fc2e2a8-1267-4aa2-acf5-d2d12a58563c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SubscriptBox["\[Delta]", + RowBox[{"a_", ",", "b_"}]], "=", + RowBox[{"KroneckerDelta", "[", + RowBox[{"a", ",", "b"}], "]"}]}], ";"}]], "Input", + InitializationCell->True, + CellLabel->"In[9]:=",ExpressionUUID->"76897437-158e-48b2-bca0-c92679d71862"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SubscriptBox["\[Delta]", "x_"], "=", + RowBox[{"KroneckerDelta", "[", "x", "]"}]}], ";"}]], "Input", + InitializationCell->True, + CellLabel->"In[10]:=",ExpressionUUID->"751041e2-0753-48c1-aa6c-9f69333e4db7"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", + RowBox[{ + RowBox[{"\[ScriptL]", + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", "1"}], ")"}]}], "+", "m", "+", "1"}]], + "[", + RowBox[{"\[Theta]_", ",", "\[Phi]_"}], "]"}], "=", + RowBox[{ + SubscriptBox["\[ScriptCapitalY]", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "5"}], "}"}], ",", + RowBox[{"{", + RowBox[{"m", ",", + RowBox[{"-", "\[ScriptL]"}], ",", "\[ScriptL]"}], "}"}]}], "]"}], + ";"}]], "Input", + InitializationCell->True, + CellChangeTimes->{3.726076349075821*^9, 3.742817932502624*^9}, + CellLabel->"In[11]:=",ExpressionUUID->"f13406bf-d041-4fbb-823f-f514d04fe27c"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"SortEigensystem", "[", "eigsys_", "]"}], ":=", + RowBox[{"Transpose", "[", + RowBox[{"Sort", "[", + RowBox[{"Transpose", "[", "eigsys", "]"}], "]"}], "]"}]}]], "Input", + InitializationCell->True, + CellLabel->"In[12]:=",ExpressionUUID->"183ae429-a997-4f0d-baef-2a20bbc5c8ff"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"YY", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[ScriptL]1_", ",", "m1_"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]2_", ",", "m2_"}], "}"}]}], "]"}], ":=", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]3", "=", + RowBox[{"Abs", "[", + RowBox[{"\[ScriptL]1", "-", "\[ScriptL]1"}], "]"}]}], + RowBox[{"\[ScriptL]1", "+", "\[ScriptL]2"}]], + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"m3", "=", + RowBox[{"-", "\[ScriptL]3"}]}], "\[ScriptL]3"], + RowBox[{ + SqrtBox[ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]1"}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]2"}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]3"}], "+", "1"}], ")"}]}], + RowBox[{"4", "\[Pi]"}]]], + RowBox[{"J3", "[", + RowBox[{"\[ScriptL]1", ",", "\[ScriptL]2", ",", "\[ScriptL]3"}], "]"}], + + RowBox[{"ThreeJSymbol", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"\[ScriptL]1", ",", "m1"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]2", ",", "m2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]3", ",", "m3"}], "}"}]}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "m3"], + SubscriptBox["Y", + RowBox[{"\[ScriptL]3", ",", + RowBox[{"-", "m3"}]}]]}]}]}]}]], "Input", + InitializationCell->True, + CellChangeTimes->{{3.7432300298738956`*^9, 3.74323016561016*^9}}, + CellLabel->"In[13]:=",ExpressionUUID->"2fd619d6-5e78-47b6-adfc-2c3a75428669"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Transient uniform electron gases", "Title", + CellChangeTimes->{{3.726041069929246*^9, 3.726041082828075*^9}, { + 3.7607264675564423`*^9, + 3.760726469171418*^9}},ExpressionUUID->"c626dffe-68a4-4be1-b83c-\ +a98638c384be"], + +Cell[CellGroupData[{ + +Cell["Useful relations", "Section", + CellChangeTimes->{{3.743229812346977*^9, + 3.743229815314281*^9}},ExpressionUUID->"e0a5c645-2143-460d-a4e6-\ +085c89e142f8"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"L", "=", "1"}], "}"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["m", "1"]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["m", "2"]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], ",", + SubscriptBox["m", "3"]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Phi]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], "\[Equal]", + RowBox[{ + SqrtBox[ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "1"]}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "2"]}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "3"]}], "+", "1"}], ")"}]}], + RowBox[{"4", "\[Pi]"}]]], + RowBox[{"J3", "[", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["\[ScriptL]", "3"]}], "]"}], + RowBox[{"ThreeJSymbol", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["m", "1"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["m", "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], ",", + SubscriptBox["m", "3"]}], "}"}]}], "]"}]}]}], "//", "Simplify"}], + ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", "0", ",", "L"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", "0", ",", "L"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], ",", "0", ",", "L"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["m", "1"], ",", + RowBox[{"-", + SubscriptBox["\[ScriptL]", "1"]}], ",", + SubscriptBox["\[ScriptL]", "1"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["m", "2"], ",", + RowBox[{"-", + SubscriptBox["\[ScriptL]", "2"]}], ",", + SubscriptBox["\[ScriptL]", "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["m", "3"], ",", + RowBox[{"-", + SubscriptBox["\[ScriptL]", "3"]}], ",", + SubscriptBox["\[ScriptL]", "3"]}], "}"}]}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.743229347616185*^9, 3.7432293566229267`*^9}, { + 3.7432293931406107`*^9, 3.743229582745933*^9}, {3.743229655069162*^9, + 3.74322967376245*^9}, {3.743229823945314*^9, 3.7432298862913017`*^9}, + 3.743229927711697*^9},ExpressionUUID->"18ee6744-3e3b-4677-9588-\ +1803214665ac"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{"{", "True", "}"}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], "}"}], "}"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}]}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], "}"}], + "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"{", "True", "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", "True", "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", "True", "}"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], "}"}]}], + "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], "}"}]}], + "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.743229886878755*^9, + 3.743229929619356*^9}},ExpressionUUID->"cbca8ed1-5d8f-4e61-8033-\ +cf95096b7059"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"L", "=", "2"}], "}"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["m", "1"]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["m", "2"]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}]}], "\[Equal]", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], "=", + RowBox[{"Abs", "[", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], "-", + SubscriptBox["\[ScriptL]", "2"]}], "]"}]}], + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], "+", + SubscriptBox["\[ScriptL]", "2"]}]], + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{ + SubscriptBox["m", "3"], "=", + RowBox[{"-", + SubscriptBox["\[ScriptL]", "3"]}]}], + SubscriptBox["\[ScriptL]", "3"]], + RowBox[{ + SqrtBox[ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "1"]}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "2"]}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "3"]}], "+", "1"}], ")"}]}], + RowBox[{"4", "\[Pi]"}]]], + RowBox[{"J3", "[", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["\[ScriptL]", "3"]}], "]"}], + RowBox[{"ThreeJSymbol", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["m", "1"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["m", "2"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], ",", + SubscriptBox["m", "3"]}], "}"}]}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], + SubscriptBox["m", "3"]], + RowBox[{ + SubscriptBox["Y", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], ",", + RowBox[{"-", + SubscriptBox["m", "3"]}]}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}]}]}]}]}], "//", + "Simplify"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", "0", ",", "L"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", "0", ",", "L"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["m", "1"], ",", + RowBox[{"-", + SubscriptBox["\[ScriptL]", "1"]}], ",", + SubscriptBox["\[ScriptL]", "1"]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["m", "2"], ",", + RowBox[{"-", + SubscriptBox["\[ScriptL]", "2"]}], ",", + SubscriptBox["\[ScriptL]", "2"]}], "}"}]}], "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.743229347616185*^9, 3.7432293566229267`*^9}, { + 3.7432293931406107`*^9, 3.743229582745933*^9}, {3.743229655069162*^9, + 3.74322967376245*^9}},ExpressionUUID->"ea189845-c47e-4753-ae12-\ +0c29bb7fe966"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"{", "True", "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}]}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}], ",", + RowBox[{"{", "True", "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}]}], "}"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.743229554288212*^9, 3.743229584376692*^9}, { + 3.743229656863202*^9, + 3.743229675340521*^9}},ExpressionUUID->"92d6db72-9f08-4355-8160-\ +14f066aceceb"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"L", "=", "5"}], "}"}], ",", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + SubscriptBox["\[ScriptL]", "1"]], "[", "\[Theta]", "]"}], + RowBox[{ + SubscriptBox["Y", + SubscriptBox["\[ScriptL]", "2"]], "[", "\[Theta]", "]"}]}], + "\[Equal]", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{ + SubscriptBox["\[ScriptL]", "3"], "=", + RowBox[{"Abs", "[", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], "-", + SubscriptBox["\[ScriptL]", "2"]}], "]"}]}], + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], "+", + SubscriptBox["\[ScriptL]", "2"]}]], + RowBox[{ + SqrtBox[ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "1"]}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "2"]}], "+", "1"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"2", + SubscriptBox["\[ScriptL]", "3"]}], "+", "1"}], ")"}]}], + RowBox[{"4", "\[Pi]"}]]], + SuperscriptBox[ + RowBox[{"J3", "[", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", + SubscriptBox["\[ScriptL]", "2"], ",", + SubscriptBox["\[ScriptL]", "3"]}], "]"}], "2"], + RowBox[{ + SubscriptBox["Y", + SubscriptBox["\[ScriptL]", "3"]], "[", "\[Theta]", "]"}]}]}]}], "//", + "Simplify"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "1"], ",", "0", ",", "L"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[ScriptL]", "2"], ",", "0", ",", "L"}], "}"}]}], + "]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.743229754397874*^9, + 3.743229790813179*^9}},ExpressionUUID->"c2d3be71-50b2-4d02-bc7c-\ +fa8422bb9511"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + "True", ",", "True", ",", "True", ",", "True", ",", "True", ",", "True"}], + "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.743229787447109*^9, + 3.7432297917507353`*^9}},ExpressionUUID->"3a86ae5d-84b5-4de4-bf01-\ +e2f7182357aa"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"2", "R", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}], ")"}], "n"], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], "\[Equal]", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"2", "R"}], ")"}], "n"], + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], ")"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "\[ScriptL]"], "2", " ", + RowBox[{ + RowBox[{"(", + FractionBox["n", "2"], ")"}], "!"}], + RowBox[{ + RowBox[{"(", + FractionBox["n", "2"], ")"}], "!"}]}], + RowBox[{" ", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["n", "2"], "+", "\[ScriptL]", "+", "1"}], ")"}], + "!"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["n", "2"], "-", "\[ScriptL]"}], ")"}], "!"}]}]}]]}]}], + ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "0", ",", "10"}], "}"}]}], "]"}], "//", + "MatrixForm"}]], "Input", + CellChangeTimes->{{3.742997563067418*^9, 3.742997629595066*^9}, { + 3.743007488832282*^9, 3.7430074921039743`*^9}, {3.743008519262891*^9, + 3.743008520697835*^9}, {3.743008552202379*^9, 3.74300856107659*^9}, { + 3.743008673268701*^9, 3.743008689038439*^9}, {3.743010924076429*^9, + 3.7430109261273117`*^9}},ExpressionUUID->"6d246081-7c23-4031-b117-\ +f6e9dbc0e0a0"], + +Cell[BoxData[ + TagBox[ + RowBox[{"(", "\[NoBreak]", GridBox[{ + {"True", "True", "True", "True", "True", "True", "True", "True", "True", + "True", "True"}, + {"True", "True", "True", "True", "True", "True", "True", "True", "True", + "True", "True"}, + {"True", "True", "True", "True", "True", "True", "True", "True", "True", + "True", "True"} + }, + GridBoxAlignment->{ + "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, + "RowsIndexed" -> {}}, + GridBoxSpacings->{"Columns" -> { + Offset[0.27999999999999997`], { + Offset[0.7]}, + Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { + Offset[0.2], { + Offset[0.4]}, + Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], + Function[BoxForm`e$, + MatrixForm[BoxForm`e$]]]], "Output", + CellChangeTimes->{3.743008697461802*^9, + 3.743010934155423*^9},ExpressionUUID->"3f1ab4cb-673d-4ce6-aaea-\ +91d682381bce"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Jacobian on a d-sphere", "Section", + CellChangeTimes->{{3.514962539137184*^9, 3.5149625496237373`*^9}, + 3.725888161913249*^9},ExpressionUUID->"f857da23-6512-4a44-801c-\ +0238416ec25a"], + +Cell[TextData[{ + "For two particles on a d-sphere, we need to convert the Jacobian in the \ +principal angle \[Theta] to a Jacobian in ", + Cell[BoxData[ + FormBox["u", TraditionalForm]],ExpressionUUID-> + "cb20c416-f00e-4253-a78d-8b716e51c9f1"] +}], "Text", + CellChangeTimes->{{3.514366347939295*^9, 3.5143663588893747`*^9}, { + 3.514368123460621*^9, 3.5143681283725033`*^9}, {3.5144419641929693`*^9, + 3.5144419660810423`*^9}, {3.5144420288335114`*^9, 3.514442066863542*^9}, { + 3.5144421498400106`*^9, + 3.5144421506088*^9}},ExpressionUUID->"2556e3c0-3c07-46c8-a4f0-e0d5f873e557"], + +Cell[BoxData[ + RowBox[{"u", "=", + RowBox[{ + RowBox[{"2", "R", " ", + RowBox[{ + RowBox[{"Sin", "[", + FractionBox["\[Theta]", "2"], "]"}], "\t", + "\[DoubleLongLeftRightArrow]", "\t", "\[Theta]"}]}], "=", + RowBox[{"2", + RowBox[{"ArcSin", "[", + FractionBox["u", + RowBox[{"2", "R"}]], "]"}]}]}]}]], "Input", + CellChangeTimes->{{3.514440997871438*^9, + 3.514441038467401*^9}},ExpressionUUID->"52f037c3-c011-4459-9ec6-\ +6f496c768a58"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"d", "-", "1"}]], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"d", "-", "1"}]], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]], "=", + RowBox[{ + FractionBox[ + RowBox[{"\[CapitalGamma]", "[", + FractionBox[ + RowBox[{"d", "+", "1"}], "2"], "]"}], + RowBox[{ + SqrtBox["\[Pi]"], " ", + RowBox[{"\[CapitalGamma]", "[", + FractionBox["d", "2"], "]"}]}]], + SuperscriptBox[ + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"d", "-", "1"}]], + FractionBox[ + RowBox[{"\[DifferentialD]", "\[Theta]"}], + RowBox[{"\[DifferentialD]", "u"}]], + RowBox[{"\[DifferentialD]", "u"}]}]}]], "Input", + CellChangeTimes->{{3.51436962491194*^9, 3.514369710622314*^9}, { + 3.514369824804817*^9, 3.514369826492672*^9}, {3.514370361976281*^9, + 3.514370393649591*^9}, {3.51444091636539*^9, 3.514440982678095*^9}, { + 3.5144410180546293`*^9, 3.514441019516622*^9}, {3.5144411456978903`*^9, + 3.514441162811365*^9}, {3.514441221975813*^9, 3.514441255639862*^9}, { + 3.5144416987210093`*^9, 3.514441704046093*^9}, {3.514441741525853*^9, + 3.5144417650487223`*^9}, {3.5144418247020273`*^9, + 3.51444182582703*^9}},ExpressionUUID->"e939f164-90ed-4275-8c20-\ +a3c9b35f02a0"], + +Cell[BoxData[ + RowBox[{"\t\t\t", + RowBox[{"=", + RowBox[{ + FractionBox[ + RowBox[{"\[CapitalGamma]", "[", + FractionBox[ + RowBox[{"d", "+", "1"}], "2"], "]"}], + RowBox[{ + SqrtBox["\[Pi]"], " ", + RowBox[{"\[CapitalGamma]", "[", + FractionBox["d", "2"], "]"}]}]], + SuperscriptBox[ + RowBox[{"Sin", "[", + RowBox[{"2", + RowBox[{"ArcSin", "[", + FractionBox["u", + RowBox[{"2", "R"}]], "]"}]}], "]"}], + RowBox[{"d", "-", "1"}]], + RowBox[{ + FractionBox["\[DifferentialD]", + RowBox[{"\[DifferentialD]", "u"}]], + RowBox[{"(", + RowBox[{"2", + RowBox[{"ArcSin", "[", + FractionBox["u", + RowBox[{"2", "R"}]], "]"}]}], ")"}]}], + RowBox[{"\[DifferentialD]", "u"}]}]}]}]], "Input", + CellChangeTimes->{{3.51436962491194*^9, 3.514369710622314*^9}, { + 3.514369824804817*^9, 3.514369826492672*^9}, {3.514370361976281*^9, + 3.514370393649591*^9}, {3.51444091636539*^9, 3.514440975890657*^9}, { + 3.514441046579885*^9, 3.5144410552684402`*^9}, {3.5144411650853786`*^9, + 3.514441165711499*^9}, {3.514441237939712*^9, 3.514441258974966*^9}, + 3.514441768412119*^9, {3.5144418200515213`*^9, 3.5144418393774023`*^9}, + 3.5144419717829742`*^9},ExpressionUUID->"abec2db9-74cd-44ab-8e15-\ +ec3c2d9acd58"], + +Cell[BoxData[ + RowBox[{"\t\t\t", + RowBox[{"=", + RowBox[{ + FractionBox[ + RowBox[{"\[CapitalGamma]", "[", + FractionBox[ + RowBox[{"d", "+", "1"}], "2"], "]"}], + RowBox[{ + SqrtBox["\[Pi]"], " ", + RowBox[{"\[CapitalGamma]", "[", + FractionBox["d", "2"], "]"}], "R"}]], + SuperscriptBox[ + RowBox[{"(", + FractionBox["u", "R"], ")"}], + RowBox[{"d", "-", "1"}]], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox[ + RowBox[{"(", + FractionBox["u", + RowBox[{"2", "R"}]], ")"}], "2"]}], ")"}], + FractionBox[ + RowBox[{"d", "-", "2"}], "2"]], + RowBox[{"\[DifferentialD]", "u"}]}]}]}]], "Input", + CellChangeTimes->{{3.514441348517651*^9, 3.514441350082279*^9}, { + 3.514441788689559*^9, 3.514441817076388*^9}, {3.514441851341044*^9, + 3.5144418681911297`*^9}, {3.5144419729582577`*^9, 3.514442001547876*^9}, { + 3.5144436090329647`*^9, + 3.514443609481625*^9}},ExpressionUUID->"6245dfde-4373-46ac-8f56-\ +97c43c57cefd"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Spherium", "Section", + CellChangeTimes->{{3.4415144118152733`*^9, 3.441514417462728*^9}, { + 3.441563463354508*^9, 3.4415634659050083`*^9}, {3.441648461308599*^9, + 3.4416484613837833`*^9}, {3.4416489347610483`*^9, 3.44164894374827*^9}, { + 3.442003673441472*^9, 3.442003679337524*^9}, {3.442384570530238*^9, + 3.442384577341913*^9}, {3.4423851482723503`*^9, 3.442385148777483*^9}, + 3.705159142601218*^9, {3.716972358664538*^9, 3.7169723618822803`*^9}, { + 3.725887700857214*^9, 3.7258877207683*^9}, {3.7258879529143953`*^9, + 3.725887971537971*^9}, 3.725888164456431*^9, {3.742878203693392*^9, + 3.742878210178339*^9}},ExpressionUUID->"d36161d9-7065-4d0c-9aa3-\ +9e184ff60f78"], + +Cell[CellGroupData[{ + +Cell["Legendre basis set", "Subsection", + CellChangeTimes->{{3.726073981425799*^9, 3.7260739868717747`*^9}, { + 3.742878146737846*^9, 3.742878154661549*^9}, {3.742878200397444*^9, + 3.74287820116363*^9}, {3.742878283137578*^9, 3.7428782911282177`*^9}, { + 3.742878651086339*^9, 3.7428786516772127`*^9}, {3.7428787066524467`*^9, + 3.74287871029501*^9}, {3.742898142501433*^9, 3.742898143278768*^9}, { + 3.742898186664515*^9, + 3.742898187434697*^9}},ExpressionUUID->"caba0f41-e4c2-48bd-b7f9-\ +f49d444689e8"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", + SuperscriptBox["R", "2"]]}], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + SuperscriptBox["\[DifferentialD]", "2"], + RowBox[{"\[DifferentialD]", + SuperscriptBox["\[Theta]", "2"]}]], + RowBox[{"+", + RowBox[{"(", + RowBox[{ + RowBox[{"2", + RowBox[{"Cot", "[", "\[Theta]", "]"}]}], "+", + FractionBox["1", + RowBox[{"Sin", "[", "\[Theta]", "]"}]]}], ")"}]}]}], + FractionBox["\[DifferentialD]", + RowBox[{"\[DifferentialD]", "\[Theta]"}]]}], ")"}]}], "+", + FractionBox["1", + RowBox[{"2", "R", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}]], "+", + FractionBox["1", + SuperscriptBox["R", "2"]], " \t", + RowBox[{"(*", " ", + RowBox[{ + "Hamiltonian", " ", "for", " ", "the", " ", "triplet", " ", "P", " ", + "state"}], " ", "*)"}]}]], "Input", + CellChangeTimes->{{3.4415273614013968`*^9, 3.441527390402627*^9}, { + 3.441558204848555*^9, 3.441558232195305*^9}, 3.441559730873198*^9, { + 3.441648594035817*^9, 3.441648609697917*^9}, {3.44165798861795*^9, + 3.441657994696912*^9}, {3.441658262370665*^9, 3.4416582626277857`*^9}, { + 3.442003758893745*^9, 3.442003800036807*^9}, {3.4423846162448273`*^9, + 3.442384679581851*^9}, {3.4423856499997*^9, 3.442385669539687*^9}, { + 3.725887734569551*^9, 3.725887750488283*^9}, {3.725888167336578*^9, + 3.7258881684004602`*^9}, {3.7428020206313257`*^9, 3.742802022722247*^9}, { + 3.742802071248371*^9, 3.742802073411126*^9}, {3.742802113237672*^9, + 3.742802114380064*^9}, {3.742878166458519*^9, 3.742878202392807*^9}, + 3.74287824976378*^9, {3.742878683723751*^9, 3.742878696595866*^9}, { + 3.742878785782621*^9, 3.7428788081921873`*^9}, + 3.7428790684197273`*^9},ExpressionUUID->"19db6ad5-bc03-487e-a573-\ +966ce5a1e931"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "\[ScriptL]_"], "[", "\[Theta]_", "]"}], "=", + RowBox[{ + FractionBox[ + SqrtBox[ + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}]], + RowBox[{"4", "\[Pi]"}]], + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}]}]}], ";", "\t", + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "3"}], "}"}], ",", + RowBox[{ + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"8", + SuperscriptBox["\[Pi]", "2"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "\[Theta]", "]"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "\[Theta]", "]"}], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "0", ",", "M"}], "}"}]}], "]"}], "\[Equal]", + RowBox[{"IdentityMatrix", "[", + RowBox[{"M", "+", "1"}], "]"}]}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.442384728507373*^9, 3.442384762544999*^9}, { + 3.442384846108696*^9, 3.442384849245185*^9}, {3.725887836001515*^9, + 3.72588783924848*^9}, {3.725887897025584*^9, 3.725887897520524*^9}, { + 3.742878089764477*^9, 3.742878095672801*^9}, {3.7428781292961063`*^9, + 3.742878137669608*^9}, {3.7428784349631367`*^9, 3.7428784475235558`*^9}, { + 3.742878629235376*^9, 3.742878674283474*^9}, {3.742878761583694*^9, + 3.742878772688912*^9}, {3.7429026540579042`*^9, + 3.742902660217538*^9}},ExpressionUUID->"6cb4dcc6-ee3c-42a3-83e3-\ +235f526f9182"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.7428786560165787`*^9, 3.742878674948601*^9}, + 3.742878773518346*^9, 3.742901391526465*^9, 3.742902661333044*^9, + 3.742903268077057*^9, + 3.7429231774546757`*^9},ExpressionUUID->"7a5608ac-da7f-4146-9663-\ +314f8a925eb7"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "2"}], "}"}], ",", + RowBox[{ + RowBox[{"H", "[", "\[Alpha]_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"8", + SuperscriptBox["\[Pi]", "2"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "\[Theta]", "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{"-", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[DoublePrime]"], "[", + "\[Theta]", "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", + RowBox[{"Cot", "[", "\[Theta]", "]"}]}], "+", + FractionBox["1", + RowBox[{"Sin", "[", "\[Theta]", "]"}]]}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[Prime]"], "[", + "\[Theta]", "]"}]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["\[Alpha]", + RowBox[{"2", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}]], "+", "1"}], ")"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "\[Theta]", "]"}]}]}], ")"}], + + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "0", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "0", ",", "M"}], "}"}]}], "]"}]}]}], "]"}], + ";"}]], "Input", + CellChangeTimes->{{3.742918604620111*^9, 3.7429186131351423`*^9}, + 3.742918719955948*^9, {3.74291885295679*^9, 3.742918854648775*^9}, + 3.742922362967875*^9, 3.742980439148241*^9, + 3.742980540306929*^9},ExpressionUUID->"4538602f-e656-4a1f-8b53-\ +fef84aa71ecb"], + +Cell[BoxData[ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "2"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "c"}], "}"}], "=", + RowBox[{"SortEigensystem", "[", + RowBox[{"Eigensystem", "[", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"H", "[", "\[Alpha]", "]"}], ",", "15"}], "]"}], "]"}], + "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"f", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n"], "[", "\[Theta]", "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "0", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{"8", + SuperscriptBox["\[Pi]", "2"], + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + ".", "f"}], ")"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"\"\<\[Alpha]: \>\"", ",", + RowBox[{"N", "[", "\[Alpha]", "]"}]}], "]"}], ";", + "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";", + "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"{", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], + "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}]}]}], "}"}], "]"}], ";"}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"\[Alpha]", ",", + RowBox[{"-", "10"}], ",", "0", ",", "1"}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", "]"}]], "Input", + CellChangeTimes->{ + 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, + 3.725887922914515*^9}, {3.725887992098515*^9, 3.725888054354484*^9}, { + 3.725888190363358*^9, 3.725888220466589*^9}, {3.725888405954722*^9, + 3.7258884143609447`*^9}, {3.725888474666101*^9, 3.725888479977105*^9}, { + 3.725888867994993*^9, 3.725888870697344*^9}, {3.7258889297858877`*^9, + 3.725888934808717*^9}, {3.725888967938243*^9, 3.725889013634396*^9}, { + 3.725889098059265*^9, 3.725889127921206*^9}, {3.725948058954719*^9, + 3.7259480590574303`*^9}, 3.72594816605788*^9, {3.7259484228037577`*^9, + 3.7259484452333307`*^9}, {3.7428020644337606`*^9, + 3.7428020663834143`*^9}, {3.74280212730392*^9, 3.74280222326132*^9}, + 3.742813402384555*^9, {3.7428134755684967`*^9, 3.742813490200959*^9}, + 3.742814183560895*^9, {3.742819919975389*^9, 3.742819921001403*^9}, { + 3.7428199815500298`*^9, 3.742819983199623*^9}, {3.742877775652999*^9, + 3.7428779074014883`*^9}, {3.7428779855771227`*^9, 3.742878008161315*^9}, { + 3.7428782383972187`*^9, 3.742878269832116*^9}, {3.742878722461308*^9, + 3.7428787571128817`*^9}, {3.742878822183488*^9, 3.742878822578849*^9}, { + 3.7428788828839493`*^9, 3.7428788901191797`*^9}, {3.74287901611771*^9, + 3.742879142617798*^9}, {3.742879199059029*^9, 3.7428791995390997`*^9}, + 3.742901214891993*^9, {3.74290164400101*^9, 3.742901906207686*^9}, { + 3.742901977623595*^9, 3.742902002095676*^9}, {3.742902032247851*^9, + 3.742902129781516*^9}, {3.742902162525971*^9, 3.74290222166597*^9}, { + 3.742902276796481*^9, 3.742902287956953*^9}, {3.74290235927039*^9, + 3.7429024146277122`*^9}, {3.7429024507177353`*^9, + 3.7429025388586197`*^9}, {3.742903006310214*^9, 3.7429030105077744`*^9}, { + 3.742903134891645*^9, 3.742903234602419*^9}, {3.742903317285879*^9, + 3.7429033173754187`*^9}, {3.742903361602311*^9, 3.74290336281636*^9}, { + 3.742905076823636*^9, 3.7429050778905582`*^9}, {3.742918166486006*^9, + 3.742918220012596*^9}, {3.742918311916502*^9, 3.742918313196629*^9}, { + 3.7429183606868353`*^9, 3.742918373040654*^9}, 3.742918421383092*^9, { + 3.742918494233326*^9, 3.742918623848249*^9}, {3.74291880637696*^9, + 3.7429188584054213`*^9}, {3.742918994743949*^9, 3.742919000933652*^9}, { + 3.742919057477284*^9, 3.7429190853953876`*^9}, {3.742919151618346*^9, + 3.742919208160902*^9}, {3.742920743629745*^9, 3.742920743849949*^9}, + 3.742922144965681*^9, {3.742922177083435*^9, 3.742922183503256*^9}, + 3.742922225061594*^9, 3.742922262893311*^9, {3.742922314745081*^9, + 3.7429223742620287`*^9}, {3.74292246647335*^9, 3.742922597303072*^9}, { + 3.742922649922433*^9, 3.7429226518828707`*^9}, {3.742923296115052*^9, + 3.742923318322493*^9}, {3.742980141599243*^9, 3.74298028080587*^9}, { + 3.742980310806139*^9, 3.7429803255358543`*^9}, {3.742980357754479*^9, + 3.742980398957408*^9}, {3.7429804420837727`*^9, 3.7429804467641287`*^9}, { + 3.742980541432966*^9, 3.742980548122097*^9}, {3.742980578285955*^9, + 3.742980578400919*^9}, {3.7429806326930037`*^9, 3.742980650442853*^9}, { + 3.742980694195736*^9, 3.742980749099784*^9}, {3.742981142831009*^9, + 3.742981146671338*^9}},ExpressionUUID->"1fc2dedb-8f1a-403e-a7e1-\ +c8dbd76bc9e5"] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Explicitly-correlated calculations for ground state", "Subsection", + CellChangeTimes->{{3.726073981425799*^9, 3.7260739868717747`*^9}, { + 3.742878146737846*^9, 3.742878154661549*^9}, {3.742878200397444*^9, + 3.74287820116363*^9}, {3.7429004809627247`*^9, 3.742900482248204*^9}, { + 3.743008847489559*^9, 3.743008848427631*^9}, {3.760885320961331*^9, + 3.760885323017894*^9}, {3.761038569984333*^9, + 3.761038570679368*^9}},ExpressionUUID->"bdb8d3b4-c988-408c-865f-\ +6a4aaefec0cc"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "10"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"tab", "=", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "c"}], "}"}], "=", + RowBox[{"SortEigensystem", "[", + RowBox[{"Eigensystem", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"H", "[", "R", "]"}], ",", "100"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"S", "[", "R", "]"}], ",", "100"}], "]"}]}], "}"}], + "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"Print", "[", "\[Epsilon]", "]"}], ";", "\[IndentingNewLine]", + + RowBox[{"f", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n"], "[", " ", + RowBox[{"R", " ", + SqrtBox[ + RowBox[{"2", "-", + RowBox[{"2", + RowBox[{"Cos", "[", "\[Theta]", "]"}]}]}]]}], "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", + FractionBox["1", "2"]}], ")"}], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + ".", "f"}], ")"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "15"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\\"", ",", + RowBox[{"N", "[", "R", "]"}]}], "]"}], ";", "\[IndentingNewLine]", + + RowBox[{"Print", "[", + RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", "R", "]"}], ",", + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", + "\[RightDoubleBracket]"}]}], "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}]}]}], "]"}]}], "}"}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{"{", + RowBox[{"-", + RowBox[{"Rationalize", "[", "5.3253", "]"}]}], "}"}]}], "}"}]}], + "]"}]}]}], "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{"tab", ",", + RowBox[{"Joined", "\[Rule]", "True"}], ",", + RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]}], "Input", + CellChangeTimes->{ + 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, + 3.725887922914515*^9}, {3.725887992098515*^9, 3.725888054354484*^9}, { + 3.725888190363358*^9, 3.725888220466589*^9}, {3.725888405954722*^9, + 3.7258884143609447`*^9}, {3.725888474666101*^9, 3.725888479977105*^9}, { + 3.725888867994993*^9, 3.725888870697344*^9}, {3.7258889297858877`*^9, + 3.725888934808717*^9}, {3.725888967938243*^9, 3.725889013634396*^9}, { + 3.725889098059265*^9, 3.725889127921206*^9}, {3.725948058954719*^9, + 3.7259480590574303`*^9}, 3.72594816605788*^9, {3.7259484228037577`*^9, + 3.7259484452333307`*^9}, {3.7428020644337606`*^9, + 3.7428020663834143`*^9}, {3.74280212730392*^9, 3.74280222326132*^9}, + 3.742813402384555*^9, {3.7428134755684967`*^9, 3.742813490200959*^9}, + 3.742814183560895*^9, {3.742819919975389*^9, 3.742819921001403*^9}, { + 3.7428199815500298`*^9, 3.742819983199623*^9}, {3.742877775652999*^9, + 3.7428779074014883`*^9}, {3.7428779855771227`*^9, 3.742878008161315*^9}, { + 3.7428782383972187`*^9, 3.742878269832116*^9}, {3.742878722461308*^9, + 3.7428787571128817`*^9}, {3.742878822183488*^9, 3.742878822578849*^9}, { + 3.7428788828839493`*^9, 3.7428788901191797`*^9}, {3.74287901611771*^9, + 3.742879142617798*^9}, {3.742879199059029*^9, 3.7428791995390997`*^9}, + 3.742901214891993*^9, {3.74290164400101*^9, 3.742901906207686*^9}, { + 3.742901977623595*^9, 3.742902002095676*^9}, {3.742902032247851*^9, + 3.742902129781516*^9}, {3.742902162525971*^9, 3.74290222166597*^9}, { + 3.742902276796481*^9, 3.742902287956953*^9}, {3.74290235927039*^9, + 3.7429024146277122`*^9}, {3.7429024507177353`*^9, + 3.7429025388586197`*^9}, {3.742903006310214*^9, 3.7429030105077744`*^9}, { + 3.742903134891645*^9, 3.742903234602419*^9}, {3.742903317285879*^9, + 3.7429033173754187`*^9}, {3.742903361602311*^9, 3.74290336281636*^9}, { + 3.742905076823636*^9, 3.7429050778905582`*^9}, {3.742918166486006*^9, + 3.742918220012596*^9}, {3.742918311916502*^9, 3.742918313196629*^9}, { + 3.7429183606868353`*^9, 3.742918373040654*^9}, 3.742918421383092*^9, { + 3.742918494233326*^9, 3.742918623848249*^9}, {3.74291880637696*^9, + 3.7429188584054213`*^9}, {3.742918994743949*^9, 3.742919000933652*^9}, { + 3.742919057477284*^9, 3.7429190853953876`*^9}, {3.742919151618346*^9, + 3.742919208160902*^9}, {3.742920743629745*^9, 3.742920743849949*^9}, + 3.742922144965681*^9, {3.742922177083435*^9, 3.742922183503256*^9}, + 3.742922225061594*^9, 3.742922262893311*^9, {3.742922314745081*^9, + 3.7429223742620287`*^9}, {3.74292246647335*^9, 3.742922597303072*^9}, { + 3.742922649922433*^9, 3.7429226518828707`*^9}, {3.742923296115052*^9, + 3.742923318322493*^9}, {3.742980141599243*^9, 3.74298028080587*^9}, { + 3.742980310806139*^9, 3.7429803255358543`*^9}, {3.742980357754479*^9, + 3.742980398957408*^9}, {3.7429804420837727`*^9, 3.7429804467641287`*^9}, { + 3.742980541432966*^9, 3.742980548122097*^9}, {3.742980578285955*^9, + 3.742980578400919*^9}, {3.7429806326930037`*^9, 3.742980650442853*^9}, { + 3.742980694195736*^9, 3.742980749099784*^9}, {3.742981142831009*^9, + 3.742981146671338*^9}, {3.742995040906142*^9, 3.7429950736953487`*^9}, { + 3.742995103988391*^9, 3.742995134262944*^9}, {3.742995247787807*^9, + 3.742995324266892*^9}, {3.742995360656518*^9, 3.742995384384591*^9}, { + 3.7429954237133417`*^9, 3.742995433990855*^9}, {3.74299547198099*^9, + 3.742995484920415*^9}, {3.742995760731353*^9, 3.7429957673259373`*^9}, { + 3.742995847653798*^9, 3.7429958543557777`*^9}, {3.7429960931764708`*^9, + 3.742996100192951*^9}, {3.742996300021468*^9, 3.742996312749928*^9}, { + 3.742996623983343*^9, 3.742996683485918*^9}, {3.742996763260223*^9, + 3.7429967667513227`*^9}, {3.742996823435986*^9, 3.742996947881322*^9}, { + 3.7429969858904467`*^9, 3.7429969890918093`*^9}, {3.742997154797719*^9, + 3.742997179630937*^9}, {3.742997221183319*^9, 3.7429972234251423`*^9}, { + 3.742997256190982*^9, 3.742997295285985*^9}, {3.742997325738884*^9, + 3.7429973513749123`*^9}, {3.74299738735357*^9, 3.7429974112679663`*^9}, { + 3.742997461552939*^9, 3.7429974669219646`*^9}, {3.743008210683326*^9, + 3.743008225538146*^9}, 3.743009057265111*^9, {3.743009239073036*^9, + 3.7430092656499767`*^9}, {3.743009361125576*^9, 3.743009373039097*^9}, { + 3.7430094955856752`*^9, 3.7430095437002373`*^9}, {3.7430096137618933`*^9, + 3.743009669733102*^9}, {3.743009863885*^9, 3.7430099872406483`*^9}, { + 3.743010046219955*^9, 3.743010048241816*^9}, {3.7430103170795507`*^9, + 3.743010344854659*^9}, {3.743011088494897*^9, 3.7430111264389553`*^9}, { + 3.7430111611489353`*^9, 3.743011161959427*^9}, {3.743017152694162*^9, + 3.743017214293683*^9}, {3.7430172717293787`*^9, 3.74301731611399*^9}, { + 3.743050381548286*^9, 3.7430504265925217`*^9}, {3.743050459093212*^9, + 3.743050513236857*^9}, {3.743058479430113*^9, 3.743058512638873*^9}, { + 3.7430585676431007`*^9, 3.743058581876259*^9}, 3.743058631064424*^9, { + 3.7430936684137993`*^9, 3.743093679241973*^9}, {3.743093711275429*^9, + 3.7430937413274803`*^9}, {3.743093773814063*^9, 3.743093775701182*^9}, { + 3.7430940895099916`*^9, 3.743094095858829*^9}, 3.743134557856875*^9, { + 3.743134593968667*^9, 3.743134730681005*^9}, {3.743136067507962*^9, + 3.7431360880238857`*^9}, {3.7432205013549223`*^9, 3.743220521207345*^9}, { + 3.74324901832952*^9, 3.743249039226322*^9}, {3.743249141222273*^9, + 3.7432491431661043`*^9}, 3.743249275352684*^9, {3.743250240903697*^9, + 3.743250241066393*^9}}, + CellLabel->"In[14]:=",ExpressionUUID->"fd4d7d77-fd44-443b-a877-600297ee2a20"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{ + "-", "0.1221505895086752399672850481526467453951231674963393224824639187698\ +510629717143679724801991059956225635619235945765`100."}], ",", + RowBox[{ + "-", "0.0329776383481224696083465030844867425916092144997434553796738060473\ +842476633084142694769402632462430048763648368884`100."}], ",", + "0.121189192074791677886199429384612372856196205110210467954297229577054057\ +1299788262324991374025027180285762299667263`100.", ",", + "0.352824478791268842094551803605610560714169830756836675818144468000987186\ +67601264685738820111391498215467923577726`100.", ",", + "0.658197287983287267972481670616492578263384688287338880906630524528966320\ +4401974130248707878242182479787082595699135`100.", ",", + "1.036126198997539471845801990943954942866546829103444800341454650917282477\ +5731944536633733689942485492001847246125242`100.", ",", + "1.493071436302994390071759619231425063440863301522365809679435088965429904\ +2270506855869914221478548795637441650644614`100.", ",", + "2.305621582488911961576388232620486782796696540533005373783870191651545988\ +9376808896048122639810653346546119604831802`100.", ",", + "5.800562289082376441214521876570322846101563848946398256812215108372655585\ +7259092489543315160288367587772617431893314`100.", ",", + "61.05834835093963526398782194093927789728447678601293025105167285079751048\ +35999222424279051681938080645134816458778736`100."}], "}"}]], "Print", + CellChangeTimes->{ + 3.7432491436528273`*^9, 3.743249275645846*^9, {3.743250241540782*^9, + 3.743250269102879*^9}, 3.743252061783297*^9, 3.743252172287586*^9, + 3.760885286003696*^9}, + CellLabel-> + "During evaluation of \ +In[14]:=",ExpressionUUID->"eddb80e0-8314-4b81-a073-134184dae11a"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "5.3253`"}], ",", + RowBox[{"-", "9.219234834278800533326605743782`8.850010829569765*^-8"}]}], + "}"}], "}"}]], "Output", + CellChangeTimes->{ + 3.743134561955127*^9, 3.743134598396058*^9, {3.743134630792986*^9, + 3.743134732201373*^9}, 3.7431360900707407`*^9, {3.743220514222476*^9, + 3.743220523817198*^9}, {3.743249031908792*^9, 3.743249048224409*^9}, { + 3.743249088261744*^9, 3.743249143757661*^9}, 3.7432492758447723`*^9, { + 3.743250241623152*^9, 3.743250269175798*^9}, 3.743252061896006*^9, + 3.7432521723645277`*^9, 3.76088528642432*^9}, + CellLabel->"Out[14]=",ExpressionUUID->"77e73b0a-4204-439b-880c-363ddd8df3f0"], + +Cell[BoxData[ + GraphicsBox[{{}, {{}, {}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`], + AbsoluteThickness[1.6], + LineBox[{{-5.3253, -9.2192348342788*^-8}, {-5.3253, \ +-9.2192348342788*^-8}}]}}, {}, {}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageMargins->0., + ImagePadding->All, + ImageSize->Automatic, + ImageSizeRaw->Automatic, + Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-10.6506, 0}, {-1.84384696685576*^-7, 0}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.02]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.743134561955127*^9, 3.743134598396058*^9, {3.743134630792986*^9, + 3.743134732201373*^9}, 3.7431360900707407`*^9, {3.743220514222476*^9, + 3.743220523817198*^9}, {3.743249031908792*^9, 3.743249048224409*^9}, { + 3.743249088261744*^9, 3.743249143757661*^9}, 3.7432492758447723`*^9, { + 3.743250241623152*^9, 3.743250269175798*^9}, 3.743252061896006*^9, + 3.7432521723645277`*^9, 3.760885286702335*^9}, + CellLabel->"Out[15]=",ExpressionUUID->"e954db0b-9de5-4b95-884f-97be0d9ee069"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"(*", " ", + RowBox[{"R", " ", "=", " ", "5.3253"}], " ", "*)"}]], "Input", + CellChangeTimes->{{3.742996084929338*^9, 3.742996087955208*^9}, + 3.743008844931081*^9},ExpressionUUID->"2a334965-e048-4730-b8d2-\ +934066eee580"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "\[Equal]", "0"}]], "Input", + CellChangeTimes->{{3.743008617221795*^9, + 3.743008632732617*^9}},ExpressionUUID->"7e0bdb5b-809c-478e-a3d8-\ +bbaf3faf9a2a"], + +Cell[BoxData[ + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], "\[Proportional]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "u", "]"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}]}]], "Input", + CellChangeTimes->{{3.743008638310566*^9, + 3.7430087113463907`*^9}},ExpressionUUID->"efa3f2c4-c56a-4f0d-a231-\ +57f12b695850"], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "u", "]"}], "2"], "=", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"n", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["a", "n"], + SuperscriptBox["u", "n"]}]}]}]], "Input", + CellChangeTimes->{{3.743008733842286*^9, 3.7430087532244596`*^9}, + 3.743009302480163*^9},ExpressionUUID->"6d2eae8e-6c4d-48f2-a1b2-\ +4de4ecc2600b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "\[Equal]", "0"}]], "Input", + CellChangeTimes->{{3.743008826317938*^9, 3.743008876179605*^9}, { + 3.743008923358904*^9, 3.7430089257474413`*^9}, 3.743008964749034*^9, { + 3.7430110645813437`*^9, + 3.7430110748797283`*^9}},ExpressionUUID->"ae82bc8b-92a9-43b2-ac92-\ +6cd163b82739"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"a", "=", + RowBox[{"CoefficientList", "[", + RowBox[{ + RowBox[{"1.`", "\[VeryThinSpace]", "+", + RowBox[{"0.6666467666189491`", " ", "u"}], "+", + RowBox[{"0.233711497250696`", " ", + SuperscriptBox["u", "2"]}], "+", + RowBox[{"0.057892269462279114`", " ", + SuperscriptBox["u", "3"]}], "+", + RowBox[{"0.011416060718727025`", " ", + SuperscriptBox["u", "4"]}], "+", + RowBox[{"0.0019001512003665785`", " ", + SuperscriptBox["u", "5"]}], "+", + RowBox[{"0.00027454051463773074`", " ", + SuperscriptBox["u", "6"]}], "+", + RowBox[{"0.00003485368552570877`", " ", + SuperscriptBox["u", "7"]}], "+", + RowBox[{"3.909550758995941`*^-6", " ", + SuperscriptBox["u", "8"]}], "+", + RowBox[{"3.886613919337475`*^-7", " ", + SuperscriptBox["u", "9"]}], "+", + RowBox[{"3.423932142765105`*^-8", " ", + SuperscriptBox["u", "10"]}], "+", + RowBox[{"2.6560194575496133`*^-9", " ", + SuperscriptBox["u", "11"]}], "+", + RowBox[{"1.7871244353862165`*^-10", " ", + SuperscriptBox["u", "12"]}], "+", + RowBox[{"1.017581390449739`*^-11", " ", + SuperscriptBox["u", "13"]}], "+", + RowBox[{"4.734306593585661`*^-13", " ", + SuperscriptBox["u", "14"]}], "+", + RowBox[{"1.714745687814212`*^-14", " ", + SuperscriptBox["u", "15"]}], "+", + RowBox[{"4.501929931069031`*^-16", " ", + SuperscriptBox["u", "16"]}], "+", + RowBox[{"7.574161874717616`*^-18", " ", + SuperscriptBox["u", "17"]}], "+", + RowBox[{"6.100436598427603`*^-20", " ", + SuperscriptBox["u", "18"]}]}], ",", "u"}], "]"}]}], ";"}]], "Input", + CellChangeTimes->{ + 3.7430101190494423`*^9, {3.743010352750772*^9, 3.743010358043541*^9}, { + 3.7430111740999517`*^9, 3.7430111950267553`*^9}, + 3.7430113269559107`*^9},ExpressionUUID->"87275d0e-03a0-4d3c-9d6f-\ +87d7d86f1997"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"n", "=", "0"}], + RowBox[{ + RowBox[{"Length", "[", "a", "]"}], "-", "1"}]], + RowBox[{ + RowBox[{"a", "\[LeftDoubleBracket]", + RowBox[{"n", "+", "1"}], "\[RightDoubleBracket]"}], + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["2", + RowBox[{"1", "+", "n"}]], " ", + SuperscriptBox["R", "n"], " ", + RowBox[{ + FractionBox["n", "2"], "!"}]}], + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + FractionBox["n", "2"]}], ")"}], "!"}]], "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{"(", + RowBox[{"-", + FractionBox[ + RowBox[{"3", " ", + SuperscriptBox["2", + RowBox[{"1", "+", "n"}]], " ", + SuperscriptBox["R", "n"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["n", "2"], "!"}], ")"}], "2"]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox["n", "2"]}], ")"}], "!"}], " ", + RowBox[{ + RowBox[{"(", + RowBox[{"2", "+", + FractionBox["n", "2"]}], ")"}], "!"}]}]]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "5"], + FractionBox[ + RowBox[{"5", " ", + SuperscriptBox["2", + RowBox[{"1", "+", "n"}]], " ", + SuperscriptBox["R", "n"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["n", "2"], "!"}], ")"}], "2"]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", + FractionBox["n", "2"]}], ")"}], "!"}], " ", + RowBox[{ + RowBox[{"(", + RowBox[{"3", "+", + FractionBox["n", "2"]}], ")"}], "!"}]}]]}]}], ")"}]}]}], + "\[Equal]", "0"}], ",", "R", ",", "Reals"}], "]"}]], "Input", + CellChangeTimes->{{3.743008903832117*^9, 3.743008967251095*^9}, { + 3.743009196399331*^9, 3.743009223717544*^9}, {3.743009319245885*^9, + 3.743009320852151*^9}, {3.743009404900145*^9, 3.7430094792063637`*^9}, { + 3.743009571152327*^9, 3.7430095985464563`*^9}, {3.743009758354797*^9, + 3.743009784554747*^9}, {3.743010107602206*^9, 3.743010110403318*^9}, { + 3.7430101563715353`*^9, 3.743010219116867*^9}, {3.7430103802544622`*^9, + 3.743010407153284*^9}, {3.743010971637995*^9, 3.74301100841931*^9}, { + 3.7430111317461853`*^9, 3.743011139419375*^9}, {3.7430113023914213`*^9, + 3.7430113086757936`*^9}, {3.74325075070501*^9, 3.7432507633530416`*^9}, { + 3.743252178653953*^9, + 3.743252191491788*^9}},ExpressionUUID->"3a93abe4-2ad3-486e-8c6e-\ +7fdc2391862f"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"R", "\[Rule]", + RowBox[{"-", "7.90510513769442`"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"R", "\[Rule]", + RowBox[{"-", "5.3252580783808625`"}]}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{{3.74300890102166*^9, 3.743008937590334*^9}, { + 3.743008967830804*^9, 3.743008977460165*^9}, {3.743009202941248*^9, + 3.743009224321291*^9}, {3.7430093127952747`*^9, 3.743009336272367*^9}, { + 3.7430093977504263`*^9, 3.743009486065894*^9}, {3.743009566002088*^9, + 3.743009598986909*^9}, {3.743009785285321*^9, 3.743009831584551*^9}, { + 3.74301000669014*^9, 3.743010029742188*^9}, {3.743010110958336*^9, + 3.743010120657176*^9}, {3.743010161125496*^9, 3.743010219470181*^9}, + 3.743010291783205*^9, {3.743010361433179*^9, 3.743010408716257*^9}, + 3.7430110099585543`*^9, {3.743011132333686*^9, 3.743011147105628*^9}, { + 3.743011181862275*^9, 3.743011197086944*^9}, {3.7430113097387753`*^9, + 3.743011328647744*^9}, 3.7432507526975203`*^9, {3.743252044458527*^9, + 3.743252072024311*^9}, {3.74325218171531*^9, + 3.74325219198354*^9}},ExpressionUUID->"3f0af36f-5a14-4009-9228-\ +7f92279f21fd"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "2"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"tab", "=", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "c"}], "}"}], "=", + RowBox[{"SortEigensystem", "[", + RowBox[{"Eigensystem", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"H", "[", "R", "]"}], ",", "100"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"S", "[", "R", "]"}], ",", "100"}], "]"}]}], "}"}], + "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"f", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n"], "[", + RowBox[{"2", " ", "R", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", + FractionBox["1", "2"]}], ")"}], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + ".", "f"}], ")"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "15"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Normalize", "[", "\[Rho]", "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\\"", ",", + RowBox[{"N", "[", "R", "]"}]}], "]"}], ";", "\[IndentingNewLine]", + + RowBox[{"Print", "[", + RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", "R", "]"}], ",", + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", + "\[RightDoubleBracket]"}]}], "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}]}]}], "]"}]}], "}"}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{"-", "8"}], ",", + RowBox[{"-", "1"}]}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", + "]"}], "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{"tab", ",", + RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]}], "Input", + CellChangeTimes->{ + 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, + 3.725887922914515*^9}, {3.725887992098515*^9, 3.725888054354484*^9}, { + 3.725888190363358*^9, 3.725888220466589*^9}, {3.725888405954722*^9, + 3.7258884143609447`*^9}, {3.725888474666101*^9, 3.725888479977105*^9}, { + 3.725888867994993*^9, 3.725888870697344*^9}, {3.7258889297858877`*^9, + 3.725888934808717*^9}, {3.725888967938243*^9, 3.725889013634396*^9}, { + 3.725889098059265*^9, 3.725889127921206*^9}, {3.725948058954719*^9, + 3.7259480590574303`*^9}, 3.72594816605788*^9, {3.7259484228037577`*^9, + 3.7259484452333307`*^9}, {3.7428020644337606`*^9, + 3.7428020663834143`*^9}, {3.74280212730392*^9, 3.74280222326132*^9}, + 3.742813402384555*^9, {3.7428134755684967`*^9, 3.742813490200959*^9}, + 3.742814183560895*^9, {3.742819919975389*^9, 3.742819921001403*^9}, { + 3.7428199815500298`*^9, 3.742819983199623*^9}, {3.742877775652999*^9, + 3.7428779074014883`*^9}, {3.7428779855771227`*^9, 3.742878008161315*^9}, { + 3.7428782383972187`*^9, 3.742878269832116*^9}, {3.742878722461308*^9, + 3.7428787571128817`*^9}, {3.742878822183488*^9, 3.742878822578849*^9}, { + 3.7428788828839493`*^9, 3.7428788901191797`*^9}, {3.74287901611771*^9, + 3.742879142617798*^9}, {3.742879199059029*^9, 3.7428791995390997`*^9}, + 3.742901214891993*^9, {3.74290164400101*^9, 3.742901906207686*^9}, { + 3.742901977623595*^9, 3.742902002095676*^9}, {3.742902032247851*^9, + 3.742902129781516*^9}, {3.742902162525971*^9, 3.74290222166597*^9}, { + 3.742902276796481*^9, 3.742902287956953*^9}, {3.74290235927039*^9, + 3.7429024146277122`*^9}, {3.7429024507177353`*^9, + 3.7429025388586197`*^9}, {3.742903006310214*^9, 3.7429030105077744`*^9}, { + 3.742903134891645*^9, 3.742903234602419*^9}, {3.742903317285879*^9, + 3.7429033173754187`*^9}, {3.742903361602311*^9, 3.74290336281636*^9}, { + 3.742905076823636*^9, 3.7429050778905582`*^9}, {3.742918166486006*^9, + 3.742918220012596*^9}, {3.742918311916502*^9, 3.742918313196629*^9}, { + 3.7429183606868353`*^9, 3.742918373040654*^9}, 3.742918421383092*^9, { + 3.742918494233326*^9, 3.742918623848249*^9}, {3.74291880637696*^9, + 3.7429188584054213`*^9}, {3.742918994743949*^9, 3.742919000933652*^9}, { + 3.742919057477284*^9, 3.7429190853953876`*^9}, {3.742919151618346*^9, + 3.742919208160902*^9}, {3.742920743629745*^9, 3.742920743849949*^9}, + 3.742922144965681*^9, {3.742922177083435*^9, 3.742922183503256*^9}, + 3.742922225061594*^9, 3.742922262893311*^9, {3.742922314745081*^9, + 3.7429223742620287`*^9}, {3.74292246647335*^9, 3.742922597303072*^9}, { + 3.742922649922433*^9, 3.7429226518828707`*^9}, {3.742923296115052*^9, + 3.742923318322493*^9}, {3.742980141599243*^9, 3.74298028080587*^9}, { + 3.742980310806139*^9, 3.7429803255358543`*^9}, {3.742980357754479*^9, + 3.742980398957408*^9}, {3.7429804420837727`*^9, 3.7429804467641287`*^9}, { + 3.742980541432966*^9, 3.742980548122097*^9}, {3.742980578285955*^9, + 3.742980578400919*^9}, {3.7429806326930037`*^9, 3.742980650442853*^9}, { + 3.742980694195736*^9, 3.742980749099784*^9}, {3.742981142831009*^9, + 3.742981146671338*^9}, {3.742995040906142*^9, 3.7429950736953487`*^9}, { + 3.742995103988391*^9, 3.742995134262944*^9}, {3.742995247787807*^9, + 3.742995324266892*^9}, {3.742995360656518*^9, 3.742995384384591*^9}, { + 3.7429954237133417`*^9, 3.742995433990855*^9}, {3.74299547198099*^9, + 3.742995484920415*^9}, {3.742995760731353*^9, 3.7429957673259373`*^9}, { + 3.742995847653798*^9, 3.7429958543557777`*^9}, {3.7429960931764708`*^9, + 3.742996100192951*^9}, {3.742996300021468*^9, 3.742996312749928*^9}, { + 3.742996623983343*^9, 3.742996683485918*^9}, {3.742996763260223*^9, + 3.7429967667513227`*^9}, {3.742996823435986*^9, 3.742996947881322*^9}, { + 3.7429969858904467`*^9, 3.7429969890918093`*^9}, {3.742997154797719*^9, + 3.742997179630937*^9}, {3.742997221183319*^9, 3.7429972234251423`*^9}, { + 3.742997256190982*^9, 3.742997295285985*^9}, {3.742997325738884*^9, + 3.7429973513749123`*^9}, {3.74299738735357*^9, 3.7429974112679663`*^9}, { + 3.742997461552939*^9, 3.7429974669219646`*^9}, {3.743008210683326*^9, + 3.743008225538146*^9}, 3.743009057265111*^9, {3.743009239073036*^9, + 3.7430092656499767`*^9}, {3.743009361125576*^9, 3.743009373039097*^9}, { + 3.7430094955856752`*^9, 3.7430095437002373`*^9}, {3.7430096137618933`*^9, + 3.743009669733102*^9}, {3.743009863885*^9, 3.7430099872406483`*^9}, { + 3.743010046219955*^9, 3.743010048241816*^9}, {3.7430103170795507`*^9, + 3.743010344854659*^9}, {3.743011088494897*^9, 3.7430111264389553`*^9}, { + 3.7430111611489353`*^9, 3.743011161959427*^9}, {3.743017152694162*^9, + 3.743017214293683*^9}, {3.7430172717293787`*^9, 3.74301731611399*^9}, { + 3.743050381548286*^9, 3.7430504265925217`*^9}, {3.743050459093212*^9, + 3.743050513236857*^9}, {3.743058479430113*^9, 3.743058512638873*^9}, { + 3.7430585676431007`*^9, 3.743058581876259*^9}, 3.743058631064424*^9, { + 3.7430936684137993`*^9, 3.743093679241973*^9}, {3.743093711275429*^9, + 3.7430937413274803`*^9}, {3.743093773814063*^9, 3.743093775701182*^9}, { + 3.7430940895099916`*^9, 3.743094095858829*^9}, {3.74324925746987*^9, + 3.7432492932678623`*^9}},ExpressionUUID->"d1b1610f-85af-4346-ac50-\ +e489107603e8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "8.`"}], ",", + "0.05663767376625528048334848706351426913`13.802711341328264"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "7.`"}], ",", + "0.05515826077011463963622210991315024364`13.790751914580428"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "6.`"}], ",", + "0.05267761031337876002220813890081900529`13.769978140343293"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "5.`"}], ",", + "0.04771886253406148955033934815129399933`13.725422339701307"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "4.`"}], ",", + "0.03398178620477027569403537051987069279`13.573123108659425"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "3.`"}], ",", + RowBox[{ + "-", "0.00668395560516228709635906989335329095`12.841363418604455"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.`"}], ",", + "0.11793777599399517240707880748737754526`14.023145791709837"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.`"}], ",", + "0.5832241052451204458791142818175643314`14.68171816821296"}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.742996657478889*^9, 3.742996694811885*^9}, + 3.742996774697028*^9, {3.742996831606791*^9, 3.742996930722329*^9}, { + 3.742996979128537*^9, 3.742996998685197*^9}, {3.742997170258297*^9, + 3.74299719396703*^9}, 3.742997236462091*^9, {3.742997281163794*^9, + 3.7429973094529037`*^9}, {3.7429973429218388`*^9, 3.742997365255122*^9}, + 3.742997401406933*^9, 3.742997433942346*^9, 3.742997481668456*^9, { + 3.743008209064024*^9, 3.743008227506484*^9}, 3.7430090700339823`*^9, { + 3.743009243713592*^9, 3.74300927481546*^9}, {3.743009368158757*^9, + 3.7430093778680067`*^9}, {3.743009503160977*^9, 3.743009544881068*^9}, { + 3.743009615591918*^9, 3.743009674203759*^9}, {3.743009877875682*^9, + 3.7430099570468187`*^9}, 3.743009988127508*^9, 3.743010048849511*^9, { + 3.743010321582046*^9, 3.743010345691057*^9}, {3.743011108463632*^9, + 3.7430111275578327`*^9}, 3.743011321093457*^9, {3.743017188499008*^9, + 3.743017216540564*^9}, {3.743017266818322*^9, 3.7430173175941553`*^9}, { + 3.743050388269188*^9, 3.7430504389575*^9}, {3.7430504717763042`*^9, + 3.743050525568631*^9}, {3.743058489036425*^9, 3.743058522599071*^9}, { + 3.743058573364636*^9, 3.743058631765682*^9}, {3.743093680652239*^9, + 3.743093742800342*^9}, 3.743093782907002*^9, 3.743094097635339*^9, { + 3.743249263535275*^9, + 3.743249293845167*^9}},ExpressionUUID->"d46330e7-34f6-4fd6-87c7-\ +9d62e37f39f0"], + +Cell[BoxData[ + GraphicsBox[{{}, {{}, {}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`], + AbsoluteThickness[1.6], + LineBox[{{-8., 0.05663767376625528}, {-7., 0.05515826077011464}, {-6., + 0.05267761031337876}, {-5., 0.04771886253406149}, {-4., + 0.03398178620477028}, {-3., -0.006683955605162287}, {-2., + 0.11793777599399517`}, {-1.7293408880365622`, + 0.2438717606778325}}]}}, {}, {}, {}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-8., 0}, {-0.006683955605162287, 0.2438717606778325}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.742996657478889*^9, 3.742996694811885*^9}, + 3.742996774697028*^9, {3.742996831606791*^9, 3.742996930722329*^9}, { + 3.742996979128537*^9, 3.742996998685197*^9}, {3.742997170258297*^9, + 3.74299719396703*^9}, 3.742997236462091*^9, {3.742997281163794*^9, + 3.7429973094529037`*^9}, {3.7429973429218388`*^9, 3.742997365255122*^9}, + 3.742997401406933*^9, 3.742997433942346*^9, 3.742997481668456*^9, { + 3.743008209064024*^9, 3.743008227506484*^9}, 3.7430090700339823`*^9, { + 3.743009243713592*^9, 3.74300927481546*^9}, {3.743009368158757*^9, + 3.7430093778680067`*^9}, {3.743009503160977*^9, 3.743009544881068*^9}, { + 3.743009615591918*^9, 3.743009674203759*^9}, {3.743009877875682*^9, + 3.7430099570468187`*^9}, 3.743009988127508*^9, 3.743010048849511*^9, { + 3.743010321582046*^9, 3.743010345691057*^9}, {3.743011108463632*^9, + 3.7430111275578327`*^9}, 3.743011321093457*^9, {3.743017188499008*^9, + 3.743017216540564*^9}, {3.743017266818322*^9, 3.7430173175941553`*^9}, { + 3.743050388269188*^9, 3.7430504389575*^9}, {3.7430504717763042`*^9, + 3.743050525568631*^9}, {3.743058489036425*^9, 3.743058522599071*^9}, { + 3.743058573364636*^9, 3.743058631765682*^9}, {3.743093680652239*^9, + 3.743093742800342*^9}, 3.743093782907002*^9, 3.743094097635339*^9, { + 3.743249263535275*^9, + 3.74324929392282*^9}},ExpressionUUID->"a1eff725-6cd6-4766-9c48-\ +e4596ad8fcd8"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", + FractionBox["1", "2"]}], ")"}], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "+", + RowBox[{"2", "R", " ", + RowBox[{ + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}], "/", "3"}]}]}], ")"}], + "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "15"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Normalize", "[", "\[Rho]", "]"}]}], ";", "\[IndentingNewLine]", + + RowBox[{"(*", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\\"", ",", + RowBox[{"N", "[", "R", "]"}]}], "]"}], ";", "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", "R", "]"}], ",", + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]}], + "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}]}]}], + "]"}]}], "}"}]}], "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{"-", "2"}], ",", + RowBox[{"-", "1"}], ",", + RowBox[{"1", "/", "10"}]}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.743249317434453*^9, + 3.743249370435869*^9}},ExpressionUUID->"312998b8-f34f-4d8f-ada8-\ +529ce8e4fc92"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "2.`"}], ",", + "0.13174565054273172613063877577446241472`14.189537982782927"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.9`"}], ",", + "0.0613071878644988213426676455054809456`13.83855598577885"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.8`"}], ",", + "0.01621148017165953868975934024109813171`13.244125144327507"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.7`"}], ",", + RowBox[{ + "-", "0.00549819479807370640993893605019036912`12.75853216507087"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.6`"}], ",", + RowBox[{ + "-", "0.00614133775885803398953899157104994269`12.790728765694983"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.5`"}], ",", + "0.01213213484544885266155837405930094013`13.070581074285709"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.4`"}], ",", + "0.04742473000348483674589975821544297506`13.647075731952729"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.3`"}], ",", + "0.09794465662280307408467795150154074992`13.947188398060387"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.2`"}], ",", + "0.16176959973608382395756211575824370712`14.151561216728714"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.1`"}], ",", + "0.23661760255479798428713987334398564266`14.305165344332528"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.`"}], ",", + "0.31970896888176448295241466594701653813`14.426982255443834"}], "}"}]}], + "}"}]], "Output", + CellChangeTimes->{{3.743249352275446*^9, + 3.7432493714217453`*^9}},ExpressionUUID->"732834ed-bb17-43bb-807d-\ +6b18ef0060a2"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"c", "=", + RowBox[{"RecurrenceTable", "[", + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"a", "[", "0", "]"}], "\[Equal]", "1"}], ",", + RowBox[{ + RowBox[{"a", "[", "1", "]"}], "\[Equal]", "\[Gamma]"}], ",", + RowBox[{ + RowBox[{"a", "[", + RowBox[{"k", "+", "2"}], "]"}], "\[Equal]", + RowBox[{ + FractionBox["\[Gamma]", + RowBox[{ + RowBox[{"(", + RowBox[{"k", "+", "2"}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"k", "+", "1"}], ")"}], "\[Gamma]"}], "+", "1"}], + ")"}]}]], + RowBox[{"(", + RowBox[{ + RowBox[{"a", "[", + RowBox[{"k", "+", "1"}], "]"}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"k", + RowBox[{"(", + RowBox[{"k", "+", "\[Delta]", "-", "1"}], ")"}]}], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", "\[CapitalEpsilon]"}], + ")"}], + RowBox[{"a", "[", "k", "]"}]}]}], ")"}]}]}]}], "}"}], "/.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Gamma]", "\[Rule]", + FractionBox["1", "3"]}], ",", + RowBox[{"\[Delta]", "\[Rule]", "5"}]}], "}"}]}], ",", "a", ",", + RowBox[{"{", + RowBox[{"k", ",", "0", ",", "10"}], "}"}]}], "]"}]}], + ";"}], "\[IndentingNewLine]", + RowBox[{"c2", "=", + RowBox[{ + RowBox[{"CoefficientList", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"n", "=", "0"}], + RowBox[{ + RowBox[{"Length", "[", "c", "]"}], "-", "1"}]], + RowBox[{ + RowBox[{"c", "\[LeftDoubleBracket]", + RowBox[{"n", "+", "1"}], "\[RightDoubleBracket]"}], + SuperscriptBox["u", "n"]}]}], ")"}], + RowBox[{"(", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"m", "=", "0"}], + RowBox[{ + RowBox[{"Length", "[", "c", "]"}], "-", "1"}]], + RowBox[{ + RowBox[{"c", "\[LeftDoubleBracket]", + RowBox[{"m", "+", "1"}], "\[RightDoubleBracket]"}], + SuperscriptBox["u", "m"]}]}], ")"}]}], "/.", + RowBox[{"\[CapitalEpsilon]", "->", + RowBox[{"-", "0.157412987479"}]}]}], "/.", + RowBox[{"R", "\[Rule]", + RowBox[{"-", "5.3253"}]}]}], ",", "u"}], "]"}], "//", + "N"}]}], "\[IndentingNewLine]", + RowBox[{"NSolve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"n", "=", "0"}], + RowBox[{ + RowBox[{"Length", "[", "c2", "]"}], "-", "1"}]], + RowBox[{ + RowBox[{"c2", "\[LeftDoubleBracket]", + RowBox[{"n", "+", "1"}], "\[RightDoubleBracket]"}], + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["2", + RowBox[{"1", "+", "n"}]], " ", + SuperscriptBox["R", "n"], " ", + RowBox[{ + FractionBox["n", "2"], "!"}]}], + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + FractionBox["n", "2"]}], ")"}], "!"}]], "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{"(", + RowBox[{"-", + FractionBox[ + RowBox[{"3", " ", + SuperscriptBox["2", + RowBox[{"1", "+", "n"}]], " ", + SuperscriptBox["R", "n"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["n", "2"], "!"}], ")"}], "2"]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + FractionBox["n", "2"]}], ")"}], "!"}], " ", + RowBox[{ + RowBox[{"(", + RowBox[{"2", "+", + FractionBox["n", "2"]}], ")"}], "!"}]}]]}], ")"}]}], "+", + RowBox[{ + FractionBox["1", "5"], + FractionBox[ + RowBox[{"5", " ", + SuperscriptBox["2", + RowBox[{"1", "+", "n"}]], " ", + SuperscriptBox["R", "n"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + FractionBox["n", "2"], "!"}], ")"}], "2"]}], + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "2"}], "+", + FractionBox["n", "2"]}], ")"}], "!"}], " ", + RowBox[{ + RowBox[{"(", + RowBox[{"3", "+", + FractionBox["n", "2"]}], ")"}], "!"}]}]]}]}], ")"}]}]}], + "\[Equal]", "0"}], ",", "R", ",", "Reals"}], "]"}]}], "Input", + CellChangeTimes->{{3.743058256930421*^9, 3.743058272448606*^9}, { + 3.743058311944397*^9, 3.743058377270937*^9}, {3.743058422125256*^9, + 3.743058425331132*^9}, {3.743058546668931*^9, 3.743058546742296*^9}, { + 3.743058641720284*^9, 3.7430586420763073`*^9}, {3.743058673176174*^9, + 3.743058709883335*^9}, {3.743058815311449*^9, 3.743058908417449*^9}, { + 3.743059013663269*^9, 3.74305901753706*^9}, {3.743059064286539*^9, + 3.743059118971814*^9}, {3.743059238295856*^9, 3.7430592996460943`*^9}, { + 3.743059386341751*^9, 3.743059412491478*^9}, {3.743059656942665*^9, + 3.7430597753306503`*^9}, {3.7430598192186747`*^9, 3.743059838263276*^9}, { + 3.743248912160686*^9, 3.743248940150074*^9}, {3.74324917661977*^9, + 3.743249239136263*^9}, {3.7432493876767406`*^9, 3.743249393690229*^9}, { + 3.743249547085828*^9, 3.743249553646801*^9}, {3.7432497666245327`*^9, + 3.743249846178138*^9}, {3.74324987624471*^9, 3.743249889050623*^9}, { + 3.743250192619252*^9, 3.74325020160819*^9}, 3.743250332485158*^9, + 3.7432503778741083`*^9, {3.743250415497982*^9, 3.74325042068097*^9}, { + 3.743250480403112*^9, 3.7432504891071577`*^9}, {3.743250553975196*^9, + 3.743250588685631*^9}, {3.743250649758428*^9, 3.743250675590646*^9}, { + 3.743250775619095*^9, 3.74325080592728*^9}, {3.7432508434027357`*^9, + 3.743250846975026*^9}, {3.743252083575445*^9, 3.743252083836508*^9}, + 3.7432521471107607`*^9, {3.743252199341425*^9, 3.743252228836989*^9}, { + 3.743252277211143*^9, 3.743252285418354*^9}, {3.743252322389007*^9, + 3.743252458849464*^9}, {3.743252502110982*^9, + 3.743252502254023*^9}},ExpressionUUID->"2016af84-5098-4a00-a783-\ +f0d93f8c9ba3"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + "1.`", ",", "0.6666666666666666`", ",", "0.23379769131419442`", ",", + "0.0580297869675747`", ",", "0.0115338105847618`", ",", + "0.001964066241684534`", ",", "0.00029881196177178093`", ",", + "0.0000417646114165144`", ",", "5.467974643583115`*^-6", ",", + "6.800336860330669`*^-7", ",", "8.117295909053398`*^-8", ",", + "9.172017060115108`*^-9", ",", "9.674590814152652`*^-10", ",", + "9.536315676229365`*^-11", ",", "8.851338979896362`*^-12", ",", + "7.783450438494016`*^-13", ",", "6.491954529766903`*^-14", ",", + "5.103921918620108`*^-15", ",", "3.710688560792493`*^-16", ",", + "2.3732207780114273`*^-17", ",", "1.1293028521778305`*^-18"}], + "}"}]], "Output", + CellChangeTimes->{{3.743249817817011*^9, 3.743249846809401*^9}, { + 3.743249876864678*^9, 3.743249889626586*^9}, {3.7432501972877703`*^9, + 3.7432502020302258`*^9}, 3.7432503335088663`*^9, 3.743250378877767*^9, + 3.743250421241411*^9, {3.743250482612504*^9, 3.74325048942947*^9}, { + 3.743250554983243*^9, 3.743250589229115*^9}, 3.743250677082205*^9, { + 3.7432507765056057`*^9, 3.7432508061787043`*^9}, {3.743250843973938*^9, + 3.743250847293895*^9}, {3.7432520845834312`*^9, 3.743252091222343*^9}, + 3.743252149197568*^9, {3.743252201340808*^9, 3.743252229471403*^9}, + 3.7432522861359997`*^9, {3.743252320366165*^9, 3.743252446848074*^9}, { + 3.743252478524061*^9, + 3.743252502778899*^9}},ExpressionUUID->"bd9eb2f7-582b-4a68-9544-\ +172d9b5d206c"], + +Cell[BoxData[ + RowBox[{"{", "}"}]], "Output", + CellChangeTimes->{{3.743249817817011*^9, 3.743249846809401*^9}, { + 3.743249876864678*^9, 3.743249889626586*^9}, {3.7432501972877703`*^9, + 3.7432502020302258`*^9}, 3.7432503335088663`*^9, 3.743250378877767*^9, + 3.743250421241411*^9, {3.743250482612504*^9, 3.74325048942947*^9}, { + 3.743250554983243*^9, 3.743250589229115*^9}, 3.743250677082205*^9, { + 3.7432507765056057`*^9, 3.7432508061787043`*^9}, {3.743250843973938*^9, + 3.743250847293895*^9}, {3.7432520845834312`*^9, 3.743252091222343*^9}, + 3.743252149197568*^9, {3.743252201340808*^9, 3.743252229471403*^9}, + 3.7432522861359997`*^9, {3.743252320366165*^9, 3.743252446848074*^9}, { + 3.743252478524061*^9, + 3.7432525027935467`*^9}},ExpressionUUID->"202780ab-b52d-489c-a92e-\ +1b0fd0915e99"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"a", "=", + RowBox[{ + RowBox[{"CoefficientList", "[", + RowBox[{ + RowBox[{"1.`", "\[VeryThinSpace]", "+", + RowBox[{"0.6666467666189491`", " ", "u"}], "+", + RowBox[{"0.233711497250696`", " ", + SuperscriptBox["u", "2"]}], "+", + RowBox[{"0.057892269462279114`", " ", + SuperscriptBox["u", "3"]}], "+", + RowBox[{"0.011416060718727025`", " ", + SuperscriptBox["u", "4"]}], "+", + RowBox[{"0.0019001512003665785`", " ", + SuperscriptBox["u", "5"]}], "+", + RowBox[{"0.00027454051463773074`", " ", + SuperscriptBox["u", "6"]}], "+", + RowBox[{"0.00003485368552570877`", " ", + SuperscriptBox["u", "7"]}], "+", + RowBox[{"3.909550758995941`*^-6", " ", + SuperscriptBox["u", "8"]}], "+", + RowBox[{"3.886613919337475`*^-7", " ", + SuperscriptBox["u", "9"]}], "+", + RowBox[{"3.423932142765105`*^-8", " ", + SuperscriptBox["u", "10"]}], "+", + RowBox[{"2.6560194575496133`*^-9", " ", + SuperscriptBox["u", "11"]}], "+", + RowBox[{"1.7871244353862165`*^-10", " ", + SuperscriptBox["u", "12"]}], "+", + RowBox[{"1.017581390449739`*^-11", " ", + SuperscriptBox["u", "13"]}], "+", + RowBox[{"4.734306593585661`*^-13", " ", + SuperscriptBox["u", "14"]}], "+", + RowBox[{"1.714745687814212`*^-14", " ", + SuperscriptBox["u", "15"]}], "+", + RowBox[{"4.501929931069031`*^-16", " ", + SuperscriptBox["u", "16"]}], "+", + RowBox[{"7.574161874717616`*^-18", " ", + SuperscriptBox["u", "17"]}], "+", + RowBox[{"6.100436598427603`*^-20", " ", + SuperscriptBox["u", "18"]}]}], ",", "u"}], "]"}], "//", + "N"}]}]], "Input", + CellChangeTimes->{{3.743252002666154*^9, + 3.743252003628837*^9}},ExpressionUUID->"30e5f6ef-f847-4642-bbeb-\ +30c280b77e0b"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + "1.`", ",", "0.6666467666189491`", ",", "0.233711497250696`", ",", + "0.057892269462279114`", ",", "0.011416060718727025`", ",", + "0.0019001512003665785`", ",", "0.00027454051463773074`", ",", + "0.00003485368552570877`", ",", "3.909550758995941`*^-6", ",", + "3.886613919337475`*^-7", ",", "3.423932142765105`*^-8", ",", + "2.6560194575496133`*^-9", ",", "1.7871244353862165`*^-10", ",", + "1.017581390449739`*^-11", ",", "4.734306593585661`*^-13", ",", + "1.714745687814212`*^-14", ",", "4.501929931069031`*^-16", ",", + "7.574161874717616`*^-18", ",", "6.100436598427603`*^-20"}], + "}"}]], "Output", + CellChangeTimes->{ + 3.7432520041573753`*^9},ExpressionUUID->"5e69b9d6-c0fe-4adf-b5a6-\ +d354021c664b"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Triplet P state", "Subsection", + CellChangeTimes->{{3.742903401180684*^9, 3.742903403606084*^9}, { + 3.742918347228277*^9, + 3.742918347362217*^9}},ExpressionUUID->"c866a966-62d2-4aaa-be30-\ +188e454b7735"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[CapitalPhi]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "=", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "\t", + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"]}], "=", + RowBox[{ + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Gamma]", "]"}], "]"}], "\t", + SubscriptBox["c", "\[ScriptL]"]}]}], "=", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], "2"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Gamma]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + RowBox[{"Sin", "[", "\[Gamma]", "]"}], + RowBox[{"\[DifferentialD]", "\[Gamma]"}]}]}]}]}]}]}]], "Input", + CellChangeTimes->{{3.742897993868801*^9, 3.7428981067548847`*^9}, { + 3.742898182660631*^9, + 3.742898271183833*^9}},ExpressionUUID->"5f15e614-bd85-47be-b20b-\ +e346fe08a2c7"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{ + RowBox[{"2", + RowBox[{"\[Integral]", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "=", + RowBox[{"2", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], + FractionBox[ + RowBox[{"4", "\[Pi]"}], + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}]], + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"m", "=", + RowBox[{"-", "\[ScriptL]"}]}], "\[ScriptL]"], + RowBox[{ + RowBox[{ + SubsuperscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}], "*"], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}]}]}]}]}]}]}]], "Input",\ + + CellChangeTimes->{{3.742898286664424*^9, + 3.7428983914044456`*^9}},ExpressionUUID->"95762630-81b3-4910-890e-\ +f8cbb4b3594c"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}], "=", + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}]}], ")"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t\t\t\t\t ", + RowBox[{"=", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "0"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "0"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "1"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "2"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "0"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}]}]}]}]}], "Input", + CellChangeTimes->{{3.742898559305214*^9, 3.7428985732593737`*^9}, { + 3.7428986183390417`*^9, 3.742898668556341*^9}, {3.742898891156012*^9, + 3.7428989301880617`*^9}, {3.7428993174640627`*^9, 3.742899416229143*^9}, { + 3.7428994864779387`*^9, + 3.742899491064481*^9}},ExpressionUUID->"d65bd25c-ca2f-407d-9b79-\ +7092dc14020a"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Simplify", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "-", + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ")"}], "2"], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox[ + SqrtBox["5"], "2"]}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}]}], "//", + "Simplify"}]}], "Input", + CellChangeTimes->{{3.742880368692409*^9, 3.7428804029481373`*^9}, { + 3.742880525109131*^9, 3.7428805458700542`*^9}, {3.742898467130229*^9, + 3.7428985242579517`*^9}, {3.7428992114127827`*^9, 3.742899287783554*^9}, { + 3.7429000811947393`*^9, 3.742900096336309*^9}, {3.7429001529365797`*^9, + 3.742900153845666*^9}, {3.7429004278822927`*^9, + 3.742900428277691*^9}},ExpressionUUID->"86c4c204-12d5-4cc4-91f3-\ +4ef38f2f1176"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742880543408547*^9, 3.742880546332151*^9}, { + 3.7428984748725023`*^9, 3.742898524985319*^9}, 3.742899228848856*^9, { + 3.7428992728911753`*^9, 3.742899296001245*^9}, {3.742900084424329*^9, + 3.74290010643225*^9}, 3.7429001543651667`*^9, 3.7429004286643667`*^9, + 3.742903530777356*^9},ExpressionUUID->"a2be3453-5dee-4d23-b728-\ +7cbc223eac21"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742880543408547*^9, 3.742880546332151*^9}, { + 3.7428984748725023`*^9, 3.742898524985319*^9}, 3.742899228848856*^9, { + 3.7428992728911753`*^9, 3.742899296001245*^9}, {3.742900084424329*^9, + 3.74290010643225*^9}, 3.7429001543651667`*^9, 3.7429004286643667`*^9, + 3.7429035307907057`*^9},ExpressionUUID->"f9680827-b5a0-43a4-8fce-\ +6d063ed22fc4"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + "2"]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t ", + RowBox[{"=", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}]}], + ")"}]}]}]}]}], "Input",ExpressionUUID->"ffcbeb9c-6e95-4df6-bb5b-\ +328b41b21992"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], " ", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[Phi]", "1"]}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[Theta]", "1"]}]}]}]}], "\[Equal]", "2"}], "//", + "Simplify"}], ",", + SubscriptBox["c", "0"]}], "]"}], "//", "Expand"}]], "Input", + CellChangeTimes->{{3.819446495654708*^9, 3.819446561481535*^9}, { + 3.81944724019627*^9, 3.819447254727998*^9}, 3.8194477371302137`*^9, + 3.8194478701360197`*^9}, + CellLabel-> + "In[164]:=",ExpressionUUID->"61ee86cb-074d-4ac7-9f61-c1c6b64052ea"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.819446505179634*^9, 3.8194465617697144`*^9}, { + 3.819447239126412*^9, 3.819447255055852*^9}, 3.819447737776888*^9, + 3.8194478707360773`*^9}, + CellLabel-> + "Out[164]=",ExpressionUUID->"c480bc7f-ce40-4eee-b55d-3f73c76d3e72"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ",", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}]}], "}"}], "/.", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}]}], "//", "Expand"}]], "Input", + CellChangeTimes->{{3.8194472635719957`*^9, 3.819447281067357*^9}, { + 3.819447733328557*^9, 3.819447750959692*^9}, 3.819447876940724*^9}, + CellLabel-> + "In[165]:=",ExpressionUUID->"b6e55c8f-0333-4b09-aed9-bd0241fab7b8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "-", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ",", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}]}], "}"}]], "Output", + CellChangeTimes->{{3.81944726401453*^9, 3.81944728132707*^9}, { + 3.819447747220999*^9, 3.819447751318356*^9}, 3.819447877777974*^9}, + CellLabel-> + "Out[165]=",ExpressionUUID->"dacdb030-75e3-4580-b198-bc005365a6e5"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "1"]}]}]}], "=", + RowBox[{ + RowBox[{"2", "\t", "\[Implies]", "\t", + SubscriptBox["c", "0"]}], "=", + RowBox[{ + RowBox[{ + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"]}], "\t", "\[Implies]", "\t", + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}]}], "=", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "-", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}]}], + ")"}]}]}]}]}]], "Input", + CellChangeTimes->{{3.74290046592192*^9, 3.742900508615451*^9}, { + 3.7429008186008587`*^9, 3.742900822411848*^9}, {3.742901066474793*^9, + 3.7429010697015457`*^9}, {3.819447915116123*^9, + 3.81944792204714*^9}},ExpressionUUID->"db51f6a7-4690-40c2-af32-\ +a6f7eab9b126"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"2", "-", + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "=", + RowBox[{"0", "\t", "\[Implies]", "\t", + RowBox[{ + SubscriptBox["c", "2"], "\[Equal]", + RowBox[{ + RowBox[{"5", + SubscriptBox["c", "0"]}], "-", "10"}]}]}]}]], "Input", + CellChangeTimes->{{3.74290109712473*^9, + 3.742901159497686*^9}},ExpressionUUID->"67e833cb-794e-46bf-aaaa-\ +f7fedec74084"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "\[Equal]", "0"}], ",", + SubscriptBox["c", "2"]}], "]"}]], "Input", + CellChangeTimes->{{3.7430170306628857`*^9, + 3.743017043403906*^9}},ExpressionUUID->"3ade0751-2e40-483d-aa9f-\ +7c6decd096ba"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + SubscriptBox["c", "2"], "\[Rule]", + RowBox[{"5", " ", + SubscriptBox["c", "0"]}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.743017034124732*^9, + 3.743017043739946*^9}},ExpressionUUID->"e43011ca-1485-4c14-8ef5-\ +e3e5c2853e54"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "\[Equal]", "0"}], "/.", + RowBox[{ + SubscriptBox["c", "2"], "\[Rule]", + RowBox[{"5", " ", + SubscriptBox["c", "0"]}]}]}], ",", + SubscriptBox["c", "1"]}], "]"}]], "Input", + CellChangeTimes->{{3.743017049528429*^9, + 3.743017086151045*^9}},ExpressionUUID->"1f77c8a4-02f2-4a43-9353-\ +2c6dc0e607c1"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + SubscriptBox["c", "1"], "\[Rule]", + RowBox[{"3", " ", + SubscriptBox["c", "0"]}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{{3.7430170526953163`*^9, + 3.743017086756802*^9}},ExpressionUUID->"8b84c089-d48f-4520-a0df-\ +2c902ca82399"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n_"], "[", "u_", "]"}], "=", + SuperscriptBox["u", + RowBox[{"n", "-", "1"}]]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"M", "=", "20"}], ",", + RowBox[{"d", "=", "2"}]}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"H", "[", "R_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "R"}]], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "u", "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox["u", "2"], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", "1"}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[DoublePrime]"], "[", "u", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", "d"}], "+", "1"}], ")"}], "u"}], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", + FractionBox[ + RowBox[{"d", "+", "1"}], "u"]}], ")"}], " ", + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[Prime]"], "[", "u", "]"}]}], + "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["1", "u"], "+", + FractionBox["d", + RowBox[{"2", + SuperscriptBox["R", "2"]}]]}], ")"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "u", "]"}]}]}], ")"}], + SuperscriptBox[ + RowBox[{"(", + FractionBox["u", "R"], ")"}], + RowBox[{"d", "-", "1"}]], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox[ + RowBox[{"(", + FractionBox["u", + RowBox[{"2", "R"}]], ")"}], "2"]}], ")"}], + FractionBox[ + RowBox[{"d", "-", "2"}], "2"]], + RowBox[{"\[DifferentialD]", "u"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"S", "[", "R_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "R"}]], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "u", "]"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "u", "]"}], + SuperscriptBox[ + RowBox[{"(", + FractionBox["u", "R"], ")"}], + RowBox[{"d", "-", "1"}]], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"1", "-", + SuperscriptBox[ + RowBox[{"(", + FractionBox["u", + RowBox[{"2", "R"}]], ")"}], "2"]}], ")"}], + FractionBox[ + RowBox[{"d", "-", "2"}], "2"]], + RowBox[{"\[DifferentialD]", "u"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "M"}], "}"}]}], "]"}]}], ";"}]}], + "\[IndentingNewLine]", "]"}], ";"}]}], "Input", + CellChangeTimes->{{3.742918604620111*^9, 3.7429186131351423`*^9}, + 3.742918719955948*^9, {3.74291885295679*^9, 3.742918854648775*^9}, + 3.742922362967875*^9, 3.742980439148241*^9, 3.742980540306929*^9, { + 3.742994989188118*^9, 3.742995016518692*^9}, {3.742995150772037*^9, + 3.7429951513978567`*^9}, 3.7429952985264072`*^9, {3.74299538074587*^9, + 3.7429953808123302`*^9}, {3.742996132486848*^9, 3.7429961349036427`*^9}, + 3.7429963078815823`*^9, {3.742996660743409*^9, 3.742996660843338*^9}, { + 3.742996945034573*^9, 3.742996945161457*^9}, 3.7430081967857656`*^9, + 3.743009059579871*^9, 3.743009234820531*^9, 3.743009382026333*^9, { + 3.7430094920285807`*^9, 3.74300951455619*^9}, 3.74300961041049*^9, + 3.743009666438663*^9, {3.7430098539824047`*^9, 3.743009854170718*^9}, + 3.743009922023739*^9, 3.743134546286873*^9, 3.743134666275275*^9, { + 3.74322049794233*^9, 3.7432204980603647`*^9}, {3.743247376064542*^9, + 3.743247418681962*^9}, {3.819389816415174*^9, 3.819389816573246*^9}, { + 3.819442666471469*^9, 3.819442666582307*^9}, 3.8194494164767103`*^9}, + CellLabel-> + "In[209]:=",ExpressionUUID->"fc6fe6fa-c5e9-41cb-966e-1e14dcc26ff6"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "20"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"tab3P1", "=", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "c"}], "}"}], "=", + RowBox[{"SortEigensystem", "[", + RowBox[{"Eigensystem", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"H", "[", "R", "]"}], ",", "100"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"S", "[", "R", "]"}], ",", "100"}], "]"}]}], "}"}], + "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"f", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n"], "[", + RowBox[{"2", " ", "R", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", + FractionBox["1", "2"]}], ")"}], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + ".", "f"}], ")"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\\"", ",", + RowBox[{"N", "[", "R", "]"}]}], "]"}], ";", "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", "R", "]"}], ",", + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + RowBox[{ + FractionBox["2", "3"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", + "\[RightDoubleBracket]"}]}], "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}]}]}], "]"}]}], "}"}]}], ",", + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{"-", "40"}], ",", + RowBox[{"-", "3"}], ",", "1"}], "}"}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}], ";"}]], "Input", + CellChangeTimes->{ + 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, + 3.725887922914515*^9}, {3.725887992098515*^9, 3.725888054354484*^9}, { + 3.725888190363358*^9, 3.725888220466589*^9}, {3.725888405954722*^9, + 3.7258884143609447`*^9}, {3.725888474666101*^9, 3.725888479977105*^9}, { + 3.725888867994993*^9, 3.725888870697344*^9}, {3.7258889297858877`*^9, + 3.725888934808717*^9}, {3.725888967938243*^9, 3.725889013634396*^9}, { + 3.725889098059265*^9, 3.725889127921206*^9}, {3.725948058954719*^9, + 3.7259480590574303`*^9}, 3.72594816605788*^9, {3.7259484228037577`*^9, + 3.7259484452333307`*^9}, {3.7428020644337606`*^9, + 3.7428020663834143`*^9}, {3.74280212730392*^9, 3.74280222326132*^9}, + 3.742813402384555*^9, {3.7428134755684967`*^9, 3.742813490200959*^9}, + 3.742814183560895*^9, {3.742819919975389*^9, 3.742819921001403*^9}, { + 3.7428199815500298`*^9, 3.742819983199623*^9}, {3.742877775652999*^9, + 3.7428779074014883`*^9}, {3.7428779855771227`*^9, 3.742878008161315*^9}, { + 3.7428782383972187`*^9, 3.742878269832116*^9}, {3.742878722461308*^9, + 3.7428787571128817`*^9}, {3.742878822183488*^9, 3.742878822578849*^9}, { + 3.7428788828839493`*^9, 3.7428788901191797`*^9}, {3.74287901611771*^9, + 3.742879142617798*^9}, {3.742879199059029*^9, 3.7428791995390997`*^9}, + 3.742901214891993*^9, {3.74290164400101*^9, 3.742901906207686*^9}, { + 3.742901977623595*^9, 3.742902002095676*^9}, {3.742902032247851*^9, + 3.742902129781516*^9}, {3.742902162525971*^9, 3.74290222166597*^9}, { + 3.742902276796481*^9, 3.742902287956953*^9}, {3.74290235927039*^9, + 3.7429024146277122`*^9}, {3.7429024507177353`*^9, + 3.7429025388586197`*^9}, {3.742903006310214*^9, 3.7429030105077744`*^9}, { + 3.742903134891645*^9, 3.742903234602419*^9}, {3.742903317285879*^9, + 3.7429033173754187`*^9}, {3.742903361602311*^9, 3.74290336281636*^9}, { + 3.742905076823636*^9, 3.7429050778905582`*^9}, {3.742918166486006*^9, + 3.742918220012596*^9}, {3.742918311916502*^9, 3.742918313196629*^9}, { + 3.7429183606868353`*^9, 3.742918373040654*^9}, 3.742918421383092*^9, { + 3.742918494233326*^9, 3.742918623848249*^9}, {3.74291880637696*^9, + 3.7429188584054213`*^9}, {3.742918994743949*^9, 3.742919000933652*^9}, { + 3.742919057477284*^9, 3.7429190853953876`*^9}, {3.742919151618346*^9, + 3.742919208160902*^9}, {3.742920743629745*^9, 3.742920743849949*^9}, + 3.742922144965681*^9, {3.742922177083435*^9, 3.742922183503256*^9}, + 3.742922225061594*^9, 3.742922262893311*^9, {3.742922314745081*^9, + 3.7429223742620287`*^9}, {3.74292246647335*^9, 3.742922597303072*^9}, { + 3.742922649922433*^9, 3.7429226518828707`*^9}, {3.742923296115052*^9, + 3.742923318322493*^9}, {3.742980141599243*^9, 3.74298028080587*^9}, { + 3.742980310806139*^9, 3.7429803255358543`*^9}, {3.742980357754479*^9, + 3.742980398957408*^9}, {3.7429804420837727`*^9, 3.7429804467641287`*^9}, { + 3.742980541432966*^9, 3.742980548122097*^9}, {3.742980578285955*^9, + 3.742980578400919*^9}, {3.7429806326930037`*^9, 3.742980650442853*^9}, { + 3.742980694195736*^9, 3.742980749099784*^9}, {3.742981142831009*^9, + 3.742981146671338*^9}, {3.742995040906142*^9, 3.7429950736953487`*^9}, { + 3.742995103988391*^9, 3.742995134262944*^9}, {3.742995247787807*^9, + 3.742995324266892*^9}, {3.742995360656518*^9, 3.742995384384591*^9}, { + 3.7429954237133417`*^9, 3.742995433990855*^9}, {3.74299547198099*^9, + 3.742995484920415*^9}, {3.742995760731353*^9, 3.7429957673259373`*^9}, { + 3.742995847653798*^9, 3.7429958543557777`*^9}, {3.7429960931764708`*^9, + 3.742996100192951*^9}, {3.742996300021468*^9, 3.742996312749928*^9}, { + 3.742996623983343*^9, 3.742996683485918*^9}, {3.742996763260223*^9, + 3.7429967667513227`*^9}, {3.742996823435986*^9, 3.742996947881322*^9}, { + 3.7429969858904467`*^9, 3.7429969890918093`*^9}, {3.742997154797719*^9, + 3.742997179630937*^9}, {3.742997221183319*^9, 3.7429972234251423`*^9}, { + 3.742997256190982*^9, 3.742997295285985*^9}, {3.742997325738884*^9, + 3.7429973513749123`*^9}, {3.74299738735357*^9, 3.7429974112679663`*^9}, { + 3.742997461552939*^9, 3.7429974669219646`*^9}, {3.743008210683326*^9, + 3.743008225538146*^9}, 3.743009057265111*^9, {3.743009239073036*^9, + 3.7430092656499767`*^9}, {3.743009361125576*^9, 3.743009373039097*^9}, { + 3.7430094955856752`*^9, 3.7430095437002373`*^9}, {3.7430096137618933`*^9, + 3.743009669733102*^9}, {3.743009863885*^9, 3.7430099872406483`*^9}, { + 3.743010046219955*^9, 3.743010048241816*^9}, {3.7430103170795507`*^9, + 3.743010344854659*^9}, {3.743011088494897*^9, 3.7430111264389553`*^9}, { + 3.7430111611489353`*^9, 3.743011161959427*^9}, {3.743017152694162*^9, + 3.743017214293683*^9}, {3.7430172717293787`*^9, 3.74301731611399*^9}, { + 3.743050381548286*^9, 3.7430504265925217`*^9}, {3.743050459093212*^9, + 3.743050513236857*^9}, {3.743058479430113*^9, 3.743058512638873*^9}, { + 3.7430585676431007`*^9, 3.743058581876259*^9}, 3.743058631064424*^9, { + 3.7430936684137993`*^9, 3.743093679241973*^9}, {3.743093711275429*^9, + 3.7430937413274803`*^9}, {3.743093773814063*^9, 3.743093775701182*^9}, { + 3.7430940895099916`*^9, 3.743094095858829*^9}, 3.743134557856875*^9, { + 3.743134593968667*^9, 3.743134730681005*^9}, {3.743136067507962*^9, + 3.7431360880238857`*^9}, {3.7432205013549223`*^9, 3.743220521207345*^9}, { + 3.743247446515685*^9, 3.743247452091736*^9}, {3.81938878253341*^9, + 3.8193888149384604`*^9}, {3.819388952172921*^9, 3.8193889550278263`*^9}, { + 3.819389430387745*^9, 3.819389449928714*^9}, {3.819389485687158*^9, + 3.819389516461465*^9}, {3.819389574545333*^9, 3.8193896633216057`*^9}, { + 3.819389758305996*^9, 3.8193897593540983`*^9}, {3.819389823211083*^9, + 3.819389823319272*^9}, {3.819389853860545*^9, 3.819389856569173*^9}, { + 3.819389961728573*^9, 3.819389999750451*^9}, {3.81939004776691*^9, + 3.81939005503032*^9}, {3.819390159953825*^9, 3.819390160748537*^9}, { + 3.8193901910509577`*^9, 3.8193901969896383`*^9}, {3.819391170163006*^9, + 3.819391214528372*^9}, {3.819391250405773*^9, 3.819391260125876*^9}, { + 3.8193912988176937`*^9, 3.819391332996833*^9}, {3.8194426706069717`*^9, + 3.8194428979408407`*^9}, {3.819442934469702*^9, 3.81944304819543*^9}, { + 3.819443082201737*^9, 3.8194431628107367`*^9}, {3.819443307914974*^9, + 3.819443316858253*^9}, 3.819448958104372*^9, {3.819448994463859*^9, + 3.819448998831089*^9}, {3.819449054543648*^9, 3.8194490546304207`*^9}, + 3.819449404157199*^9, {3.819449509900063*^9, 3.819449512165042*^9}, { + 3.819449628315366*^9, 3.81944963056225*^9}, {3.8194496808111143`*^9, + 3.8194496827632837`*^9}, {3.819449715306533*^9, 3.819449732873859*^9}, + 3.819449787993197*^9, {3.819449843713666*^9, 3.8194498450264606`*^9}, { + 3.8194498825129747`*^9, 3.819449885786566*^9}}, + CellLabel-> + "In[235]:=",ExpressionUUID->"a06ef68f-50cc-4e7f-bfb8-5863cadce9e2"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Show", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"ListPlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"tab3P1", ",", "tab3P2", ",", "tab3P3"}], "}"}], ",", + RowBox[{"ImageSize", "\[Rule]", "500"}], ",", + RowBox[{"Joined", "\[Rule]", "True"}], ",", + RowBox[{"InterpolationOrder", "\[Rule]", "2"}], ",", + RowBox[{"PlotRange", "\[Rule]", + RowBox[{"{", + RowBox[{"All", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.00135"}], ",", "0.001"}], "}"}]}], "}"}]}], ",", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"AxesStyle", "\[Rule]", "Thick"}], ",", + RowBox[{"BaseStyle", "\[Rule]", "16"}], ",", + RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",", + RowBox[{"AxesStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", "Thick"}], "]"}]}], ",", + RowBox[{"FrameStyle", "\[Rule]", + RowBox[{"Directive", "[", + RowBox[{"Black", ",", "Thick"}], "]"}]}], ",", + RowBox[{"FrameLabel", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"MaTeX", "[", + RowBox[{"\"\\"", ",", + RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}], ",", + RowBox[{"MaTeX", "[", + RowBox[{ + "\"\\"", ",", + RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}]}], "}"}]}], ",", + RowBox[{"PlotLegends", "\[Rule]", + RowBox[{"Placed", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"MaTeX", "[", + RowBox[{"\"\<\\\\text{$^3P$ ground state}\>\"", ",", + RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}], ",", + RowBox[{"MaTeX", "[", + RowBox[{"\"\<\\\\text{$^3P$ first excited state}\>\"", ",", + RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}], ",", + RowBox[{"MaTeX", "[", + RowBox[{"\"\<\\\\text{$^3P$ second excited state}\>\"", ",", + RowBox[{"FontSize", "\[Rule]", "16"}]}], "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"Left", ",", "Bottom"}], "}"}]}], "]"}]}]}], "]"}], + "\[IndentingNewLine]", ",", "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "5.3257"}], ",", "0"}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "15.9"}], ",", "0"}], "}"}], "}"}], ",", + RowBox[{"{", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "30.9"}], ",", "0"}], "}"}], "}"}]}], "}"}], ",", + RowBox[{"PlotTheme", "\[Rule]", "\"\\""}], ",", + RowBox[{"PlotMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{"Automatic", ",", "Medium"}], "}"}]}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], "]"}]], "Input", + CellChangeTimes->{{3.819443319521805*^9, 3.8194433371857653`*^9}, { + 3.8194490088634768`*^9, 3.81944901751068*^9}, {3.8194490484098167`*^9, + 3.819449063777493*^9}, {3.8194495281320133`*^9, 3.8194496659140577`*^9}, { + 3.81944970029033*^9, 3.819449701185473*^9}, {3.819449747193801*^9, + 3.81944975896939*^9}, {3.819449850553174*^9, 3.819450040091752*^9}, { + 3.8194500785122967`*^9, 3.8194501963871927`*^9}}, + CellLabel-> + "In[253]:=",ExpressionUUID->"6619aa61-41df-4561-afa2-5b697e931325"], + +Cell[BoxData[ + TagBox[ + GraphicsBox[{{{{}, {{}, {}, + {RGBColor[0.9, 0.36, 0.054], PointSize[0.009166666666666668], + AbsoluteThickness[1.6], CapForm["Butt"], LineBox[CompressedData[" +1:eJwtmnc8VX8YxyVklWTP7Gu7l2te4w4UZWSUttFSGgppSTvtklLRkNIukoZ8 +v49SZmTvTcslo4yE3znnl396nde93+/5fp7383me55ybZvBWn7WCAgICZ6YL +CJD/TlF/PJCaZ5Rgtr4AbZwd4T9tggcDj93neEQVoCetqW2FYzyQ6A2mxx0t +QEWbL9xaOsyD5UIRPzsvFyD8xj7x2SAPOob2ea18UIBOfrydV9rHg+vZsd6/ +cwoQ43y+XuYPHsQv3zv4sKIAPVW+hwK/8ABVbrM88K0AiYS4nKpq54GGziql +yKkCZLnxxlmpZh68Wuh8/ZhCIXKgZxVI1/HgmId23it6IVJ9EWfdWMGD03rj +J0QXFKKaUaWmTZ94UFRbPBi1rhCtG1+X9T6fB/ZBCePTDxWi+p5ccaF3PGi8 +Vz5N5WYhMh/bo+b5lgfJF/8E0XIKUaR2Qt+tLB7E6sxWNWgoRDc3zoyZesaD +IwFz6BojhSiztKt43UMePKJPuy4pW4SeeanU1d7hwa9HTWv76EUoofdZis9N +HgR9Sj32waMIBd27Y1R7lQe955dOv7CxCMnHjm1fm0Dc78+fOt9jRSgz4lH0 +xFkebJ4RJyqRWoRYR5H9jRPE+lfTL7yEInQ/0wy7H+FB5MxNkUubi5AA+RfL +g4ciOKN/rAixN5hNod08mJ465bZPvhit7815eyySBzHdxqwp82IUffahzbJt +PFApdj0a5VWMtnuObrfaxIN6Pw+jzk3FyNcwdZPqOh68Ocg2dDlejNS0n2pJ +BhE8/DQOJaUWozIbpUThFTxoK+JbfoditHFTR7HoEh7Quu9wjZqLUe8bcSTn +Q8T/9oL7wWPFaBntwhZjDx4oibSEnpUrQU+eRTcvnM+DPMmVh9MZJejHYiS+ +k8eDiy8LRgs8StBs5ZDhB448OCSimV8dWoIOvmD1dNjyIP2W+I1fR0rQoy5V +ppIlDxwYhnRuSgk6niZS7kHngd6L/bsRKkEqk6O5sUZE/EwkYkIbS1DgtyGR +DD0ezLxaYscbLUEr143caNckrsffP1sg9wnNjJ5+WkqNBxu8B1oPmn9C29UU +S1mKPNC66lfwzesTOrnYMmSdDA+s6npD923+hJZqL194dhYP0sRz8tgnP6Gm +Q3FxWWI8iGK8qzO//wnJRoNykxAPUhZO3PHN/4SmUYB4YLRii/Ht7k/olsp8 +W61xLswOlAvTFCpFI0WJH7nDXPAOGFxTqlWKBGcNpgUNcOGns7DCA04pyu3y +bY7hc+GHrufBzMBSZOmF1l39ygXeeMnd3v2laJUHwzmzgwvDeQcO+98oRfat +jyJLmrkgfihMhY9KUakQY7yjjgs7LU9vSm8pRXIop2qkkljf1BlxZ7IUSUv4 +CkqUcWHTzm3WBeplKLen/5BqEXF/EYvnSk5lSC/w8lLjD1woO2H07crqMiK/ +XA/ZARdmTV9WMz+2DKVsezY+L5sL19xag3RvlaHW7mM5/llc2GzTtMX0XRka +zS8pCEnnQmyZ90RIZxn6Lr9fbfsjLmw8dl0kRPAzelVBVII0Ltjs8fYylPmM +QsaNbp9N4YIeD9XN0PmMvpzTq7qezAVm69eUceZnND/+jOeTRC6s8/r0WNj1 +MzoouGYOiufC6/gtY7pLPqOrLXfnlp7hgvGj4iMrNnxGJ2lLolriuPAuscvn +/q7PaElzhPzPw1yIXvo6UPLk53/+IeLf5/b0SBKx39lRc+k9XHBbcslR7sln +1H5y1VOtKC6suXh9Vjb+jJR/MyKZ4Vy4eSd47s7yz8isePth1zAuTJ3o2ObW ++Rmpz9JsDljPhRhn9enmvz+j7zn2+zcFc0G9Qq6GPqMcnWv4sDFmJRfaLQq/ +uyiVI+k1b2+cD+BCXqiNY7hROdqyTEP9ji8XinaEVGY4lKM7OQPdrzwJHovc +74t7l6OXp+kjJW5csBbqxdHB5ehuUdOidmfiPCcWKExElKOtEcO/fztxwah7 +7dPLx8qRnfPuV+IsLhSMf+5xv1qOTIbWbJlrRcQ/S5Ou9LgczT+QpcBkcEFK +LmCvIJSjU31bMucbc+GNQsRnkcpyNGp3xnkljQuhKNJY70s5OrlOtiBciwsq +YivPBY4R68OnOR1V40LFiMHfF5IVyHS5//2rilw4faJpq55GBbLTmT3jqQwX +PHMjetItKtDWEkbA+1lE/icNbgmYV4FKfN8k1YpxoVZ58R+l5RXI5839qh4h +LqQ63Dg9vKXifz4CXIgQKtXvO1iBqnVy1GXHOTB/a0exwOUKVKnfTtcf5oBG +TFOU6cMK9EcizMp+gAOT9LcGO3EFcitdaebN50DrsQNdDZUVCLZmqaz5yoH3 +B43Tln6rQIH9keM7OzjwWDMnfOhvBdLzTio92cyBq2ssnO9JVyL5swYJN+o4 +cGrBWfVovUpk+ljN63klBw7WfBYIYVWirQ+i/34s5cA+4dEfG7wrUe1Ru+SG +Qg7srRNqjltbiTZwQxh9eRyI8Rqp+bC7Emk0D76aBhw4vLGsTvVcJToW786S +y+ZA5LT7TufvVCLNlGKsn8UBJv/GBt3sStQnGuVqn84BMMz0rf9ciX7mu5V5 +PeKAUk63wOMvlUi71XVZSBoH2LeZ227+rUQnPDd/jUrhgFXzzVvP51QhPfmc +qBPJHBjfaJjwRb8K/ba0Er2eyIEzC8vdbZ2q0PDjumvp8RzoPZDw7qF/FTKK +SWV8OMMBFYmdfx3CqlD83SuFdXEcUPgWOfrzYBWi016F8A9zoE3xQlbulap/ +/uHAruRiq+fPqpAgI/y6zB4OtERq7crLr0I2byScaFEckEm5tO93SxVKuVbW +bhfOAVktfWfX4SrkWP32qGcYB7p+15RkzaxGs9dXmgSv58AhtdsK83Srkcwi +mdrIYA70JZ7SGbGvRu7xew/GreSA/ob4oY9+1SjLRIqeHMAB85MvD2eFVSMf +jeLWZ74cEBEcq/1wuBrpbHp2Ps+TAw9LlvT+SqpGBrOwS50bB9R7KvN4L6pR +sNjIeI8zB1at3Lwq41M1KlkRkDnlxIFN2jpv2F+qkXbX9c0yLA4s+alRNjBZ +jdT3HNWjWXGAsePUxQKFGpStKdVqx+DA8JN14h/oNehvrc1lT2MO3E95Sv/q +VoPak6d7BdM44Oa5foZZSA0K3bFVJEqLA5Xpp88k7a1BCQF7c+LUOOD5Seuj +2aUaFOJhGJGsyIGsm3pPvj2tQTWLdhmmy3BAzPiKa35hDepZG9qWN4sDC7bu +PlvcWYNS4/4k1IlxYOfGouO/J2rQtBzjBXwhDlxUizN3Uaz95x8OXDuedeqN +eS1K9YnIlBlnw/mHPpf9PWrRj8y4DbRhNmw/utJHfkMtqtZjq7IG2MBTqs35 +e7AWBd+7XObJZ8NECK4XvV6L4m3PHQz+yoZ76+Tv2r2uRRsaDCyjOthgr9mk +daGqFrWcWPM1rpkNED/bW6q/Fv1xZ19JrmMDHT03yZCoQ6+Vc9zTK9lw5uaH +7N20OqT8p2E8r5QNdXaufzbw6pDG9yuP6grZMPu05fe9q+tQ4dexFfw8NjAv +xx/P2lOH5Ib/SAoAG1yWBtbJJdYhs/SqtzLZbBA6PRBxPbMOcbNQGC2LDfr8 +pD++5XVogfBrVVY6G15FBYda9dUhj+vvSzwfseGxMTfXRaKeqH8te4PT2CA9 +y17woH49Yj0RM4lKYUOjsrdxj0s90tF1aY5LZsMs3xinAyH1SPTLudPJiWx4 +mPWR5XygHnX28x3S49mQ7mKgybxRj7JclvblnWGDhsDdn9459ehAV/X1ujg2 +jHbbp11trEcun4K9+IfZYDfSO0/6T/0//7Chy+J1eaZiA3q+9/EzmT1sGLt2 +3fmIdQNazdsURItiQ4TZ9ZsHFzcgQT/bOaxwNqzoe9n9KLIB3Xii8N4zjA0P +6npkhBIakLmvSETwejaE9NkaHc9sQJgjrBsVzIZDZilGtlUNyHm3bE3cSiK+ +STpyCr8aEPy1OJYcQMSPmftVU7YRMQtDbNJ92RA4svP2UmYjSmm9/T3Pk4jn +l/nzkV8jEmH/ulrnxobFAswar8hGFPzDbyHfmQ19LrYesy41olctHyamnNjQ +nxXweCyrEXlecHgqw2JDxW7tDfJ1jSh8d0YgzYoNkq8Nf24Ya0Qal3XmsBhs +uBm+hTug3ISWf4t/72nMhrjUvqCn9k1Ic4tAZDCNDZ8WPfS4vaoJ7dDfqBel +xYa1u1KFP8U2IR+F8to4NTYsV2mIM77dhN7aWcYlK7LhjvXChtwPTSjjwiW7 +dBk2uJb+GT71rQkx5/7uyZvFBk5rd+tpiWbEafNOrhNjQ/zGmQl5ps2osfq+ +J1+IDext4fIMn+Z//iGu+6XXVEY2ozU5d4Npw06Q9KNv38Mrzai1c94HT74T +eK4WXfM6pxlt29FJi+pwggDPVfIT7c1IJWzXieQ6J8h52X8xSqQFtXwS680r +dYLoa7hV16gFZSVe9OLnOcGpsaJhce8WdK9EKUMm2wmGy+c06Ea2oKehV2RZ +6U7wRudyXNTVFvR5q8zO4DQnqBpYIjyBW5BY67H6uGQncLP193jd3YKWvRxm +pcc7gcz4maCHEq3o3ehqIv+cgGktzK1ktCLu7fdEvjlBRu/LPnpAK5Ka0Amh +RTlB2S/7r4UxrWjFwmMfPMOcoFHL8OHtO63I6PwPWlSwE9Ts3G+HSlrR3mLP +E8kBTgBD9glKv1rRgvHn/DxP4v4L0psbZrah6xrKXnxnJzCkRy8u1GxD4awD +6TIsJzikP8Sss2xDBQu+y7AYTuDD1No1w534/iKfqGCaE1z2FdZesqoNDS98 +Wxen5gR+R5PM87e3oVIHGitdxgmOl3xNW3KsDenrxBO8nICh9/WgaFIbEqT4 +EPvFX31f/6wNBZZvJvg4wg8ZwY3FH9qQfWJTniffEf6kqUU1N7ShJL+FBB9H +iPXq/SrV34b2iuTEJdc5wl7xcBws3I5aHpvy80odob/u3t9q5XYE7rc8+XmO +UP/m4o1QejvSaZZNl8l2BLtnzHtqru1IfG2cDCvdEaRfH5cfXN6OtnVMRgan +OcLq6nM/voS3oyX+kXVxyY6gJ+yh8/dYO8rN4dulxxOfz895z7jeju6rrE2u +i3OEOTfaC45ltiP5rS1TU/sdgSX2xmKyqB1Z6AcE06Ic4Qu7fltieztivCzP +8wxzBAWBCv7S0XYkpbqA4OMIFa6paVypDvRpcV5ccoAjyMl53/LR60Bb1jsQ +fByhbWN1fZxDB+J7ZHnynR3Bcj5z0Te/DuQlbkbwcQSZx2EztoR1oPNJaQQf +R9h5Jeav8uEO9EJIg+DjCOtnbqT/vNaBsriJBB9HaBY1u/3jeQe6ung2wccR +Wk5+8ptZ0oEC2ccJPo6w9pKLy5Kujn/+cST4X44o+NuBjibsJPg4gDr3XUeg +XCf6KfCT4OMA7M6PZzVMO5EVdx3BxwH4Enf2zJjXiYKWEuW3zgE03q64KxfY +iTa6+hF8HKBpqFdqwa5O5CdWTPBxAM3nAa/SLnQijRQOwccB+saSbhg96kTF +s18RfBzAueDNh5oPnSjA3zQqOM0BtNUzDO+3dqKCrakEHwc4NX6wNGWsE8kH +KhP+cYCYQJP09zJdyFXvHMHHAX4vTK+QMO1Cfu+ECf84wCjMstgzvwsNLdxD +8HGANf2H1eRDulBhSz/BxwF0pHyb2/Z1oeadhJ5gBzBX27W9MbEL6Ss2EXwc +IF55pEk4sws9wYsIPg7AnfFJNbCsC23ekk/wIePxh/HjRxfaoONA8HGAc09i +VVNFulFSewbBxwEYoauaTmt1I4m7+gQfB9CSuRie5tiNMsMJu6s5QMgjzab+ +Zd3oojNRPmQcYIg5Q3Xjzm6UoU6UIzEHqHvkzJC52P3v+dQB1GQbVPjPutGF +b0S5HbaHlI35jb8+daOVdT0EH3uIfCYZbtLTjYLLiHbUYQ+Xu+83Joh+Qbc+ +1RJ87EFS/IaKqd4XpFLpQfCxhzI1Pn2Y9wWVtb4n+NhDp8Z5lb6gL+jtkC3B +xx7my5xplIv9gjpnPSP42MPkr45tm69/Qc4MPYKPPQh+PNv46+0X1LEsieBj +D4uPXlR51PgFvTw5h+BjDxOWA/T4P1/Qx/dEvsXZw2DVHZUHSl/R7OlThH/s +wTYko7Hf5ita6kLoibKH0FvXmsMCvqKQo4SeMHtQ8v5yWjv6K2J8JPQE24P3 +1gt82cSv6L0QcbsAexCaujHGfvUVyXKJ43vaA2tq1ou0uq/EfEyEw9kehre2 +qruNfUWCr4n2wrIH5iJpa13lbyhpkNDDsIehlNQJFusb+mNIbE+zB/O1V7af +XvENKQUTx1Wzh9+XfyYoxXxDfy8T8mXswZ6Vtr7txjd0q4QIpxhxfy/42p77 +7Z9/7GFtpZ28etc3ZGhObDfMAkaB/NBFke9IPoQ4Hp8FMSZ+Ma4G39HHC4Tc +DhZ4Th96ab7wO7LNJfTUsSDFbejG0q3fUVgfoaeUBVEC/lbZF76jEGWifeWx +oISmuGdJ1nek5kIcJ5sFqdh+i2nDd5S4hZCXzoKp/HdS7MnvqO4SoSeNBW3s +B6tPaf1A9TmEnmQWOBgOrZSZ9wMldRJfj2eBxuFk8epNP5C2KJFvcSw46Hl/ +bfm5H2ijETnvsCA0Tn6raNYPRPck9ESx4GvR8lkHGn8g43BCTxgLpO//NORO +60GrLxIfB7Pgh3ZF3gJaD8p/SfJhwWbW9KZkjx60vpHkw4LrPw9us4noQQ5T +JB8W7GUvOqhyrQe5aRN6WCyYYbpFet67HnRyHnHJYIHTq3q17O89SDiM5MMC +vdb4tJ3SfPSctLsaC16lJD3Za8tHV1+QfFjwS/CXeVEQH2U1kHxY0DV1hRl4 +gv/PPyxIvHLmueNzPjqpS/Kxg/ay8qdrm/jIfQHJxw5qUkIMqoV7ESec5GMH +O+c4a5w260WbL5N87OC9+o6Lp5f2os85JB87eJvff6TmUC/a2EUsz7ODkJk5 +v9Y/6UV2EiQfO8j6WdvGqe9FbHOSD3G9heO+RqgPxSwl+dhB8IkxeplZH+qP +JfkQ+3EFEg4u70NJ90g+dvDxsn9UzLE+tOczcfs4O9gTN1b17nkfujhK+scO +GhT4z7za+hCQ5T/KDh6/3v3FZOZP1D2f5GMHD7sHF62z+4mmtpF87KDjmt/Q +6PqfaPYVko8dzG+6UdSd8BMp5ZJ8iM/vVtUa5/1Eit9JPsT68UHl0sGfaJY0 +GV478N08Udg1ux+N2ZB87OC7ZtSts/r9qCmQ5GMHV651xq9n96MXpN3VCH0N +LrfCAvrREbJ8yNgBryWp8Pq2fuRBhlPMDhzTvklOHu//x4f4vqXBphO3iPXk +dsO2cO74qi7em34U5EXysYXKm8ejDSv7keBOko8tWMSk0Rz5/ejqdXJDW7iv +kT0QIzyA9D+SfGzB7vj7Gr76AHrcS/Kxhe5MqDlmM4AM5Eg+tpB2N2PAy2cA +Xbcn+dhC7MorNJewASS0huRjC9H1EdHrjw6gtSdJPsTnyi5dWTcHUHYGyccW +7mmIb7LIHkCiZL7F2cKXnveSzdUDyIMUFGsL9nu3Fz7vH0AnyfIfZQsfz/uv +zJEYRJ9IPWG2cJr/6PCU3iCaTeoJtoUrp6KddnMHkR+pJ8AWesNfnTZZNYiu +kfb3tIW9SWFblXYPog4yHM62sEQyocvh0iAyIdsHyxbCcxm9VzMGUTR5ybCF +0mxuHL1sEH0gt6fZwo7x/FeTPYNIhrS7GrE+NnePsNgQWkPKlyH0uZtVOOsN +oUyKjy30L5V++5Y39K++2ULGk/W2m4OGkD/FxwYezDd3X7x/CD0gj8e3gQ5a +eN/O5CEkSMrtsIGlC3X0KrKH0AoyfHU2oJy1YGBNwxB6ReIotQHVtV+96GND +SI5cnmcDQUtHOEzFX2g7eZxsG+i5sCd/m/UvVEmW73QbeCUd0da9+BeyJPWk +2cDH6rZT8VG/UCIZ/mQbUGnNLdl16ReaJPMt3gaemSjcTMz6hdaQt4+zgVO5 +bSL9Nb9QMflzyX4buHtVfVrsyC/EJPVE2cDyBN5Mb8XfKJnUE2YD46ff3V9v ++xuJkB8H20Ds4Ws1H5f9RpvJ2wXYQG90afzmvb9RNXl8TxuYv2l5+/Lrv5ED +xccGDizn4vPwG92mypMNPHY7ZCLV+RuJU3xsIMdS3bhKeBiFU3xs4OVcmew2 +/WFEdus4NRtImhHcwFw4jBwpPjawrlf8xOetw+g2xccGFMtnFj2PH/7HxwbK +MjZebXk5jNZRfKxh8QXNce+mYVRC8bGGD1vN+eLTRpAZxccaVBckb5bUG0EJ +FB9rWKoTvN9/wQgapfhYw8HxWM0v20bQSoqPNVz6POaLLo0gTPGxhrO3S+Rb +3o4gqnynW8P2iLFQl84RdJTiYw1sXqzHL7FR9I3iYw2DUkG5P+ijaCH59Xhr +ONNw7YN+wCh6RPGxBtnb9GVP9o8iKep5m7h/6Nz9e9JG0TaKjzXQwvsVrpaN +okqKjzUsmDASlR0dRRYUH2L/mRVe3zXG0CWKjzXMvd3Rp+Q+hkYoPtZQ+HZl +950dY2gpxccaRpbxLE4nj6Fsio813N4XX1eWP4bUKT7WUKnjWb15cAzFUnys +Ic57h8F6tT+og+JjDTkC06uz5/9BzhQfa4iwnKjdFPEH3aX4WEN6X5D5zpt/ +/vEh1hszuppL/iBqu2ErKOrb2Htj7A/6SPGxgjhLKc8cvXGkR/GxghIBdREr +v3F0guJjBSe9L8uJHxxHfRQfK/iss2ev7bNxRC3Ps4JL+wrt8lrGEVVus62g +bdlB7wcz/yKqPKRbwcO3d3J67P+iaIqPFfxKsTh4POwvospXshW8m2l8PTbp +L3Kg+FiB/MQZ6aqSv+gmxccKvm5b0XRw4u//z3OxVmAXenHylOkEWkPxsYLw +x0L3plZPoHyKjxWMC+0R/XZ+AhlRfKzg49aRua55E+g0xccKWnp39SmNTKB+ +io8VcPYLRoQYTiJfio8VDGqff6a1ahJlUXys4HujbuqSC5NIieJjBXpp4CmY +P4n2UAG1gowjQc+0/k6iVoqPFZzZKVr4ijGF2BQfK3i890Vi3voplErxsQLF +hA1zXa9P/eNjBQOgudKhegqFUHws4c/+fn1/EQFMHY9vCdoGlTGuWgKYktth +Cf2NNs+2Owrg4xQfSwhM1MypXyaAKRyllhC56vSdPTsF8P98LIFuujc04KIA +/p+PJZyb0Se6LV0Az6H4WMKVHx2H3pUK4B0UH0vg1S5r8OIL4BqKjyXEf/KX +VBSfhm0oPpZw7FOlkor+NHyV4mMJmrVVgktdp+EJqr5ZwoofAfnla6Zhqj1H +WcLFhD0Lzhyaht9RfCxBdn3Ajssp07AuxccSalf9dOzNnYap2wVYQtde9pOz +7dPwDyoAlsDNXZAbM00Qe1B8LKHNSDr6jaYgpsLLsoT8t+cquFxBTOUbwxL+ +7ij6rBAiiCMpPpYQvQhttz0siOspPpZg5x/2Ku2OIKbar4wlOO+vuhWcL4ip +di5mCdfKhk03fhfE//++zQQn18rVSGI6/p8PE7Q7Q5mrTadjKt/4TPC+++bR +wkXTMdVuO5hQdPZDwdGI6fh//zDhzI0Tx2cmTsf/+4cJCdVi/Lbs6dib4sOE +HwzekEDbdJxJ8WHCsUyr65uFhLACxYcJG1Z28fUMhPBuig8TLhgvbDX2FMJN +VMCYIK61JXL/DiFM1et44v4O7k/VrwjhFIoPE8r2t50Sx0JYhPIPE1S/0Wfx +uoXwBooPsV+Urn+VhDAupvgwQcLo3qEic2FM1etgJsQIv76iu0wYn6X4MGFE +OOBy9wFhPETxYcIm4yN7xR8IY3+KDxO+RrPdLlYI49cUHyas6ImbODgujFUo +PkyoPxR0pUZHBO+n+DBhETdf9aynCP7fP0z4pJd97FG0COZQfJiwkOHQYHpb +BP9f35hQEOQhK18qgv/3DxPWvOqxDB4Twf/XNwvoYio6yejOwNT4wreAoNoK +M4NFM/75h/j8hopo6r4Z//xjAYFnBvMPPZiBeyg+FvAlZcnWgtoZ/+dbngWs +aXafDBcWxU8oPhbww6EkItZC9J9/LCAsr7FiKEj0n38sYGjbLsWSc6K4iuJj +ARG8Oy5iIIqtKT4WMMlavezhT1GcSPGxgNhlaYsz5orhP5R/LEDyxj47dW8x +vIw6sAU0LUsunIoVw1TBDbMAZmtu/voMMaxJ8bEAReMe5uIuMXyQ4mMBJzlK +0sXy4rib4mMBZ+cuXPHRTRy7U3wsQOHjIfn5+8TxY4qPBRhZgpN3ujiWovhY +QEPYtLqWbnEcQQXUAkQ2z2sdUpb45x8LwJYX/M96S/yfbzLEefPb7dKPSvyf +b2JEfDWszi7NkfjHh4gP76zP8V8S+P/5wBwWm/YedjCW/D/f+OZQ3O6lt2uN +JGZQfMyheuVLK1ayJE6k+JhDWIp21qEaSTxJ8TGHo08vpvrMnonXUnzMwfSI +uOA995n4E8XHHDZqHyk9dGQmNqf4mAP9hJD4F5iJr1F8zGHv6+OZpX9nYiHK +oObgly5d6mA7C2+k+JhDQfiNxRZRs3AFxcccXv1heD59PgvbU/4xB8uFhZnp +A7NwKsXHHOquOU33oUthcWq+NgeduVsz0rZK4S0UH3MwqFnyLuOpFK6k+JhD +A4yZ7+iXwkwqQc3h1lbDg78UZ+N4io85PE5kqojbzcZDFB9zOLP82prdy2dj +L4qPOXi8WrXKZd9s/IDiYw4tT2JEN92YjYWp+doc5juNB/fkzsYrKD7mcD60 +avPHrtn4OcXHHNJNxA3+zpD+x8ccck8mXTxlJI19KT4MiD908tlOL2mcSvFh +gINc7d6cHdL4F1lQOxiQzd4/tjJRGvMoPgyYI3JYb2mOND5L8WHAwrXd0592 +SOMmylAM8Ft1+/xq0TlYl+LDAOZATtlG0zk4jJqvGTCoZok++83BGeTrljQG +HO8SXXl+zxw8ShmUAUPOto8epczB9tR8zQBLp48PtYrm4BhqYGXA4sqny4cG +5uC3k6R/GOA1bThbXVkGT6MGGgaI11dHvODKYA/S0GEMOLDxlGnBJhl8h0pw +BqS9UPq+OEEGC5GvkwIYcOLNvtQgLIO3kK+nPBmguutV4LfvMriNbEjODNg0 +UKjWIyuLV1IFgAGh2hmNoWxZ3GFLXjJARyr86powWbyN1ENjwMVMkWWNibJY +lPIPA57L7FAu/SCLH1ANmUHMZ1mN9kOy2J/iwwC1qbJkmqbcPz5EPE4SJcpL +DiOKDx0OlB/TCY+Rw4eo51M6MMt1v5c9lsO+1PMpHW6cuPrkQbMcNr1BbkiH +NxPdEdNmyWNpsmGV0uGEoah9laM8nqAaEh0UpKcJaW+TxwPyJB86LE3/XNJ7 +Sx73Uwang7vEzkvMKnk8Sho4jQ5j6r8CR0QUsDjVEOiwmD/P2MpOAeu8JPnQ +YduO7aP9mxWwG1XQ6WCXueMDLUUBR8wg/UMH/GRBfEONAj5FNRg6tJ+hLdOU +VMSbl5B86JAQy5wjy1XEClSDoMPnQ9uzM6IVcRzZAALocC2x3X/iqSIu+ETy +oUMfOtA+9FURl/4i+dChZthn1SUNJXydajjE+dn+JV1LlbANl+RDB86140at +8Uo4iWqAdMif0bvnSKkSzj9D8qFD65GDObViyhhRDZkOR+Tc+qtdlHEM9X6H +DulZbNnYg8r/+NAhMTTUoAYr41SqwJpBt8l7s7oJZdx6kYy/GWRN96QdtVfB +91vIeJuBSo/Y7LY9KlhMn4yvGQh3DX/vzlbBf7eR8TSDo32yLy7/VcExr8n4 +mcE58TXhvx1UceI0Ml5moGHTpT61XxW7upHxMQP7nQk5me9U8cFzZDzM4Gf+ +Tg95ETW8qJY0mBkYG54s1XZXw2/USL1m0J9cxm4+o4afhpD6zICl7ZLKrVLD +dvfJBmQKWm96Rn2V1XHxT9LAphB6qMScGaSO62xIPabQfqPfReS+Og48TOox +hZtSAeZFA+p4dQWZ0KaQUCE4up81FzdrkXpMIedb/yXa0bm4PpLUQ+zvoyWV +Wz4Xzy8mC4oprDm2gK4npYGttUk9puB/Nu1Dl6UGvrmP1GMKLew781RXauAj +DaQeUxBKcs4qOaxB+I3UYwolN49IDz/SwNnXSD2mYOG1YWlitcY/PqbgncY/ +/XxSA5evI/mYQO+9OU/n6Wti5c+kHhPQ8Wt46+ejiRtZZEE2AZH7vJcNezWx ++gOSjwlEp3ler0/TxHXK5IRoAse9xsMXVWrimWfIgmsC9rfczLlTmjh7OmlA +EziVZNv60EgLf9lDTowmEMEpjj4ToIXPDJOGNYGxs5OT349o4Sc7yAnUBDSP +V4aj51p4/hA5QZrAFwP3cokOLbw6knxhZALcyGC1itnauG+MfMFDXG9UXSzN +1saHo0kDG8OtQUlO51ZtnPqNTFBjMBstuB10Uxt7u5OGN4b23d4xp8q1iXnn +OaHHGD7svv05ZLoO9uggC4QxFI/kXv1qqYOvKJ4i9BjD9MGHTQqhOjiaTT6x +GUNgaNClX0k6uHkp+cRlDL0rO/L3levg8jXkBGsMyWWm4c9FdLFXEKnHGGKR +64UEe10c4EXqMYZThoZGOjt08U9TckI3hhyZetbqB7r/+BiD227fPNcOXfzo +HZlvRlC78kpeg7Ie/hpFFngjOIIe2Kv46eHHqmRBNoLVSceMRc/o4cnn5ERm +BJtGzC7eKtDD9fbkE4kRpJTd3vF1Og07vzxC6DGCvzqdRfVONGyrTb7xMIKY +kd4r0Xtp+GXsCkKPETDn5bW9f03D78rmEXqMQFZ23Y3sERpeNtuC0GMEiqsq +q1db6eMYrjqhxwg8dCUPP4vUx2brxAg9RnAndPaDxy/08YY9vwj/GIKpUdu8 +JcP6+MTzVkKPIdj4TLtbaW2AvzoVE3oMgZ4/Jum22wAf1nhJ6DEEoROFe1/m +GODV/uQbG0PIv7rtt7qgId7VcpbQYwhbx/qi9s8zxBXZewk9hjB0x3la/WlD +HNobSugxhJU3wy8aVRtixx1LCD2G8PJbJH2nmhH28XAh9BjCcMyi6ux1Rvj2 +HlKPIcwKETo09swIW06SEyRxnXDGlv7XCAtUk7/XGYKoXP/o6vnG//gQn3fq +5x5PMMae+8nf4wwAT9pceNBpjCt9yAJvAKEbNMI+mJvgpN1lhB4D6Jzb6ll/ +0ASnDZNvbAzAVTfS7kulCe75+IzQYwCXojtM+bqmeFvPLUKPAbxTohn3RJti +8zXxhB4DaBHlmXeWmGJLxhFCjwFUuFhxqjTN8A6fnYQeA3jzWWAp2mmG+/ND +CT0GcPx+yq5bpWb40fkVhB4DkP92utxRho7vPiUnJgMI1sraeN+Jjts0eYQe +A7g63f34uTA6flNgSRheHz6t1Q+efZWOzxzWIwytDzO06XSXAjrBQ44wrD5w +WEGDpiN0bMYSJBJYHyKeZN/7pMfA45a9hB59eLbXyVdzCQN/cKkh9OjDzzv8 +AYPjDHx2Yw6hRx90Dd8f/vqagRenphB69GGV2HuJZXwGVh46QujRh+s8/tED +c81x7eL1hB59aKlzHF7pa44Ty1wJPfqgWPhm6c9j5njxSh1Cjz74ywamW+aY +4//fX+tD9hvTCfqQOX7xsp7gQwOBt3oO7QYWeOPhdIIPDVwU54e7BllgtXXH +CD40OFx24UrgFQv8acVygg8N8tpFsswqLPDuDSaEHhrM8kr9+FyCibXiJoiJ +iAZLFDYV812YuAQVExMNDa7aLc9riGXiCLFEcsKCllcR6fveMvGc0GDCwDQw +v/DyQvUoE2c2GxINgQY7P2pv6LC0xH7rB4iJiwbI/zUjdYcl7hPOIiYmGkiy +o38qZ1jiI6+jiQlOD5YfCbzlOmCJj81iE4bXg43xtCEvhhUOOD+HmAj1QLDu +4LnV263wGKd/IT9PD+i+23dFZlrhjRr10qx0PfgmNPz4/IgVfmT8qSYuWQ+0 +e2eaZrKsMVpXcq0uTg9+SbwZa4q1ximlNYG0KD1wDfozWzLfGvuv4etGBeuB +cW/pDs4sG9xIm0no0YOEp9Za+xbbYBMlW0KPHpy/x1TFN2ywn802ooHpwZy6 +D0EzfthgtyMZRIPSA5pjz6C/pe0//+jBWENq2YMDtvjqvQAi33RB5cngiHCZ +LZ6KeUvkmy5UvqzatF7NDjMPGREFVRfkR92NysLssMOLO0QD0IX6Lf5WDjl2 +WFHOqDEuWRcMVX+dSp/Fwjgl+2ZdnC5ICdDMjINY2GbVEmJC04VY5T7Vx5ks +fGjepFFUsC7s2OS2mClmj5NWPRvI89SFP4M2jbmr7PHx25uJiU0XBNPfPvR/ +YY958lb7gmm6kHKnKv+npAMuyxLjpcvoAnyONTu31gEbHfkmKiCgCzvNczus +sAOOXfyo1JOvAwd8LOXllB3x0JTpxeQ6HSh5tXdyeZQjPnpg21J+ng64r718 +TaLKEds1blNnpetA/5IjvdoWTlhqJr0zLlkHPp1z/ZUa74Sn5J+k1cXpwDep +xqdnfjvh2WM/NtGidCBpo+a5bcZszH3+hZgYdSCgH2mVrmLjiy63hvI8dcBE +6aNU23k2nv5MmdCjAzrdVkvufmDjC4M+u4NpOmDpJz2m8YdYP9PdIV2GWL/O +/7eXGecfHx0oUJm+0GItB/cWRbzz5GuDfoTyRNE1Dh7bfO9wcp02pGy9JqpQ +ycH636+68vO0wWzW0S0KEly8236hKCtdG8q8GkxLeFzcuv5tYVyyNtxlJrpZ +7uPirZt6TtTFacPutxj5vORi1Xn1C2hR2rDtq/cZnUEu/vLniGRUsDYcfbHg +1QMTHi47OlCS56kNr/Se2XeH8nDDD5XTMixt+GMXo1J1l4en04Q9gmnaEDT4 +wm9nFw+7sx5LpstoQ9vCJd9KtZzxC5psydSUFmx3D65pCHLG3YGKpzz5WrDj +xVqp9FvOOG55okdynRYYBPQfWt/hjFMULs7m52lBrLkgc1LbBRskSFTbpWvB +NedrcyPXuWDNqsmrcclaEHUm27Xkvgu+ULU5uC5OC75Lhdyf3ueCd1wKMKJF +aRH16fw8FQtXDEr4d2SwFsx8M09TZpcrPrbqVm6epxakdhy26sGuGK2ZOiPD +0oI+rtux2zPm4XXG9SuDaVow0nBRxt57Ho59YWqaLqMFzx+sb8y8Mu8fHy3w +ychtmdk1D09KeFR68jUhaiBFbZ7ZfLy1Xu5ecp0meG6QSAzcMx8v2bAshp+n +CR/kxz2WFczHT14pL2ala8KMiXAnprwb3lG02OxEsiYIqWwL61vjhp8nzxKv +j9OES9t+Vx3PdMOrzblfaFGaMDAxbdd0YXe8//jA+6hgTRB8nxCwarE7nnNT +9fYHT014hZ/tuHLPHcvten9IlqUJ9F8+RZnj7viUzJe1ITRNWBG4d8UzrwU4 +authtwwZTTAVMjE8lboA15y6bjpNQBMeta6xmP9nAY5t0J7tzdeAb2O95494 +L8SB+dO/X6/TgKilF1Z3312Io30dX/fmaUDY5KKk9RML8duYylj7dA3o/WY8 +X9LPA1u4vXc6mawBLYraIZUPPHBLxszh+jgNYJ1h9r6d5omzszNu60dpgKxb +0JeCAE9cGJIxf2ewBgS73fcceeqJJR9Kdn/w1AD5s5J682d44djzudGyLA1w +Vz4Zlr3KC+sqlE8PoWlA/w8drUVZXniKxTqaLqMB+wU23xaa4f3v/ehcWGnq +3ztg7o13fXTsSKqbC82TRVv6V3ljn2Lz57bpc0F1eylN4KQ3vjmraXtN3FwQ +Or5aUfOlN3Y7Z6e5I3gupLNj2L6d3niZtyeSYs2FOUmGNy9JLcKlngruj2Tm +gsXVNdY9rEU49WRC3ny+OkiyjEUWbViEu0QKTbrz1OFKzAHJgouL8FFIP3Ig +WR2+rlnj7p27CCe+8ipRi1KHjt4q/L13EZ7qS5n2xlMdUpQqwy4q++BPIQ91 +F9PUQevbqkXe83ywuEKozeCUGrgvjd6sFuGDP/O7I87UqcH3+gDroJs+2LfQ +SN4oXQ3u1tjqHij2wdce2akWxKnBXi8V632/ietLc46tDVaDSOeJMH91X7zs +2PPF01lqcOpF60cxV1/cFKN28paMGmSnvHO+GuaL5fZ567D5qjBL8u4XkQu+ +WPHgQq3WPFWIGIh75JXli4tOSx+JSVYFEd8tlyLqfbHjzRsL1aNUIZ3umxo5 +7ov3vB6ORp6qEH7CpsZH1Q+H1cuLr6apwrJAdWNJez/8//9/U4XtGUJ3by3z +w1tMMpbdqlOB+Ngenky0H74eZKLMS1eBsqIK4aCLfvhoUrhjd5wKGJ1/03Pi +qR9mtsTkHwtWgdTKlN/nCv3wFT3/F4YsFbC/cFJ7R4cfzon8NaNURgWGSiIi +GX/8cFrxChzOV4bcQ6t6imf743n6ZxrlPihDZtb8I1w9f3zz5PEVb5KV4eNa +C16CnT/+8HsBd3WUMvSdU9fN8/DHN9bVnRLyUgY7G3GjstX+2K7FxP4BTRlu +LB/2y9rmj8+tWOjtLaAMtPGOlF2x/rj+gVL47zolaIyfdKg/7o8XXtjjmpiu +BJCy0yvhkD/unLP9s80JJaijedY+JtYnG0/Mqg1WAg3tg9Va3v74dKuq4A6W +Ety/KOP+S5PY36j8vqSsEnjtFbTU+uKHi2Yri6TyFYHb4HnpUZIf1jw7Im/7 +QRH8n4xujnch4nc3tKk4WRGujE5l17T54nlLti1eEaUI6q/XxEZt8cXStySO +/PBUhI8/9bK39/lgocOsDVE0RbiZ5BpWHOjzr74R++P38bEfFmG23NKFx+oU +ICrgOuOCKpHv7109JNMVoGF9jYvAOm/MlCgUPBunAHKNtTcTeF74W09rmFSw +AtypyEnpvOGBi9eePHnaTgHmvFx1/kfbAvwhuniVmIwC0I+9CXsg4o75Oje/ +HOyRhz5eOVNbej7mbRTT/vNeHq72pnz3E3DFWfNnyG5NkgftQ2Ynnap4eAFc +ed0eIQ8gtFOp8xQHK5SDjI+HPCz/Oqi/388RT+7eqwW68pCbtHn0foAtno1K +uo0m5eC60apbrnpM3DrpbJFcIweoe9ZnhcUmWDQluk3lqRy8vhugGXRfE59L +W9+bdkwOuFvXNaQqCeMwqTnLOIFyUDH6CpwWSDndrt+p981GDnK7J33cU3Sd +nESu+CRJy8F+I/6ooKy5k0FCZMvKH7KQuXDlumkZtk6RR2cWGb+XhcrQ7zbn +qtlOcg2BcmJJskAPujvz2ZSzk9S5rTAYIQt9J9cyApe4Oa2/Z1v83UMWor7r +pd5s8nDKuJqp+MlSFv7eH6jwCPZ2+g/4BtCJ + "]]}, + {RGBColor[0.365248, 0.427802, 0.758297], PointSize[ + 0.009166666666666668], AbsoluteThickness[1.6], CapForm["Butt"], + LineBox[CompressedData[" +1:eJw12XdcTf8fB/D23pekoZL2vI17697bPXeUEZXKSHYlJCNUCFlFVshWJJGZ +Mgrx+bwliZIRClnRTtp7/M453379weM87j2fc16f5+f9+XzOucbBa/2XSUlI +SFSQ/1D/j9B/YnDVnfBrw4JaFK6xcbbkkBhab7eMV15Zi7J+ZPx82SeGrR9P +jDkaXYterT52cV63GL7uZ7yTja9F+BHvdHa7GLTeLvddebwWHSi6VFjWIgbd +y8eS8jNqEfPoC7N7jWLoUzx+dPB+LbqtexUtqRXDjeFVs22Ka5FciOfBD7/E +4LRb96vX11rkEn4hSf2bGA6fujAx8F8tcnfILdasFANwB6xnydQh/fuJ7K/v +xVC01raHr1uHPvWOr1r1WgxpTqw9Osw6FDYQlvvshRh89o4t/zm1Dn1ueqok +UyCGnffzJHWX1iHHvlgDn8diqFFQtJu8uQ5FmZxouZgrhridioHLjtahtHDV +7SPZYphm+DAu5lodulf2pyTshhimVI+7vPVpHcr21ausuCyGTa9Mizd+rkMn +/man+6eJ4VtFdf3itjq09Opl64qzYohU8pXnK9Yj7R1965edEIN7cLiJunE9 +urfx5qahJDGwfzi7l7vWI24C4l3YL4YVO7Nm7Z9Zj67ds8de8WJ4ObVipfOK +eiRB/e0Qw2KX21vfxdUjwQr7EbRFDGZTWIeWnqpHy/8+ebw3SgzG2yPO/cmq +R5uSbrgGrSPzf/HLDCqqR+t9etezVonh9vza7Gff6lGAVcYq/TAxiKSsHhh2 +1SMDk9sTVZaKQbFM/8kalQb0xnX8adkFYpDECGebNKDwVdUlCnPFYPdRHWo4 +DejvIyU01l8MBzU0kKp/AwoyP7bGxlsMEyLxQ4uVDSgre9O3GVPFUN1tcJe1 +owE1zkFKMWIxfLlofZ19qgFp6IZ0X+eLQWZ9/XnrrAa06z63qdpNDPumaKta +PW9AN//oO493EcMJqZh1XlUNaF+m3DtvBzLvJaWXBzsakN5w79Md1mLgW77T +blNqREvqO+TumImh4vireTETG9HCsJ4Lv4zF0FvTfdSQ04hUN0kfUjcQwwX9 +ObjBrxGtN9Ap4+qIocS1/tfHlY3owByXkDCGGGI5t/p+72xE80zmz0hSE0OO +8WW5MWcbUdXuxMRcRTFEtLxRCLvTiMZsAt0qGTHcSrOV+PKqEUnSQGLY6Iqa +1/5uRBf1prpNHBABur+zzHywEfW8Ol0k6hbBYZ1NlyXHNiEptfbMpW0iqFly +MXLItgk9/RPwbXuzCJ4eHnLUm9KEXHxR2Nk6ERilH2wIWtKEFnkzPe5Vi0Du +nM+Jx5ubEO/HzajSbyLYsFnMEiQ3oTIZ5kB1pQhC3VeV1txsQmPRkw895SL4 +XPt87q2iJqSpHCCl/EYEH6ICKk/+JK/X1Lpb/5UIZjUyfNL7m5DZklPzbJ6L +IMhD/uGbMc3k+Jq8mwPk/e22HW9o34zS12UPTMkXgVD89PDhac3oR83eJ7Nz +RfBIf8hNP7QZ9b4oLQ7JEYGfxi/d4u3NqEE7zmD9TRHITFjNPHamGT14fz5/ +RyZ5fc+L27bca0YhA9aXktLJvHu3jex404xqj5h9OJ8qgle/JfMuNzajqcmH +fbJOi6Bjnl1GvexftEsqVAsli4DVKPVimvFfdPb7FcOywyI4fTzO8CXvLzpg +Pjf6e6IIxs7LuBUW+BfN/bZR+98eEdxmR0ZO3Ph3tH5EsMKhNnwwiWwvqddR +M1YE7mLps503/qJfBxbdnhgtArt1xcNKxX+RbhczyjmS/DzP5Qzx5y+yL1m/ +Z3KECMJ1pq88JtGCJqgZfwtcLoK7yQprpQ1aUMMTXtyqYBFoW665fsytBR35 +8jx8+0IRpFTG6gnmtCDN0McXjgaKgJvOLFDe0ILWBBlNuBwggt74pPNdSS3o +8pO2mgc+Ini3+0T20M0WlHfIoad0mghenBP3mrxqQVdeVfn98hDBl9dnolbU +taC1G7u7uggRKOuetiiR+Yc4HlseKHFFMOP+10qfif+QbUfoGkOWCJI/SPp0 +E//Q1J2545yZIqiKUdr3dOE/dLBlzb2pNiKwvdCVkB37D/VyDnssNBfBTq9n +Xs/O/EMHwsYUR04kx8/mDeV9eeT5kZJEgoEI2LZyxrM+/UN282dfO6sjgrOh +sU7vO8nrT9KQv80QgcSRlbKPFFvR2lJm4DM1EeTeTijXH9+KSgMepVQoiiBC +c+yeoxatyP/RtQ9NMiIwvz9mnI5r638+EiL4czb+YPaUVvRx0pMJYwaEkF6w +/E/Q3FZUbvHLwaJbCKE2+RPGLW9F/coRLF6bEMwr47g10a1oWtlC+5nNQmh5 +fp/zPKEVwdpcvdA6IeR2LdDPO9mKlrRGDcRUC2Hn8qifj660IrOZKWUHvgnB +R28k4W1uK9JOsjxxoVII+pr96r1FrcjuloHv3XKyvalhscwKMs/1TYNFZUIo +KBC/3FrXiioSOKlfXgrhzPZjfZ97WtEKUQizpVAI67b6q0xTaENG39ofSIIQ +vB7vlnyl04b2Jntxx+YLofx0seQiyzZknF6CLXKFcC/imYscpw21KERP5uUI +oZm9MbXAqw39ezHtje9NIWzr/+KaPL8NmfyYHBSSKYSwez3ymyLa0H6f1XXR +6UK4suyVUuS2NmSm/SR6f6oQhGoBwu2H21CXC0vh/GkhOGUdvXHhQhvqvlV5 +LieZbM8zYdrH7DZkvT2D+fywEAw/OOgZFrSh5CtnXlYmCkEn6KjRtvI25GD+ +IKR5jxAiKjLn/fvTNlo/QtCesbEoqrsNSTEjzzNihTD+QXeYhkI7cn2kTJhH +CyFKz56Lx7ej9HNvfnEihWARbSDeZd2O+B8fJ/hECMG5+On2ee7tSGN5uW3w +ciGc1tRv8fBtRww/RkVUsBBm+9sc9VjajrySt+5KXCiEFfvblwduaEe5tuoO +qYFCqHi4Zv2O+Hbkb1TyIztACOd+pmU/PtWOJq3KPlroI4SHw/smql5vR5Zq +2LNymhDsxpgXRz5uR8GKPQNNHkIYNIq92FjWjkoXBN4bIYRgbBqfFfOrHZn8 +Ob+awRXC8eyXM3U729GE2AQzc5YQpgW8biiX60D5xuo/OEwhEKpHNmeM70CD +Fa6nfGzIvN81JQ7adKBfqdK+weZC+Ffkv20/0YFWblgrFz1RCFeL/Nsu+Heg +E4FbnyQaCOHSN80Fpcs6UIi31cZUHSH8VD7yRH1zB/rkt9kqhyGExX6vx4Yf +7EBNy1b+LFQTwoSsl6FfL3SgjMT+E5WKQjCaGH895G4HknxiM71ZhqyHWyO1 +Ui86RutHCHW+broPv5Df9994jzEggFuKjh4JLR2o8V7iCvNuAdz70hAaLtWJ +PpoJ9LltAhguWLJ1mXYnCr566o1PswASCk7uj7HqRMluR3YF1wkg4POBpDR+ +J1rxxdIluloAi+UFB376d6Lv+0PrEr8JIGvG3W3s5Z2o30twJrVSAPxrNWGX +YzvRQ90nXjnlAlA3qJhsdaQT6fZ/GSgsE8DEq3sNijI6kVHDmZuVLwUQ7dXT +uOlhJ3pZ17eguVAAKjJmt0VlnWhsd7+KBAig+gMj3OR3J7LP+fCYkS+ACPbZ +DP3eTiTKRRHmuQLQunKszl61C02XfajPzRHAZ6Mhx4UTu5D3+WelPjcFgDI/ +J2Swu8j57/vW4EwBPOdY/Jb17kLcLEXb6HQBNH2un7IzuAtNMvX8lpgqAPt4 +vfvam7qQQu2RQ6mnBXCcB1ZFh7rQ79Zm95xkAYyXqLiadKkL5XrOayk8TLb/ +ZrH9hoddaOefj+crEwWw40YQWvemC3m+DvZt3iOA0OQXs/fVdI3WjwCW773S +9XCgC93deiubESuA/Xt7UmW1utFi8aql5tECKEl+5LPKohtJzXLT4kYKwPbm +P/kmfje6kDXumU8E2d9vT77cM7sbOQbIbQxeLgAfyexk14huhIWyptHBZH/z +uWFyu7uRx5YxnxIXCqA1wVXYcqYbwaDT3tRA8vhr5qTW7G7k/DLENSdAAGru +iRoqxd0o/celhkIfsr3rVTKiH91ITtB5tnKaAG6apEse6+5GwY2zZjR7CMDq +2me5QdUe9OD786ERQgDFnN1jdpj2IJ9j7rcZXLK/vNd/M3TvQZFb7iwxZwkg +dc6WMd9m9SCjU5O0uEwB1M8+9zAvogfNr09+5mNDek7/WHp7Tw8yXiMRFWwu +AEe2hc/zlB60wSLcLHoieTz+uHvvvR7kP+5dRaIBOV7adM5Nfd2DHnNcElN1 +BNCJc8Nya3rQnWMnOTkMAdzeszpNONyDnA27mgrVBHCNcJ/aqN2LhD9nplYq +CuBXq+mibPte9PXjNZ9mGQHMO21enTy1d7R+yPHHEn04vrQXhT65EmzeTcDI +yyjnu1t60Y/fU577NBPAnFUg9S+5F63b8Ns8upqA8x/Miam3epFexOb9qZUE +zJh+pQEV9aLvrxX/FpYRwH7gLhXwsxflnj7u21xIwGK9ln0y/b3oaun4O4x8 +Aoo25m0rZ/Sh2yvPjOHmEBBeeOYntu1Db9cyYoIzCZiudCLn5ZQ+pPhj7+fE +VALWTL7W2rq0DwXldXNzkgko2fQp1WVrHyroXUyOPwLCLuo/PHWyD4kuPSPH +G0Hu4GJF43L6kPrQpBDzaLI9258auSV9aMGMvc99IghYL2ANRNX2IeujjebR +wQTk922TnCvZj7aW+OxPDSTAeF6eyTz9fjR94G5zoQ8BlxdVL93K7kfnjXR9 +mz0ImKI0kg/+/SiSuzOHwSVAcYGqo9maflQ8vYHBZRLQGKBaeDOR/L6ff3Sw +OQFNbcORsy73o+4ZjysTDcjvs6q5Bk/7UZm7OTeHQbZnlGcs/60fWUxKJr0I +SM/eZqLV14+kaB8CDOpchPyxA2jJu9WkDx8ePPux5QBzAPFOVxX6NPNh7eTY +t33eAyhl1gzShw9eaxVEieEDaKvck8TUSj7w+XvfuO0dQN9v2TUXlvFh9t2e +TcoZAwi8Lvo0F/Jhb9k8/jAMoEnfxuQw8vnwJemWodb3AaS0LJHBzSHb62nX +nzIwgNZVD0cFZ5Kfy1ixUnUG0dzZUZWJqXw4+MB/1RjWIHr6pJmTk8yHOVqr +H98MGETX9JalVibyQay12TIschBpr/0+MhLHhxkPou8IkgaRk0VgsHk0H4JN +VT35twYRM+9doU8EH5Zv+V22pGQQqetPJ334sCivz/dqwyB6PacwMTWQD9Oq +fIvHKAyhNcvdSR8+TGqoYV8xG0LN3rk+zR58aP+Wf36B5xDyVbInffhw59G7 +QXboEDqakkn68CEkztzfdfcQui9jRPrwQcHmyfmF6UMoV3Sa9OFDChyrznw6 +hM7O0SB9+GDmftVg3K8htESwj/ThQ+rFId8bEsOj9cMHvZZjm0ONhlHCiRjS +xx22TlxxViQYRv8k/pE+7vCKv+2O55JhxBKFkT7uoCJ+/3T1jmG0dB45/Va6 +g9h+efGjtGEUPnkW6eMOK6R5RTZPh9EsxRLSxx124Jn5z34NI6N0IenjDvtD +LmfGSY2gEo0HpI877PnndmCJyQgKnG0XHZzpDutD1MLCPEZQ8doM0scdZuGJ +rkeXjSDtJbpk/biDpXSM5K+EETTZ7Ajp4w5NdsoFs6+OoFkFsmT9uEO66Mfm +fy9HUMeMWNLHHXaPvNHMbhpBL7+3kj7uEMZY+LBUTgJ/iyHzBLsDr8qn7OM4 +CWyhU0X6uMOUoCdTOiwkcBb2I33cIf7QVVNTjgReveYF6eMOHVEaK1ZNl8Ar +JrmTPu5wktGlVrRAAqf8ukP6uENE2BxdlzUSWPmKBenjDlFrnPc/iJPA9yLJ +cjdwh2zrpEUzj0rg4x7k9MFwhwnnw04NpkvgOxPI6UjRHZ4+f+T85J4E/u/5 +lMyTfoB1rEgCH6snp9tuHtxw/pwSWymBF1Y2kT48qIm9tHxzowQOfkMuR9U8 +8N/UePLAoAS++LqC9OFBh2WW1R01SaxX7k368OD5kZaJf40k8Zsfz0gfHpTc +vBHHc5LEjzvcSB8eyG6vEaR5SuLfatmkDw/WyaSE6QRKYg+mGenDA3XBm9aM +cElcHZRC+vDgp0PcD89tkjjvgBbpw4PaTzccB5IkcdEzcrwl8kDfcXZjYbok +1pAeIeuHB/tEsXKX7kvieZ5knmge4Hsxi08WS+KQBDJPBA8WuGS8vvBVEjOL +yDzBPAgulPDDLZL4mQx5uUAelC491NApKYXHiMjb9+HBeVWvU4KxUth6O9kd +HjyoeMEKSreQwlIPyeWFy4OYIwGOujwpnNJO5mHyYPvyNMOrvlK434ps3pwH +DTMMJs4IkcLjg8nbNeDBE8ErN7kYKTx4iozP4EGvKDPs034pfLGU7E5FHpwJ +uHf18Xkp/F/98CBrfdvIgztS2MqRbK6bC/ppiyJKiqSwdgh5e81ccv0e+Nvx +RQoXHSPjVnPBxuzlHsd/UtjtKZmnkgtvthc57JWWxhEtZJ4yLlTWdLS1jZPG +Ibrk8lXIhanz/YrX20hjA0/ydvK5MOHH97uKQml8eg0ZL4cLQZEp93JnS+PK +k2SeTC5IaO1/tTlcGn9+QuZJ5YLC08wu/zhpnPKb/HoyF7Zu73IRHZfGJgrk +eEvkgr/XhgNTrknjcGtqv8OFI5OMu4ORNHbwIfNEc+HWx4UyJ8qlsU0kmSeC +C3pm+zy+10vjxcfJj4O58H1sWi5/WBq/yKN8uNCecTkolyGDl3+lfLgwv/y0 +g6elDHYfoXy4oH1xs2sTXwZPMyHzcLkwSW3q+quzZPCBKeQhkwsJujLft4bL +YNkIyocL7kW3YlfskMF3qXI34IKnpuf0VSdl8Nn7lA8X0gZezoi/KYNzv1A+ +XPCL5+3ILZAZrR8uBGel1AxXku2bUj4ceBTduHXRPxnsNZ3y4UDod9PJH2Vl +sTCS8uHAkhofYYi+LF59ivLhwO0Dy9YoOMnit08oHw74vVv5unCaLA7/Q55e +yIGpufMXnV4iiznKlA8HjnC4xrtjZLHAkfLhgM0iBe34w7J4+zzKhwP6xs94 +5y/L4tYdlA8HFu1edaLssSxOuUr5cKBzj6SR9gdZHPuWvHwiB76bxldtbJLF +x3up+uGAblj3q0YpOQzU9B/NgQ+piT9idOVwzVTKhwP2phvU9B3l8Mg6yocD +LoN35lZMk8MaZygfDlRNnJZ/bakcHv+U8uGA9RkXt+TNclingfLhwITFm94l +H5XDappU93Igd6PmnhvX5HCfK+XDgbbPEn5fnsrhqiWUDwc+HZ7savRFDt+n +yt2AAwuTq922tcvheGr6YHAgse7D7DYleexNdacimfeAwcGtJvKjPhz4s/1x +1QSePL5PNdftBjIFOVMqZ8njpb6Ujxs8mzVUenW1PJaKoXzcwIZ9IeJIgjw+ +e55q0A1cV54yS7ogjy2KKB83aGqs6c94II9v/aV83MDj8f6Gd+/kseVYyscN +BN/i28c2yePzPMrHDX56V4yNlFHAMqGUjxtYqcUF/DZQwMsOUD5uwJiw7UYE +WwHn36F83ODKtncGqn4KWIEab4luUGWz9XphuAL2pgLtcIMH1tv8kvco4APU +9B9Nfr/GpDrmvAJ+TeWJcAP5Imwd+UABa1B5gt2gunSmXdx7BTyLyhPoBpz+ +Tw0XmxXwOar8fdxA2sd/0Wc5RVxNdYeHG8woLjhgaqyIbanlg+sGiist1idw +FfEm6pBJ5nPYrTk4WxE/p5o3d4N2g/KVCesUMYMqdwM30HXUiTU9oIhDqfgM +N8iP8Pf8fFkR36N93ODT653FF0FxdH5zg82zr8jEfVXEs2kfV9gnDX3ruhXx +der2ml1BpbIsM0ZTCUtRcatdQab8vVqyjRJeQHVfpSts6SyxezZFCT+gOMpc +YQXvkbxCiBIeS51e6Aql11PPLN2uhNdTt5PvCjeJ6D9vzijhcmr6ziHbGxDX ++99Xwi5UnkxXeF8ld7nxrRI+TXV/qivo1SDdU81KeJgab8mu8IURMS1QQRmH +UpdPdIUxK9WYdpOUcQn1c0mcKxT8ufxOR6CMnak80a4w9/fXmjELlHEqlSfC +FdyezrMw3KSM5aiPg10hbLvhGfZxZbyaulygK1Tp2rouylbGH6nb93GFjJO7 +ZJNLlbE77eMKt9oMJT/VK+NL9PTkCko2stbmsipYifZxhTuejrsTjFVwJO1D +ns/PVOx0V8HUap1o4Ar12qFobZAK5tM+rrC+bMXFvmgVfIn2cYWpy+7fOZqs +MurjCtu+TmtnZ6vgMNqHDa0OZkuaS1VwKe3DhmvLvAazGlSwPe3DhuzNuUVx +cqr4BO3DBqnV4XiRiSrupX3YcIEIq50uUMULaR82HGq7xp2yUBVj2ocNz3a5 +4JlbVDE9feewwbNDIXLFKVWcQPuwQVs8ye/wPVVcT/uwwW793sUF71TxDOrr +yWw4vsMxReafKr5J+7Bh8hpT+dkqalidft5mgwd3SdpdSzW8jvZhg5mn3+rx +U9RwOe3DhtiGsA1xoWrYifZhw3SLi3dqdqrhk7QP2b6khPWMC2q4h/Zhw6yo +3VV3HqvhebQPG/bvtn4x/osazqd92OBq09u4o0cNT6B92LBwbcOU+jHqeAft +w4aRGSPffB3VcTXtQ+Z77nYrz1cde9A+bMioOH3fcLU6vkL7sOHGHv2evfvV +R33YwC8tjGzNVMd0c90sYGUdNZ33XB0X0T4suGS1W6ugWh2b0T4seJ42I2Ws +hAbeT/uwYENfw/RXahq4hfZhwaIL43XiDDQwfXohC/Yc+yrhbKOB6ek2nwW1 +7+3lGjgamJ4eclgQv0Tb4vw0DbyJ9mHBYm5SWECgBqanr1QWbAw5+1RhuQZ2 +p31YUFzJdkNRGjiN9mHBnHPLX2/Yo4Hp57kdLDC8YbndMlkDh9I+LNiKm+Mr +L2rgF7QPeX6SoeGWbA1sTfuwYFCvYJoa1sCHaB8WGIR+kD3xWgO30j4ssF4x +J0CtSgMH0D4sMLOY6rilUQPn0j4sUMm4ll7Zq4HH0z4sqPq6JcNSXhPH0h3K +grNv8tmrx2riH7QPCybHRSy4ZKKJBbQPC740HtQqZWriDNqHBQu1DILqCM1R +HxaUd+k7dXlr4hDaxwXsThxM7Zqvienba3aBqNZVZ+pXamI6brULXJXPNyuL +0cT7aB8XKPqy2fNKvCamOcpc4O3Kq13rkjVHfcjP701m213UHPVxgWv5s5S+ +Z2liLdrHBTZtf79mx2NNvIH2cQHHIRw69pUm/kT7uMBntkFzSoUmdqV9XCDc +rlFmXI0mPkv7uED9T7Pbu9s18RA9v7nATN/yxuoRTUwvz9Eu0KM32dBCVQsX +0D4uYNXw8e5kXS1sSvu4wO/cXVf55lqYvlygC1jHzxhSd9bCjXQHuIDELKc7 +jwRa2Jv2cYFFJuwXfG8tTHcv1wWmdMzlpczT+m+8MV3gybMTmuXLtHAU7eMC +6Hjr5N+RWvgz7eMC08NWVJVu08L08stwgaWuQ++SErUwvZwruoCs8m1zmxNa ++L/ft52B/X3bt4tpWqM+ztCas7Kj9YbWf+Ot2RlcEtavHJ+nhenlttoZ5Oaf +JvQKtEbrxxlCHb5GdZdqjdaPM0yX46rcqNDCM2kfZ8BVeVJu1Vr4Hu1DHt/1 +m5fWrIXH0T7OMO2Agsavbi28hfZxhkUhVWYDEgxcRXeYM0jwXqe2KDH+m6+T +ncF27NeN+WMYOJ32cYaaFtmbSycwsBxdP85g8dJb/MucgVfQPs6QNj2WbcJk +4BLah8xnMDdeg8P4b74OdgY9wS+bayIGTqJ9nMH4zni7v14M3EH7OIPkRonE +Kn8Gnk37OEN+/An3mCAGfkj7OINPXeX0J0sZWI/2cQZ0+tXdrBUMHEf7OIP8 +2fCo6WsZo/XjDFZND44kRzGwkPYh7/fgfdm9sYzR+Y3Mu23JB9OdjNH6cYb7 +Tx4Ork1gjM5vTiDyebp92QEGprcvzU5w1S4mSO4IY7R+nKBh0dck/+OM0fpx +Aukffyd4nWbgJtrHCfqysuT/nmP8N94KneBlmYEX9wIDZ9E+TrCez611TmeM +1o8TdA/JVX3OYIzWjxPMUd1pbZXJwB9oHyc4FHHtg+k1BmbTPk6QrrejovQ6 +A5+mfZzgoK6ss+FNBu6n64c8f6Vro/4tBg6ib9gJNvUGWqSQx4j2cYKYB5f1 +N5DHxrSPE/hfm/DiInn+LtrHCeRKnplb3GDgGtrHCU4ZnODLkdf3on3Izy8e +U+ZdYeBbtI8TzJz9+PBLMo867eMEGzlaxVnnGXgj3aFOEDXzeF7TGcZo/ZDf +PyVauOP46HhjOIGCusHDiMOj403RCVLyTEqy9/7fh7ze0TnJM3YwRvcHjuB3 +7r6mYNPoeGt2hJhPgskHSH8m7eMIm0W9DnZhZP/QPo4w98fXdxYLGHiY9nEE +jVtNFrF+DLyM9nGEKzfMWaaTGfg17eMI474m9ZmR49eR9nGEEO6kDTtsGfgc +7eMIh0r/pDONGFiGLlBHOHb43T6OFgOH0z6OsHZn46Rz0gz8nvZxBKvL9jEB +neR8QdePIxT2pcWF/NHCGbSPIzCr/gniyrWwEr2/doR1114/CXqqhdfQPo6w +Yymnu+uWFi6nfcj7kWE1zjyjhZ3pAeoIY4/BmVW7tXAy7eMIp5S+yEyO0MId +tI8j/Fu9y/pngBb2pX0cgfH4oSqHo4Wv0z6OoNIVdyPAUAvL0vtrR/ik81HG +VloLL6B9yDzmD8cXkfP1XdrHESqNbBonvPj/+uMIwzJ20exMTRxA+zBB4QN6 +op5Arle0DxP+HPoOmSGauJOaUKuZcNzxUNwIuX6JaR8maBe86tPW08RJtA8T +lvJO2bd0auAquqCYkHCx3SieXG9NaR8mbG2rev01QwNH0PtrJvBt5rDat2jg +O9TrlkwmvPNbFFTsq4F76QJlAje4y22RiQbm0ftrJjQ/Yl1f3qSOt9MbViYM +JqTNPXZIHT8epuqHCdctLLbybNWxJL2hYYJh5mCC/0s17E0VdAQT/BS962CJ +Gr5MD3AmLPIdn7q3QxXLUK+TAplgtXnp1Ss7VfEa6vWUDxPKE0wVJyir4p/U +guTBBNamZfhvkgpeSE8ATIj2Ni4Zq6GCq92oQyZslJtnc/KAMl5H5TFngvsl +ld9rpJSxAl0/TPhtwvt3YaMSvk4vyEwI3Fc307KafL6hfcj+equmoDz9/88/ +TJAezBnjeVsBI9rHAb4ov4uuUFPAu+nnUwdYMbLKrmClPA6gn08doODTLq4s +yGG7C1SDDjBydOz5NE05rEktWGUOoMScNOf4Ilk8RC9IDvDyblbIzysyuE2b +8nGAWbr3i/Y0SuNWusAd4FkoO26npTTupQo40wHqjrkc+hQihZXoBcEB2jJu +t+4+I4kn5VE+DnDr7OVria8k8DR6QneAi/V26978HUEb5an6cYBpIUquPPdh +dJBeYBzgbOS8sLi4QbR6LuXjAK3fT+Wi7H40jl4gyDw3nlv0v+1FidQCEOgA +RyuqHzN/dqPi15SPA9QE/1u/7HsnKuukfBzAybvJ60RJOzpPLzgOgE9+8nia +2YpcRZSPA2TEBT99X9OMUugF0AFmHOnm6QXVoxeHKR+yfxetHJx/8zdC9IJM +9k9F1Ijlw29oO/1+xwGM1n06dPBj+ej7aweo76+fguc/Qxn0BGsPEq7Dz0/l +7+X/OE71vz0YPbdl+n0t4l/7TvW3PbyfK2javfQTX9GC6l97mGmuPT+v9Cd/ +cB3Vn/bQF3pr6739tfztD6n+s4eJf5YFPQxv5p+WpPrLHmTeG/YHs9r4k6dR +/WMPef4GpqundvJ3HaH6wx6ObLS2i13Vw/eroArMHmzYXmMPXejnPzKg8trD +hLObv6T/GeLfDqHy2UNtWRV/UaoEwblGLUB2MNc4fqR5phRR8o8qYDtwxz63 +/TRkiEpXKo8dRF/y9/n5XZZYsofKYwdbyo5UnX4sTyx+Tw1oO1AVKAbFXlMk +vk2k8thBS09+0d7LysTnKCqPHSzovjoRZasSU0uoCcUOznHfrp5Qok6wTag8 +dpD7W2fWrH4NIm0blccOoLR2RZa2FhH/hcpjB5qf/aJSOQyi2o3KYwdlCkGb +jcPGEPnnqDx28Gn+yEbOmbHEfz520P5euKK+XJt4F0b52EJohHGAtbYOofuW +ymMLOpbnXaSXjCe+cqkJ2RbWKD5QX5ejS0y4TvnYwj2Vtb8ilfSJSl1qh2gL +PKdn1xVWGRCqh6kJlzzedm+Vc/kEIl+aKkBbEEUZH9tibETUxlI7RluIdGeH +m34zIg53UwVrCx6n9NDZFGMiawO1A7WF8l1lh74snkhM7aB2kLYgJzHz8x8z +E2JxFPXCyBYK1NLSHraZEC191Ase8nq30e9AmETs2UQVsA2srE0pHn/clMio +pwaoDWQ/tI4KWGNGzPSiCt4GKixWNcj6mhP7Uu+SeWxAx3m+KZNlQXhXUxOE +DbC/Dlh8NLEkzugcJPPYwPoJ3p1t46yITQLqic0G9g/57N2rZU18m0c9cdkA +bJKsPsGwId6FUjtYGyhLCpUx0LMlfJdSeWxgWLSpRd/Sjgj0pfLYgO0xXtoJ +d3vinx21Q7eBM6jyoNjGYdTHBs7vWnWr97EDcbOAGm/W4Hz8E7NxJpOoi6Ym +eGu42zFeV6eeSdzSpyZka3C46BK2a5cjMXyX2pFZw9MUS21LIyfiM496IrEG +v9ouS5WnToRHXjyZxxqKt529aL3MmXAzod54WAMRMm7bXhUXIm/HAjIP+fnJ +iMeGeS5EwZspZB5r8Nc5u7gzlEUEaTiReazhWd2FMFltNrFdNIHMYw1estvf ++b9iE/ZhimQea3iwzjmtaqcrsSK2k6wfK+BYPXufznMj9t/9QeaxgoSFG1PP +DrgRdUQJmccKbrGOOT/EHGKPUR6Zxwq239c/PbyPSyyeTb2xsQK7L4zi8Lk8 +YvP3JDKPFaRnxBQOWbkT7/O3knms4PGYqYfypPnEyr8ryTxWcM4qfuLpX3yC +v2EumccK5tXa7blQSBD+3p5kHitouTTxc9gcAXEplspjBTvNQ+dovhYQLsPU +DtKK3L9+dfOdLCQkPlK/11nBavP9u40KhKM+VqCYscYpXiAifOKo3+MswXRD +4rRtT0VEuT81wVuC54kvzxU8xUTKljdkHkswUQq+al4iJjK7qTc2llD7zrDt +c4AH0VSUTeaxhLPNjDTDHx7EuqaLZB5LMAji3++N8CQcQ5PJPJZwUveCw7Ih +T8KFGU/msYQqW5bWsiOTiQ3+MWQeS9A5Lh3UazqFaH2xksxjCSxveQVDNIW4 +eXQBmccSjOcJ9T8HTiWu3KZ2TJYg9SDnpFn3VOKnsZjMYwnZKwNj5E9OIx4V +u5AFbwFODxYkKrt5EYf3mJEFbQGH/9acKvjhRXqMJQvWArIUO9Nt9k8n7LlS +5AC2gBiVvdenuc4gBlz+knkswKj7fNb4xhnEc89PZB4LOFjEvZ1ywZtICn9C +5rGAy9sW3nwf6EPMyUgn81jADj2ZK/ljfQndjngyjwVw0uxT5n7yJSrmLCfz +WMBX2XVTArxnEt131MzaWRYweK3tvXfwTOJ/n5JsJA== + "]]}, + {RGBColor[0.945109, 0.593901, 0.], PointSize[0.009166666666666668], + AbsoluteThickness[1.6], CapForm["Butt"], LineBox[CompressedData[" +1:eJwt2Xk4VN8bAHBEv6gQyVJklyjG7Ns9s1gTSirtNbRJixa0aSdaVNKiqKjI +t4WSVBxvWUpEoagQss5IK+353bnxRz3nGfec857P+77nzsNCttZ/qZqKioob ++Y/y/wHqRwqnt0StTOmS4xDdjTNV/0hBsDrjVptcjq+/vdhc9kMKz/Y+HD/r +vRw/WX3swpx+Kfg/qLj2+YMcF94TnMr6LIVSy0cL7n2W4wOlacWVvVKwu5Lt +dK1PjmlHH9nmyKWwJeCgVfl3Ob5hkoEXd0jhvvVs7ujfcjw0yO1gbYsU3hvr +he0fkGNmyLl4nUYpaDMKntgNUWChc+7jUfVSMNsQ6P55qAKPux3LflNNjuve +vevUUuCX340bVj2Vgs7iRWnDdBR42a9luUWPyPlGlu8N0FfgV4oHWuoPpXBl +zrxJyYYK7PJjq6lvvhQm5btKcsYq8CarxN4LuVLYzIwpOj1egc+HjIwayJLC +wRLLbB8rBc6pbCtf9p8UQkINhz+zVeAsv7H1dZfI/U1c+tx8ogInvs9K9T8v +he1/h6uLJinwkoxLDnVJUsjuHp42yVmBx+z8sX5pIjlWBF/vdiHn23g18k+8 +FDapG9puZCowPxoLzsVJYSjDUuspW4Gv5DgVTtknhflboud+5SqwivJnpxS2 +1kkN5XwFFq1wGsBbpCDzniu6LlTg5e8L8mM2SUHvZdkLEVLgyPj/OHPXSSEu +4ljdBZECr/f9vp61SgrlTjluz8UKPGPixVXjlkmh9u9k8yqJApta3bAcsUQK +l9rUlp+RKnAVx/iUxnwpEC1OJixXBQ5Z1Vo+bLYUzn+9zT1Hjt/f08IG/lJ4 +bJZY8pIcz7U7tsbRRwr5i54WNJDj61mRjVM9pRB+Z6FlNjmWz8JaEVIp/LTx ++jKDHOuaBPVnElJw+++gcwm53u7bfEUrVwoubY+d1cnx1bZxDGOmFNJWJ0/R +Jfe3P33ocx9nKRzz0IrqJuMZ+/f7g50OUhiyXqc8nox3cdeXoTdtpfC55ypt +CKHAC5Z9O9diIYXgvNZsqUCBR0YOOaRjKoUZtVne03nkeZgaVfKNpFAiMhxw +4CjwgVnMoGX6Usj5Y1BRQ3rMsZo3NV5bCjbDr930pCtww57Y2FxNKYxZ2XAz +jvQcHQkmDepSiDG8WHGa9FalgMj8GaOuEk7mw4WxnlzLXxKQL/09dbydAn97 +cqpU0i+BRo1DtxLJfFLT/py+5JMEfPtv01+R+fagbUZjVI8EROyIp91kPjL9 +8LKkTgncfPxs5yMyXxf60FxzWiVwMfOhz3oynwVvr26qaJSAUeNUhlxbgSvV +ab9a6yWgtXgtw4msBwNcUPutRgJR9Im+Yg0FHjV8htrwKgmsm719l7kKuZ7i +455xTyTQVr6isuKnHNsuPjnHsUQCdUd6GO5kvYpWuO/hgQS8Lw+7fZCs79R1 +Wb887kvg8+1xhce75fhte0zBzFwJ7Fq5v8j/nRx/f1TxOChbAv3g/bC0QY67 +x+wwXX9VAtPyl93/+EKO86pT7u9Ml8CJea+uP6uU46BfDmnxqRKAlLSzyx7J +cccR29qUZAk821ey92ahHHsmHPa9fkoCZbpoec4dOd6tFqyHEyRwBem6ht6Q +46Smy+MrD0tgrR537OvLZL+xmx3eFCuBcbF3e/4ky/Hsxo1jPuyVQHba0by6 +4/LB+pGAo+xB1PID5Hzx311GbZVAfLEnurZLjlsOLLxhGS6B+id2PzMi5Nik +j7aJESYBzU0Lb8xdLcdO5ev3uodKwLyoZ+FDmRybaVs0Bi6XwPjb1cOaZ5Px +Fgh2rJJJQN1b99qtqXJ85HVJSNQCCTzfe8lbKJbjUcH5544GSiBadqxtG1OO +18w1N7s0g5yv7WXEens5vlTwqT3PVwLnNTdomJnK8Z1Dzt8qvMj1a5Yd2qEr +x5efNExvcZXAHNFNnZND5Hjtxv6+PiSBI9NnHgzu78Y81y15WnwJMD+ZjXvd +1Y0nfQleM54lgQrNprru193Yc1euIYMmgVlnjhUmVHTjg71rcjwdJVBzSVBT +V9CNv/MOuy6wk4CbfYNe7vVufGDZ6MdhluR524RFTT5HPh+miqJNJTCQ9MtA +HN+NJ8+beSXJiMyP2K2v3keR61vr/u+GvgT2f/z4mLGmG6+toAUWaUvg7rN5 +bQYLunHFjHtn6zQl0GSf73DUuxv737tSq1CXQN+vUecuc7v/+ahIQMVjATHL +rhu/sC4wG/1LDH+1UjTPj+7GNRNanCf0i+GDR63KXtVu/HN4KEvwSQwv/gxY +qfV2Ya/KBU7TesRw1dFig8nrLgxrc8cGd4ohopbdW1HShRd/3PQrolUMrD5p +onF2F7addrbyQKMYug67rVA524XHxNsnnqsXw4ELguW7orvw5GumfrdqxGA9 +yf7Y2XVdeG1m5O/SSjFk0YZ3T5/bheuiecmvy8Qw+UbrqgvSLrxCEkTrLRbD ++Us3TA44dmHzxs95qiAGdYP1fdoGXTgmYQrf4L4Yxlh1phn/6cQWqeWFE3LF +ENNX/vRkWyfuHRbuLsgWw6KD5htiyzvxh0deVX5XxXCysy2hN7sTW711nxuU +LgbG/4ydH53sxHG+qzvDU8VAU+R76G/vxLZjCsLjksVwPOHZ6+olnbiPyRqW +ckoMs1QCujXcO3H/tfoz2QliiKJ5bLhq34kdoi7SSg6LYZhdZmTpiE6ccPl0 +WX2sGPqat/2Y8aEDO9vlBfXsFYProsK+gOcdg/Ujhu8XwlaX3ezAarSwFP2t +YtC+krA4O6EDc+4NR3bhZDwbbapGbOzAqWeqWnhhYpCp2919M6MDEy/yo31D +xXAh8JSZGb0D6y6vmSRbLgZJ2OaBmlEdWH+6ft0mmRjcfZ/M+/OhHU9J2LY7 +doEYrn2Ioyc9bce5k3SckwPFEDnzfnRmZjv2Ny9/mzVDDJd2zJs5OaYdW6/K +OlrsKwbmmlXnbILasb12oVu9lxgmWCiCjxDtWKb57ZfClYz/1OtLa4zbccX8 +wJwBROZDLVcGX9qwVVvKan2+GM6EeQ5d9bQNm22NtrVjkecx0v3vjMtt+L6F +zlsejTyPKy5Ttka14d91nJO+jmKIk2rLm2e24ZbkIX4yOzE8aqhv3OvYhldu +WDs03JI8r43HbJarteHEwG0FsaZiMBvBfxBT9w4H+UzcmGwkBm5qdVbHf+/w +y+mbJ2bri2EKe87XPTveYcXSlc3F2mLwL688sMj/Hb4Y+zOxXlMMvgvpEZut +32HVAkfvHnUxiD9G5z7vax2sHzLeXWVeK0pb8UX/jTn6v0SgPuqXs/BEK5bn +xK6w6xdB/bmxodOWtuIXtqJx/E8iOD/J4dcFeiuWZZys8u0RwZJ79k001Vac +wD2yW9YpAj13QwOVyha84rU9M7xVBPjZl3MjklpwU1xwZ2yjCObMLYyavbQF +/5wiOp1cL4Le1s3ZzU4t+K5JwZTsGhFEhlhxMn40Y5Ofr38VV4rg28f7etcf +NmPz7tNX68tEEBouFX+Oa8ZlnT/m9xSL4PXPu0Ub/ZuxQf/PESogAl7U+CSm +cTN2yq7N178vgmlR67vG47dYkotD7XJFkPT91BDs8RZ7a9wdx88WgdOqm/vc +qpqwT0pRhe9VEdBe4jW5AU1k/2vaJksXwR4uxrr1jZh/XXNSeKoIxIlZmwLm +NGJrG7fG2GQRTO1OTNhV34CHdRw5lHxKBPeYa4xOzWzA7z72CLMTRBC9hat+ +6tkbnOs2p7f4sAhu3Pk2a5fXG7yr7UVKfawIGO8zdAPgNXZ7KvPr2SuCMWN9 +aLrM14P1I4IAcVve7fRX+Na2a1n6W0UgX7Qm3dXoFV4kXbXELlwEneGK3/nR +9VgtgKvHDxMBN3reXbMvdfjcdcMi31ARfDyEG1YuqMMuM4ZulC0XwfdDo5en +lLzEhWINm3CZCFZGLwjMd3iJXbeMfhm7QASOEaeziuJfYPhNj0kOFIH/4sdr +cz7VYkZZECd7hghqxfLEw9NrcerbtO5iXxHkjB2w9L9Rg4eKvibVe4ngw/uh +hgNaNVgmD5ja4yqC/Xmq6xODq3FeU8mfASSC7Vs/0A3yn2PfY8Ib+nwRFI7O +7TQc9RyHbbm52I4lgvkyvhE76Bk2P2mtx6eJYO7jv3HtwVV4XldCka+jCPIZ +6m8T/zzFFmtUNsnsRLBbM8Zxx5EKvGFCiG24pQi0PGI2XDAtx/6Gz+tiTUXQ +36Oe8/tiGc7nMWOTjURw4NfA+yO2j/HNYyd42foieLA+0mJhailmjO9TFGuT ++/Nf4xtsVILFzdOS6zVFUJHUsjFtfxF+8+KKb4+6CLK9q4+P/fJgsH5EYLtU +dL1iNuDggssyu34E8ytn7169ugC/fedR4tuD4ESa/Zlb4+/hdRve2YW3Ivjo +1X95VWkuHhu6OS65HsHcBwWXEpfcwk1PNd8XVyIYNlrFKaj1Bs49ddyvpxjB +ZY8t36PkGTijwvim/n0ER0zl6VFvLuAbK0+P5mcjMHI4t6U4JBE/W6sfIUtH +sHj3zBKfB1ux5tuYV7HJCFROWzvPboki5t7p52cnIDi4fJuQHX+CePh9EZl/ +CMxcdodNeJJKSNKKyHxDkHF42sLnQZmEzh/rILtwBMPFFr+jR2QT86fGlPiG +kuuncbonfsshHI7K7cJlCM6vWRNe+ymP2FbuG5cciECQ+jBtz+98wvvXrZ5i +XwS655I4Zw8AkWJu4tfjisDTImjtj/MPiTD+rmx9PoLOOl74HFxMPPbu1ufT +EFx5aOGT/66USJnuHy6zQ1DbYvjVYlQZ0T81vz7WFIEl03RVnHs5USm042fr +I3iVT7vZt+cpMcE6gfRCcD1yZllQWRWhRvkg2MxwDQwZ/pxY/Hw16UNApns7 +3ZpVTQhONRT79hAw6suhiLfBNcTZgKmkDwFnuYTV2ZO1xLahBbHJ9QQwTfpZ +cytfEE3XJvcUVxIwNPH2TWPNOgKmXPDtKSag/cq2E6896gnrxtHZ+vcJ6Aj0 +bj0b94rQWhqrz88mQDPV4sTi56+Jda1/N8nSCZi2byDbZlwDMXvmpvrYZAKq +1NqZPSGNxIOCHl52AgGuJtUWOQVNxJWxS5PrYwlQX/buHqHVTIxZ2zQwsIOA +lgMtRhfvNBP0CYEyu3ACrpvMvb16eQtBu/O82DeUgBHXi0wGjFsJnXHepA+5 +vruZV2BVK/F0VnFsciAB6a0rRZtj3hFrlgtJHwJa91xWkUnaiB6fXN8eVwLu +2dfG6qm0E35aTqQPAYzaz2/ioJ04ejad9CHD3qP27cmeDuK2ujnpQ4Aqe8ib +aq9OIldyivQhIODD15hUvS4iaZYu6UOOr9b94TZ1EYtF+0kfAl6t/k9w+mo3 +8a9+CNjLWOcK2+VEdGIE6SOEoAEbgxvTFcQHlQ+kjxBKKyuuL53QQ7Aky0gf +IbSmBo9qU31PLJlDtt96IRzZ+l4wsek9EeIeQPoIoSFwOY1T0EsEaJaTPuTz +vOrekec+EOapYtJHCBm6J++9EH8kynXzSB8h8KOFsv23PxKBMyeHy9KFYBY1 +vzdl4ifi8dqLpI8Q/L9/WWh84RMxZrEJWT/k/F+H5Hwz+ky42x4hfYRwecPB +99xjn4mAhxpk/QihcuOh4c0jvhBfpm4lfYTgN7a0eHLsF6Ks6SPpI4SFcX1V +If/7SjRGkPHIhPD2wdhJx2O+EhOMGkgfIXx4wGnI1OwjrhdOJ32EEBE3tfH6 +oT5i9ZpHpI8Qto+d7Xxev59YYS0kfYSgsSnwRdSZfuJsy03SRwgjT06rmGLz +jRh+eQLpI4SEXchAPfsbkRNGlrupEM4wbLIyie/EcVeyfegLwTxLNZmo/E7c +NCPbkaYQXL7Wvilc9IP49/1UCJaq50Inf/lBHOsi222/ABgvF/nF7f9JLKhX +kD4CyN9guLdm/C9CVkVeR60CKHpVoqV19xdx4Wkd6SOAWcNWvZsU8JsYW+ND ++gggYGCoNvr0m6h6W0T6CKABn44THvlD5H/hkj4C6HG3mmNP+0u8084ifQSw +8WTaZrXav4QrzZb0EcDWLJOex5EDROvcs6SPAH55ugZiHRV054Ae6SMA9ZTw +d9rBKqi0iMy3WAF4zL5oOOuuCtIdMkDWjwCebHz6NUFHFc1xI+MJF0D4k+0a +35apoqBoMp5QATg5imuvFaoiWikZj0wAA6cNl+QZq6EidXK5QAFU66teHbNJ +DY2WkNv3FcC9039yHj9XQw5R5HG4CuCWw8htlU5DkNpd8nrhCwDKnFQnxA9B +Zz+T8dAEULdhqeuLD0PQz4nk9HYC6Le/7vZyujoylpHbNRWAS4+mhsNtdfT7 +JBm+vgAi7kXurjHWQBcqyOPUFEDF8Z8FVTs00L/6EcDmrfF3xndqoIku5HT9 +fOhdzV5b5DcUjQkit9fDh3Whn9vu3R2KSo+R4bbyYUgEGA21+R/iPiDjqedD ++qELWpeO/g+F9pLxVPIhMCvx3smB/6EgE/L6KuaD8duzE5rWDEOmbuR27vOh +y/hOQOTbYejUGjK8bD48XtxGLJuuiepPkPGk8wFuWXemF2uiVwVkPMl8uKMX +6SPkaqGz78hfT+DD0+1NYbY3tJDVMDLfYvnQ+nV2QJDtcBTioHzf4cOYyLav +X1KGI2dfMp5wPpRmiqcYGI9AjmFkPKF8WOk8yVs9cQRadJz8WMYHFc30b6A3 +Ej26o/ThwwHGDT/vYyPR8jdKHz5o3XKbkaavjYQDSh8+bN8bolZ2Qht5WZHx +8PnQlmG6IH+sDjrgQQ5pfEDmi4K2p+ogjVClDx+8Np3UijbQRbeU5W5Knu8e +d27OXF2UdFvpw4eh+fnCsvO6KPe10ocPqaY/DUs6ddG/+uFDe8bfR+lOo9AB +G6UPD8IXPPEJixyFpngrfXiwg7/gisXDUUgcpvThwYDkzuu8EXpo9UmlDw++ +b6hvYQXqoWcFSh8erKoEfOaiHgppIx8v5sEc/3VhnZ/0EG+40ocHDwY6fhiL +9JHIRenDg9SX1oH0eH0UNUfpw4O/L+0P0t/qo487lT48qFXpTzRxHo3OZih9 +eGAdELupa9dotPUZuXwsD74+ezcxuXY0Ov5dWT88YERo5HImGCBQtv9wHkSY +enc3bzNA7Z5KHx5MTBp18n61ARpYp/ThwdL3gYWP7ccg3dNKHx6MNrSQDds9 +Bhk/UPrwQGQYsmPLmzHIqFvpw4P293TD8SxDpD1Kebw8GHomyr7/qCH6wVH6 +8OC82ZTcgV5D1LBY6cOD3MgTBXwfI3RbWe6mPPC8EoQyrxqhfcr2oc+DGVnZ +fO+RxshHeZyaPGg4tPOm2VrjQR8eWEqepVlXG6Pbyun6uZBecV5nAcsELfFT ++nDh+KTPfY/OmCC1CKUPF7SXFs9aqjYWJaUoJ+TC7/WGLsyQsWhCqdKHC8tn +K2LYNWPRtfdKHy7M0BMFhgrHIXsDpQ8XbqYZpNVkjEMpAqUPF6KHh65YbWCK +1IOVPlzo9pJmcPeYoqUHlD5cyFx4Rsb5bIru31T6cOGv18aTK2VmaJgy32K5 +UDy80v1pjRnyUQa0k/w8LWNdkPt4dEDZ/sO5kLH6jfPse+PRU2U8oVy435Ly +vNvQHOkq45Fx4UF1Z1DoDHMUoIwnkAuKWE+/W/Hm6Iyy/H25YPW/Bwm4why1 +Ko/DlQuxU6bTDmtZoEnK64PPBdWAH3aWXhYoUjmkceGU1d2ILfstUIlyejsu +TLt7xPzkYwukryx3Uy5YGuy0jNS0RMHK8PW5oMuO2W7qbYlyKB8umI+/TIs5 +ZDnY37iw/mkDcfuZJZpJ+XDggdjhUvpoK5Sp3F4PByZsOxq8cI4VUlOG28qB +5G0621+lWKH5yuOr54BQeqnXqN0K5Sk5Kjnwrcr/7jhHa2SgfLyYAxWWRo1t +G6zReuV27nOgiN83JyzfGtUo23c2B6pN5E4PNWwQUxlPOgd+FvYvrPOzQaeU +x5/MAU+HsZ1ZSTborzLfEjiQMX/2Y98OGxSsXD6WA04B/6llu9iicuWfS3Zw +oGyU4Ym6HbaIoYwnnNzPaP/2uqe2KFkZTygH7Bv1ZzwaZ4eGKj+WcSAwZP7b +S6F2aLVyuUAO7Mt3iNtQYIdeKLfvy4G7NbtmOOtMQELKhwOvbyzkNyyZgNKo +9sSBkdMfiiNuT0BalA8H+HeuLlPVskdhlA8HlrWaZm5ZZI+Ut3WsKQeSqg1G +vLttjwjKhwOPY44f5I2ciNIoHw58UE1y2LV04qAPB+aJbbtz8US0jPJhQ7wb +t+SNkQOqoHzYkK9dU/hhgwNyonzY0H32S/3nKgeUSPmwQfdjkm67oyP6Tvmw +gRhWtqw0zhEtoHzYsL59+5sT3Y6okPJhQ0rM3TWzvCYhqn1ns+FJ71ZzjcxJ +KJryYcNfk5KPqcMnoy7Khw3WIxLfOq2ZjKYqfz2BDf4PFT3/PZ+MrlI+bNgu +LDMyZDkhHer7Nhsyt08KCjvjhNZRPmxYPL9hS7uKM6qhfNjgdUzjz2mGM6JT +Pmw4uViP83KFMzpB+bDB95GaY1KyM/pG+bAhuPRlfXu1M5pD+bChacFh4u4w +GrpP+bDhziH7BaMRDZlRPmz4PjOD8W0TDe2kfNhwIVerZMk1GmqlfNiQcWOa +dkA7DblSPmwYLd6iW2nqgi5TPmzoCIkpr5rlMujDBvGkSDTniAuiputnQUPM +1NCQJy6olPJhQd0Wdf8hGnRkS/mwgDP0/EcrER3FUT4s6LMf71mxlY56KR8W +mHTsCvx9h46ox4tZkMp7bJHzlY6odnufBUftPqd9oTEQ1R6yWdB8daDp3loG +iqR8WHDkycdqzesMRLWvZBZc3lmyo7mHgYSUDwtsqra3E45MdJ7yYYFarrG6 +TSgTUd/ndrJAwjz95thVJgqmfFhQFLE5KO49Ez2ifFiwKYOdMNKJhRwoHxaI +HtWEjAtjoUOUDwtotT7y3Fss9JHyYYFb1aVRjf0sNIPyYUF03pvmwzw2yqV8 +WNAe/2F2RRQbGVM+LJDNbAlPLGKjrdSBsmC4ZrZQPoyD3lI+5PlmLrz6xJeD +RJQPCyp48oesRA66SPmwoCVvxq7JDZxBHxZ42pzpzLbioiDKhwmZO6APVnER +tb0eJrAeF/03L4eLqHBbmdDy96Lm7j9ctJ/yYUKWVbAOw4OHKI5KJpxnqRaE +HeUN+jAhj71Nj9/AG/RhQr/tC50jdnykR/kwYZ76iNvrNvDRBsqHCc1V5mqN +hXz0kvJhQlys/rfaEQLEoXyYEEBrSwicK0BJlA8T3B8dq1+eIUB/qP7GhOne +40vUvgkQdT2Hk8+De4SFuxA9pHyY0GBfOiI/UYhsKB8m8GOS91W3CxG1XCC5 +3/qKlmAWgeTUATBhqVmAxYYYAvlQPkwwCKS7/qknEHW8fHK/+0KmDHFA//KN +xoSa9B/0fdsR2kT5MKGpoFllzzOEXlE+TPjzLj7w7ygRoq5ffSYYBc2z/MEX +Ieo61yTjaahupC0ToX9/32ZAjF9/XMYR0aAPA57kl9gvuC/6l289DDCxFt/z +6xAh6rptZcD2fSsEO0eJB+uHAb3N/KxegXiwfhiwnHXf4MwKMZpG+TDg876O +0H3HxSiH8mHAgaqC29dAjAwpHwY46Is/6r8Xoy2UDwPqp60bl2csQQ3UgTHg +1H5vXpK75F+/TmDAsnvVXvc2SFAq5cMAQYeGt9EFCRpK1Q8Dxo9oF+ZUStAK +yoccm57/uee3BJVTPgwgtJbP2T5R+q9fyxiwpYY793ygFMVTPgx4FWn0pyda +ir5QPgyY+VNNEnRbimZSPgz4PvvHhCFtUnSX8mFAztFf2RV6rmgs5UPuN12z +sVDsinZQPgw4cdoqs2Gd62D9MODuci9jq/OuSEz5MODvqK0TE6pcB/sbAxae +ymt0HHAdrB8GqP1SpX+c7DbY3+hwhTt7YuNCN0S9vvTQISQgr+jLYbfB+qHD +NG+bAXqh22D90MHfLKUh+YMbUlA+dNj21HI+zdz9X74V0wEH3treO80dXad8 +6GAHfuIXu9wH64cO/w35frn9pvtg/dBhltXV6+Pb3FEt5UMHk/GhgXsMPBCb +8qHD/76xL+p6eKBTlA8dtP7TOfYo0gP9pOqHDhz+F4uMTA80l9owHfzetNul +NnggTPnQQbdQHnFJ2xNZUD502N2hqndT5Il2Uz50uDrdof/Rek/UTvnQYb/K +cuvOi55oCuVDPv8l56xOnSe6RvnQYYq9wSKxphfSoXzoIEmLWbWN74U2UgdK +h6bFIx7Caq/B+qGDoyxNpn3ea/D9gA4u6VN9llZ7/cs3TTrInYbtLlGfMuhD +h42/X6g4sacMvh+4QOyI3LILK6f8y7ceF/BZnNFgenYKolE+LlD+7So3rXIK +OkX5uMDf6qJmmqo3+kv5uMDLTz3Py+jeaCnl4wJBARNGrlrmjZ5SPi6Q+XPT +MYPT3siF8nGBc20vlpSVe6MzlI8LiPQ8t0b/9UbqVIG6wPE9FU1TaVNRCOXj +Apc4QQfHBU9F1ZSPC8yljdjbd2IqElD14wJFqx+V1JVNRRcpHxdoYc5NvfF7 +KtKi3q9dIP15bMhKJx+0hvJxASvxLDMNmQ+qoXxcwGNvYcHu4z6IQSWoC5if +KfFsLfVBCZSPC1zet6LQ6ocP+kL5uECdNMPCw8EX+VE+LnD/xd61Uxf4okzK +h5yP/zeDHu+LNKj3axfYuXF05W/wRfMpHxcI2/WoKf2zL7pF+biArszwDcPa +b9DHBbaPUS9Km+mHZlA+NIhIOXTia7Qfukj50MDi562Zdnl+6KuyobbSYL19 +hIqg2w9JKR8acE+s8jYeOQ3FUz40OKUacnCfzTTUQBUUDUpfsopahdOQDeVD +gwqD6g/Os6YhweFRmyfk0uD3lU/VPrJp6P/H7rB7 + "]]}}, {{}, {}}}, {{}, { + {RGBColor[0.9, 0.36, 0.054], PointSize[0.012833333333333334`], + AbsoluteThickness[1.6], CapForm["Butt"], + GeometricTransformationBox[InsetBox[ + FormBox[ + StyleBox[ + GraphicsBox[ + {EdgeForm[None], DiskBox[{0, 0}]}], + StripOnInput->False, + GraphicsBoxOptions->{DefaultBaseStyle->Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], + TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{-5.3257, + 0.}}, {{-5.3257, 0.}}}]}, + {RGBColor[0.365248, 0.427802, 0.758297], PointSize[ + 0.012833333333333334`], AbsoluteThickness[1.6], CapForm["Butt"], + GeometricTransformationBox[InsetBox[ + FormBox[ + StyleBox[ + GraphicsBox[ + {EdgeForm[None], + PolygonBox[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], + StripOnInput->False, + GraphicsBoxOptions->{DefaultBaseStyle->Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], + TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{-15.9, + 0.}}, {{-15.9, 0.}}}]}, + {RGBColor[0.945109, 0.593901, 0.], PointSize[0.012833333333333334`], + AbsoluteThickness[1.6], CapForm["Butt"], + GeometricTransformationBox[InsetBox[ + FormBox[ + StyleBox[ + GraphicsBox[ + {EdgeForm[None], PolygonBox[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], + StripOnInput->False, + GraphicsBoxOptions->{DefaultBaseStyle->Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], + TraditionalForm], {0., 0.}, Automatic, Offset[10]], {{{-30.9, + 0.}}, {{-30.9, 0.}}}]}}, {{}, {}}}}, InsetBox[ + TemplateBox[{ + GraphicsBox[{ + Thickness[0.00893415527561869], + StyleBox[{ + + FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGI7IGYC4jMg4PPDngEEAowdIPx/cP7B7n1NJo8ZHOwr +I1aY/jV2MAaBz4wOX3fe6vqbauKg/knl5SxODocniQuvmZw3gejn4YXzq+// +uGW8WhDOnzUTCCxFHByaHh2foY3g1/+2KjiXYQznS8+L0zzdYOTwHwTiBR0i +xbdfZNhn6JCeBgTPuOF8mY1i85kUEPyS5SUb/vFzOXR7vWIxOWgIcc8ZDof9 +tbIW6UcMHexKHGtPx7A7fN4QkD3ruKGDCdhDbA5L7u/jm6MMNe8BG0S/IFR/ +D5eD9wl229muUPkEHofb0jWJRqGGDjGqETLn/vDB+eBwaxCG8x+4xjvOuijq +0AMyb6MBnH98145eNgN9OH8GyN87dSD+vS/kcP5q2Bt9aW2HJbeWPzY8zAPn ++z/xvGQazAHnQ/zD4pASe8eNuULb4TrvbbHUMkaHFl7/9VNUdeDxuV71SfO8 +tToOLeK1rJnHftuD9VvrOjz2e5nwV/6HfS0o/Dv0oOH7yX7qBP4qM289h5yp +CYUWn7/Z+98CeuiSDtR/P+xFQB76ou0w/8TkJdnLftofP+y0NnOfFjx9gOPb +Xwsevs+ztL9Nl9WC2s8J54P9u18AzgeHh6GoA9h8E21Iergp7gCzPxoU3jWS +DkdB4XdB16E/otufMUAKGm56cD44/hgN4Hxw/E01cHBbc3Q5Q4SkQyPL0X5D +cUOHN2253UazxSHpI8XQIQ0MxByiFRw/Js8xdNAApW9PUQd9rZXCF7YYwuMH +nD4vGDpEgdyzR8yhYE337YwJRg59IPsMJBxOg8JDzhjONwDpv4Lgg+PrhQkk +/cwRcTgFUj/PFBq+fHA+WP0Hdjj/y76PW9OnMUPSa7KpQyo4vv7ao+Q/pPwM +AGkkpqI= + "]], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl +k2omMe5HZgMAEs4CVw== + "], CompressedData[" +1:eJxdk31IU1EYxjeVQioKLaw528bcx51su1enDlF6KhKlxBShUZaZn31YQkqY +E0nT0JVpaFiKlEUWmZpoipSGJopfZYaFSV8YSegfmohgZTv36hn0wvnjx33u +Oc953vcoTpyLTnIWiURi+9plX072dYtUkRKeNceYQXA4HhOtuROuQs5yUPqI +mcMQqY1qGHWP3N+YOCTzpUbkaFnsX3cHa6bya4YHWMp102GGlTIWlzdFNpbv +W9OzKL9ScHhMqkZF6eaLAT5G2ILDO5K7lVghFadAWH1vncisxELnXGvKohQi +UqwSW7NuZAy/kmJvab5b8k8FCuTrVUPlUsFftRwvbZ15pgQphglb5ZgpTLP5 +VklQRPZ/qxB09RLhHJkSsSqLdOS5BM2Gs/fEUm/h+5AELq7FsoQGB7cj71uf +WUWZJTl4q+n/LYFL3YmnNHR/Ps8dDD0/asLTGu/LUH/+wS+ibyo01H+Tyh5c +hFq4330pnhI/v1VI5GP0osyfZ91J+arFFineIkMEydVZjZjZsbnKSzKab/bn +pQm/I3IkHJ0MdW7XQq+QLZwZN1Lu79nz5OQnI9rI/T5okV5v+5gKFgHEn5iB +xaNtVFTCIo7MgysDj4p3rqm17Kp/hvY7e77p4OkgRsh1hYWMND5OB9L2pO0c +Aon+q07YX86hhfi3+lC2kv87DJS7crzMKd4sQrIsD/3TWMr8HH3XO9il9zp3 +QQcvftD0qCTz9FgDkx8pH8q8rVwdZT6fSQa+RDamQV9H+7V1TVrk83OqFfRd +2tV3oEEj6c8sI+T3TC3oS3XCnJSo6X3W+ED/+pCqCqPjO5mPYg4ppJ+hOsp8 +7pUGyr/sMdz+wWJDqCrTqZjFVPzdcVMXh5nzrduW9+vRU1h3aKCZQy55l9Na +vHeb3/36AYc/i5lfqqNUyLDLBhs4Yd5rlVT///v+B7q0ssM= + "]], + + FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, { + 1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGCwBmIQ3RtcojLd3s5hs/mPQylZmg4+J9htZy+1c0iJvePG +vEPL4YZ0TaLRVDuHGTOBQFLbYcn9fXxzgm0ctjs0PTr+Q8vhDAjssXZYr/qk +ed5bbYctIHO0rB2eJC68ZuKv42BiDATJVnD+fxBYbwnnF6zpvp3xwMJhSntr +1OU72g4ga2ZaWsDtA7sn1BxCi2o59IHce9/MITUNCNo04HxdRfkvOdPU4PwN +enmLGW1UHEDOOjvLHOLOOUoOySB/nbBwUL72KJghRsnhhtAnx/Nt5g7V93/c +Ms5WcIgQ336RIc7c4UD3viaTx/IQ93iaO/REdPszCiD4b9pyu42k5eB8sD+D +ZRwOti0PPzXJ3EF+14J9qX7SDl933ur6G2rhUAM2X8rB7+LEmH+fzRwUQPJ5 +4g7TJvBXme02g7jvjZiDxNQrnBlNZg4PXOMdZ00UgfPB9swUgvNlNorNZ1rA +6RCj4Pgx+Y25g32JY+3pOYwOPV6vWEw+WsL5HzYEZM8Kt4Hz7YHRNsPaDuLe +zbxwPtg/s8XgfLD79aQdePzXT0mtsHWIUY2QORcjB5GPtoHzwfF3wRLOB/vj +jwWcD/bfbAtIvMvLw/mw8Ibx9+TXvJ15VcFhIyje9lg4rBXS4UvXU3TwBsW7 +qiUkPB4qOkSC4sfO0sF5QrNQGpeSwxdQ+LpC+VJKDqBkkRZm6VAJMt9aCZLO +6i0djMFAyeEzKDymW0Ls11aCpnMEv57laL9huhWcX7JV9PdpO2uI+44qQdLh +U2uIezYqQ9OVjcOpw05rM/epQOL7q42DLyiemdXgfEh4q8P5XuB0reHA46Za +yvTKxkFu+QsPvf0aDhpvefcZnLSB50f0/AkAMzmeWg== + "], {{ + 25.814099999999996`, 13.6141}, {26.89529999999999, 13.6141}, { + 27.626599999999993`, 12.7234}, {27.626599999999993`, 11.3734}, { + 27.626599999999993`, 10.339100000000002`}, {26.959400000000002`, + 9.625}, {25.989099999999993`, 9.625}, {24.924999999999997`, + 9.625}, {24.2094, 10.4516}, {24.2094, 11.674999999999999`}, { + 24.2094, 12.898400000000002`}, {24.796899999999997`, 13.6141}, { + 25.814099999999996`, 13.6141}}, {{26.5609, 6.478129999999999}, { + 28.357799999999994`, 6.478129999999999}, {28.978099999999998`, + 6.1125}, {28.978099999999998`, 5.07813}, {28.978099999999998`, + 3.7125000000000004`}, {27.7219, 2.6953099999999997`}, { + 26.053099999999997`, 2.6953099999999997`}, {24.670299999999994`, + 2.6953099999999997`}, {23.7172, 3.5046899999999996`}, {23.7172, + 4.6812499999999995`}, {23.7172, 5.3968799999999995`}, { + 24.129699999999996`, 6.0484399999999985`}, {24.7656, 6.31875}, { + 25.020299999999995`, 6.445309999999999}, {25.4656, + 6.478129999999999}, {26.5609, 6.478129999999999}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGIdIGYCYt+LE2P+Ods7PM/S/jZdVsthi/mPQym3EPz5 +NjpXZtk5wPnFW0V/n3ZzcNDXWil84YkmnD9jAn+V2Wl1OF+4clLJ2SUKcP6O +YKuI/+6yDu6qpUyzHBwcvuz7uDX9moxDA8vRfsPv9g6tCuyqZ7bIOGzRy1vM +aGPvIALS34Lgv2nL7TaaLeXA479+SqqBg0OMaoTMuT1SDjelaxKNUh0czoCB +lIP5taO5JjMQ/PrfVgXnDuDm/47JPfpvlyPcfBgfZn+P1ysWk0BHuPvkHT8m +n/nq4JCaBgTPZBxmgsBHqH/EZOF8mP9h/E0gf8iowfngcGfWgNjn5Ohw/mrY +G/3Z0PBchuBXRKwwPfsYwU8H2cvn5JAQEqS+QFPTYU337QwGfScHA1B8qGg4 +XMyPZz8XieBvANmb4+Tgc4LddvZXbQdvEB3q5MDC2SWfrKfjEFyiMv2/gZPD +k8SF10z8dRz218papPMg+Dtvdf1NPe8I54Pt73OEhp+2g33To+Mzkh0dzG32 +Bk1j1Ib7b84i5Z1/nmvA+TD7wObdd4Cb93lDQPascgcHH1B4LNaGhC+vg0PA +LVDEajvA0ifMfPT0CgBoEj14 + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, + 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgAmJeKK32pHne2VUuDk8SF14z8ddxuJwfz36u0RnO318r +a5G+xcmh9rdVwTkOTTj/TfFW0d/eKnB+wNvLH2cslHdIOHxZOzXT2WFnsFXE +/3ZJhxOaVpNO57vA+T1er1hMVrrC+XUgczvcHJwnNAulaSnA+WD736vA+TNm +AoGlpgOImnnQFe4+dPfrTljww7DNxUF86hXODCdth0SQexxd4XyHpkfHZ5x2 +dcjM/9B6UkQDzn/gGu8466AynA92j5SCw0a9vMWMKa4O/0FgvjTEnv0ucD7Y +f9+d4Xyw+wqdHUoPb3OdeVcBzn8UIb79YoIqnP/3W+mDOYaaDibGQHDZGe4+ +dPcDAL4pwwE= + "]], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIAaxQYAJSjNCxZiR+AxobFxqkMWJYZNqPrXcQIl6 +YtwAANeLAk0= + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJrIGYC4vbl4aeMzng5sHB2ySfr6ThcyI9nP7fTy+FJ +4sJrJv46DstfeOj9D/Ry8Lk4MebfYm0H82tHc01eeDoE3JKuSTTSdthfK2uR +XuPpYG6zN2gaI4L/PEv723RZLYfjmlaTTh9H8ENKVKb/l/CC83u8XrGYKHo5 +6GutFL7wRBPOnzGBv8rstDqcfwYE5ijB+TNB4KUiRJzFyyE1DQjYFB0ixLdf +ZLjm6VB9/8ctY28FB5bFk6wY53o6yO9asC/1nJxDZcQK07PRng7qn1Reznop +6zD5G1v8DB4EX+iT4/m0ox5wPtg/PR4OMaoRMufmyDlUgPRneziYGAPBZXmH +nbe6/qb6e0Dsy1ZwCAb5z8HDwX3N0eUMGYpwfvnhba4zzyrB+bDwLt4q+vu0 +ngc8vNd0385gOO4OD++boGCOdYeHd+Lhy9qpH93g4Q3jw8JzCsg/Nu5wPjg8 ++hB83QkLfhhOc4eHN4wPC28Y/46m7Jr/xUpwvvOEZqE0KwUHialXODMWuUPC +o0YO7l5w+D+TgYTvZ3eH9UI6fOn/pOD+BYcnp5QDKyg+tiL4rqqlTLMEPOF8 +cHpL9ITE6xuo/hmeDiKVk0rOtsjA4x/mHhgfFj/gcJQHph9wApGFp7c3bbnd +RrOlHBJA4bUQmp7OSDnkcP5ckL4YwQfbfxDBTwf56x5uvsqT5nlns7zh5sP4 +MPfuAKUPcW+HVgV21TNbZBzu7+ObY3zJy+HLvo9b06/JOMDyHzi9WMjC+cIg +/UsUHNDzJwDBuJoy + "]], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIIaxWZDYzFDMAOUzoLFxqUEWJ8YcYswk1V5i9NLa +jwDSKwJB + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJzIGYC4oqIFaZnb/s5vGnL7TaaLeVwVNNq0ulwf4cz +YCDlcCE/nv1cJIK/v1bWIr0GwQ8pUZn+fwZu/hvefQYzhQLg5sP4IpWTSs62 +yEDMv+jv0KrArnpmiwxEX4+/w5d9H7emX5NxmGujc2VWm7+D+5qjyxksZOF8 +YZD+JQpwvgfIYcfV4Hz55S889Oq1HEq2iv4+Lebv8CRx4TUTfx0HlSfN884a ++cH5XzYEZM967gvng+3f4+ugqyj/JUdMx+HuPr45xpN8HX68fX3Aslnb4QNI +/Xcfh83mPw6lZGnC+SycXfLJejoON6RrEo2e+sDNE/nkeD6t1sfB5+LEmH+L +tR3smx4dnyHs4xBwC6RQ2+E4KLyXezuY2+wNmsaI4D/P0v42XVbLwcQYCD4j ++HtB4e/iA+dP+cYWP8PHx0Ffa6XwhSeacP6MCfxVZqfV4XxYeMH4O4KtIv67 +Q8PTzQce3gmHL2unMvrA40Pe8WPymaXe8PiC8WHxaX7taK6JgY9DjGqEzLk9 +Ug5rum9nMKT7wON/KTAa/i9E8FkWT7JivIvgb9DLW8wo4gvXn5oGBPN84ebD ++DD7VUHx5+QLd5/PCXbb2X8R7ofFB8x/MD7M/zC+GSi8E9Xh/OO7dvSyXdCA ++K/W1+HEYae1mXFakPT5E8G/D0oPTX5wPiz/zFmkvPPPcQ04PyP/Q+vJEDUH +9PwFAL4FlSs= + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQLe4R8EficKDDFvMfh1K8tB0OX9ZOlewKdFir+qR5 +Hq+Ow0wQyA10eJK48JqJv45DhPj2iwxeCP5b3n0GM/UQ/Pv7+OYYiwU6nDjs +tDZTTsdhw8OXUzf9CXAQ6fF6xbJF28EYBBYHOBwHydtpOXQDhU0yAxwSQoLU +F3hqOnzeEJA9yznAISX2jhvzDzU43/fixJh/zipw/vtF6xXO7lB0ALs/PsDh +738gsJd3eLF9PfPzCQEOrQrsqme2yDhcPZpr0rA5wCFCNULm3B0pB385sSzf +xwEO6p9UXs7ilHIQ/uR4Pk01EM6Xd/yYfMYSwQc52yQw0KHm/o9bxt5SEP+F +BTpUgPjdUhD/HA90cJ7QLJRmpQAJv0OBDm/acruNZks5PBaRPfn0c6BDDMj+ +PVIO7cvDTxmxBDmcAQMph/21shbpAgi+ptWk0/USCD4oGs6qIfjSrx+ZSdkE +wc0D+8cZKr9GChI+4Qh+cInK9P85QXD3wPgilZNKzrbIQPxjFwQPL7B+6SCH +L/s+bk2/JgN3z45gq4j/7rJwvjBI/xIFVPfKGDnsvNX1N5U/yMG+MmKFqa2R +wxtQ+ngU6JAMjk9Dh/x49nOSBwMh9lw3hKSPgkCH60LAiFiG4OtrrRS+YGLo +sLWl5sLmlQg+KJr/70bwYekXbD4Hgg9Op30GDujpGwDb803L + + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQLe4R8EficKDDGRDIUXGA8ZWvPQpmiFFyyI9nPyd5 +MNDBeUKzUBqXkkNlxArTs5sDHcI5xdqN/RUddt7q+ps6PdAh4O3ljzMWyjvU +rNuWVJ8a6KD6SeXlrJWyDltbai5sNkXw25eHnzK6EwDnS79+ZCY1J8DBfc3R +5QwdinC+1Lw4zdMBqnD+nEXKO/8c13BY3X07g+FygIMMSP6ClsNb3n0GM/UC +4fxur1csJqEIvo3OlVnPagMd0tNAQMuhFuS+hYEOf96+PmC5WNNhwoIfhs+2 +BTr8/Vb6YI6hJtz/MPtg/FSQ9jYEHxZeAJv9kKs= + "]}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4uZAz7kN24Idum08d6V9UnSA8UPeXv44o1He +4erRXJOGzcEOM2aCgKxDgJxYlu/qYAf5XQv2pfJJO7QvDz9l9CDYYQ5I+qek +wxMR2ZNP2UMcdgZbRfxvl3Tg+LkgfbMZgg+W343gN4Hskwp1eNOW2230WxbO +d57QLJQmpQTn88cG3DcSV3YQ+eR4Pk0w1KET5N5Lyg6R4tsvMvwLccjM/9B6 +skTF4dOGgOxZj0McHkUAJRxUHUAUw6EQB4mpVzgzFqk6aFpNOl2fEeJwBgR0 +1BwK4tnPSYqGOLBwdsknr1NzAHvzZ7DD32+lD+YEqsP5cxYp7/xzXAPOP3HY +aW1mnJZDj9crFhPZEAdxkPlO2pDwiUbwd97q+ps6H03+cohDC6//+imqWnC+ +x/5aWYvlGnD+q+Ktor9fqztURKwwPfsewQe7+0OIg//FiTH/Dms6KDh+TD7z +McTBHaS/Xcvhxfb1zM+/hDj8ePv6gGWztsOa7tsZDPtDHHQV5b/kiOk4pIHA +rBCHJ4kLr5n46zhsePhy6qYCBJ8TFF+/guH8dJD6TVB+vxacb2IMBJvV4XxY +eILpE8EOKbF33JglVB2+gOLjO1Q+R8VBwiPgj4RwiMOMCfxVZtwqDiElKtP/ +e4Q4fFi0XuFsh7LDg318c4z7QhzCOcXajfmV4eml/PA215l7lSDhcz4EEv9C +CH4pSP6uApxfc//HLWNvOYcDwGBJnxMCSc8PpR3aQOk1BMG30bky6xkngg92 +z5VgSHqUloPzhSsnlZxdogDno+cXGB8AZep5vw== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4h9s8TN85oY6TJ/AX2XWrekA4xuDQLICnH/f +Nd5xlqCMw4QFPwyf7Qt1UP+k8nIWp5RDj9crFhPeMDjfTbWUaZYKgh9SojL9 +v02Yw5u23G6jaCkHCY+APxLOYQ5nwEDK4YmI7MmnxWEONfd/3DLWlnPg+Lkg +fXNamMPf/0BgLw+x3zfMIUY1QuZcjJxDpPj2iwx2YQ4VIPXccg6cIPVaCP6a +7tsZDMwIPti8T6EOvRHd/owB8nA+f2zAfSNzRTgf5v8X29czPy8Jg/OPXNZO +lawLcxCfeoUzw0kbrv7Pt9IHcwQRfI/9tbIW7jpw/pT21qjLc3QdFBw/Jp/5 +GupgarM3aNpBPQcbnSuznv0NdbgtXZNolGrgsLWl5sLmj6EOy1946P2faODw +DeTfm6EO+lorhS+EGDioPWmed3ZXqAMoOP7LGzgEyIll+c4OdWDh7JJPfqfv +4FXdrO8zL9Sh5tOGgOxfehD5+VD18Qj+i+Ktor+zdeH8gFsgB2g7MIBAQKiD +zwl229miWnD+ZvMfh1KyEOkBFh4AdaPuxA== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQDQYXwh0euMY7zmJUcJiw4Ifhs1PhDm/acruNZks5 +BJeoTP/PE+FwBgww+ff38c0xlkLw/eXEsnzlEfz1D19O3WQR4RCjGiFzbo+U +Q826bUn1qRFw82F8kcpJJWdbZBzkHT8mn7GF8pfIOAh9cjyfphrh0KrArnpm +i4yDMIivGOHgvubocgYLWTjfeUKzUJqWApx/4WrYG/3fqnD+fxCYr+Xwhnef +wcxv4Q5PEhdeM/HXcXBTLWWa1YDgv9i+nvl5CILftjz8lJFOuIPPCXbb2V+1 +HWaCAGu4Q82nDQHZVtoOIGrW+TCIvKkWnG+gtVL4goqGw5HL2qmSr8IcXhVv +Ff39Wt0hABQ+38Mc5ixS3vnnuYbDBlD48IQ7pKeBgJaD6pPmeWfFwuHuBdvn +iuB/Y4uf4bMUwQe790y4Q+At6ZrEIk0HWHyycHbJJ/epQezLDoeHB1j9gzCH +E7t29LIZqDqs6b6dwbA8DBL/G5Xh/PLD21xnvlWA81NBznsmA3HftTAH9U8q +L2dxSjlIeAT8kVAPh/PB8WWJ4HP+XJC+2SvcYQbIH5ZSDgqg+A0Md6i4/+OW +cbeUA3r6AwDoMygu + "], {{95.25, 8.670309999999999}, { + 94.78909999999999, 8.018749999999999}, {93.7875, + 7.4156299999999975`}, {93.1672, 7.4156299999999975`}, { + 92.53129999999999, 7.4156299999999975`}, {91.975, + 8.003129999999999}, {91.975, 8.687499999999998}, {91.975, + 9.274999999999999}, {92.29379999999999, 9.831249999999999}, { + 92.77030000000002, 10.132799999999998`}, {93.1672, 10.3719}, { + 94.04219999999998, 10.593800000000002`}, {95.25, + 10.768799999999999`}, {95.25, 8.670309999999999}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4sOXtVMlX0U4TJ/AX2XWrekA4xuDQLICnH/f +Nd5xlqCMw/5TC123cUc6qH9SeTmLU8rBuTvn+e9IBP+IwoaijEIEP0+o+cCp +zkiHN2253UbRUg4yUSnW9/sjHc6AgZRDgkCE5ZYDkQ4193/cMtaWc3gTuEOu +dXOkw9//QGAv76BuyLFGZlakQ4xqhMy5GDmHTseEpxe6Ih0qQOq55RyKMya+ +rSlH8LXbxW6e80fwi0Dy9pEOvRHd/owB8nA+f2zAfSNzRTgf5v8ae9O4XQeR ++CLr3B+einQQn3qFM8NJG67+z7fSB3MEEXyP/bWyFu46cP6U9taoy3N0HTaf +KNs33ynSwdRmb9C0g3oOy2YDQ8gr0uG2dE2iUaqBgxcPk3a7XaTD8hceev8n +GjisdX9YJaIW6aCvtVL4QoiBQxif7qa57JEOoOD4L2/gIP36kZnUiwgHFs4u ++eR3+g7iHgF/JF5HONR82hCQ/UsPIv8mAqI+HsF/UbxV9He2LpwfcAvkAG1I +PMyJcPA5wW47W1QLzt9s/uNQShYiPcDCAwBojvfP + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQ7f6wSmRdf7TD3/9AYC/vcF7p9s+6pmiHA937mkwe +yzscUdhQlOEY7eC65uhyhgpZB5funOe/NaMdUtOA4JmMQ8uBUwtd/0XB+Rl7 +SiZL7EHwy/fNl9JvjXJYI6TDl75PziFBIMJyS0aUQ/nhba4z3yo4+Jh3OiaE +Rjk4T2gWSvulCDHPL8phLUj9PSUH/ySgBp8oB11F+S8521QcXLZ9/nvlAYL/ +5e+Vipdq0XD+8tlAFwdFO7Bwdsknn1NxABn/dEa0w5xFyjv/qKs6BOyQa309 +M9phJhioOtSIrHN/OCva4dfb1wcsHyP4BlorhS+4qMH5Z0DgjaZDOJ/uprn+ +0Q5PEhdeM/HXcWAJAwrcjYLznywFOmAHgm9vGrfLsyfKQR9k3hNthy0nyvbN +T4pyMLfZGzRNUdthjUxUijV/lMMfkP2LNR0EmoEB8DbSYcYE/iqz1epw/pT2 +1qjLMSpwvvK1R8EMMUoO64syJr79E+kgXDmp5OwSBYcVHy/5JklAw/uenAMP +k3a7mGOUAyh6/9dLw+NjZ7BVxP92SYftwOCsuIjgHwc6T+o7gg/2t0y0g/on +lZezOKUcPEAGukU7yO9asC9VTxoSnonRDiFvL3+c8VDaYc775ce8y6MdWhXY +Vc9skXFgB3mwOtrhy76PW9PFZB3Q0xsA7agjQw== + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQveLjJd8kh2iHX29fH7B8rOrwJnCHXCt3tIORMRBc +VnXw752eJ/Q5ymGL+Y9DKadUHTx4mLTbzyH47g+rRNbNR/DL982X0m+Ngutv +OXBqoatflMOFq2Fv9H8j+DWfNgRkV6k73AdZEBTlcPoMEOhoOITz6W6aGx/l +8ChCfPtFBk2H9UUZE9+WRDmkp4GAlkOCQITllgVRDuJTr3BmOGk7bP/890rF +RQQf5l4YX/+uClsjb7TDdoemR8dvaDnotIvdPCcf7TClvTXq8h9Nhwlva+xN +zaIdju3a0cv2QcMhIsX6vr9ttIPvxYkx/5g1HNDDBwBQm4mn + "]}]}, { + Thickness[0.00893415527561869]}, StripOnInput -> False]}, { + ImageSize -> {111.93531257783312`, 22.58844333748443}, + BaselinePosition -> Scaled[0.29815266074630126`], + ImageSize -> {112., 23.}, PlotRange -> {{0., 111.93}, {0., 22.59}}, + AspectRatio -> Automatic}], + GraphicsBox[{ + Thickness[0.007054176072234764], + StyleBox[{ + + FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGI7IGYC4jMg4PPDngEEAowdIPx/cP7B7n1NJo8ZHOwr +I1aY/jV2MAaBz4wOX3fe6vqbauKg/knl5SxODocniQuvmZw3gejn4YXzq+// +uGW8WhDOnzUTCCxFHByaHh2foY3g1/+2KjiXYQznS8+L0zzdYOTwHwTiBR0i +xbdfZNhn6JCeBgTPuOF8mY1i85kUEPyS5SUb/vFzOXR7vWIxOWgIcc8ZDof9 +tbIW6UcMHexKHGtPx7A7fN4QkD3ruKGDCdhDbA5L7u/jm6MMNe8BG0S/IFR/ +D5eD9wl229muUPkEHofb0jWJRqGGDjGqETLn/vDB+eBwaxCG8x+4xjvOuijq +0AMyb6MBnH98145eNgN9OH8GyN87dSD+vS/kcP5q2Bt9aW2HJbeWPzY8zAPn ++z/xvGQazAHnQ/zD4pASe8eNuULb4TrvbbHUMkaHFl7/9VNUdeDxuV71SfO8 +tToOLeK1rJnHftuD9VvrOjz2e5nwV/6HfS0o/Dv0oOH7yX7qBP4qM289h5yp +CYUWn7/Z+98CeuiSDtR/P+xFQB76ou0w/8TkJdnLftofP+y0NnOfFjx9gOPb +Xwsevs+ztL9Nl9WC2s8J54P9u18AzgeHh6GoA9h8E21Iergp7gCzPxoU3jWS +DkdB4XdB16E/otufMUAKGm56cD44/hgN4Hxw/E01cHBbc3Q5Q4SkQyPL0X5D +cUOHN2253UazxSHpI8XQIQ0MxByiFRw/Js8xdNAApW9PUQd9rZXCF7YYwuMH +nD4vGDpEgdyzR8yhYE337YwJRg59IPsMJBxOg8JDzhjONwDpv4Lgg+PrhQkk +/cwRcTgFUj/PFBq+fHA+WP0Hdjj/y76PW9OnMUPSa7KpQyo4vv7ao+Q/pPwM +AGkkpqI= + "]], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl +k2omMe5HZgMAEs4CVw== + "], CompressedData[" +1:eJxdk31IU1EYxjeVQioKLaw528bcx51su1enDlF6KhKlxBShUZaZn31YQkqY +E0nT0JVpaFiKlEUWmZpoipSGJopfZYaFSV8YSegfmohgZTv36hn0wvnjx33u +Oc953vcoTpyLTnIWiURi+9plX072dYtUkRKeNceYQXA4HhOtuROuQs5yUPqI +mcMQqY1qGHWP3N+YOCTzpUbkaFnsX3cHa6bya4YHWMp102GGlTIWlzdFNpbv +W9OzKL9ScHhMqkZF6eaLAT5G2ILDO5K7lVghFadAWH1vncisxELnXGvKohQi +UqwSW7NuZAy/kmJvab5b8k8FCuTrVUPlUsFftRwvbZ15pgQphglb5ZgpTLP5 +VklQRPZ/qxB09RLhHJkSsSqLdOS5BM2Gs/fEUm/h+5AELq7FsoQGB7cj71uf +WUWZJTl4q+n/LYFL3YmnNHR/Ps8dDD0/asLTGu/LUH/+wS+ibyo01H+Tyh5c +hFq4330pnhI/v1VI5GP0osyfZ91J+arFFineIkMEydVZjZjZsbnKSzKab/bn +pQm/I3IkHJ0MdW7XQq+QLZwZN1Lu79nz5OQnI9rI/T5okV5v+5gKFgHEn5iB +xaNtVFTCIo7MgysDj4p3rqm17Kp/hvY7e77p4OkgRsh1hYWMND5OB9L2pO0c +Aon+q07YX86hhfi3+lC2kv87DJS7crzMKd4sQrIsD/3TWMr8HH3XO9il9zp3 +QQcvftD0qCTz9FgDkx8pH8q8rVwdZT6fSQa+RDamQV9H+7V1TVrk83OqFfRd +2tV3oEEj6c8sI+T3TC3oS3XCnJSo6X3W+ED/+pCqCqPjO5mPYg4ppJ+hOsp8 +7pUGyr/sMdz+wWJDqCrTqZjFVPzdcVMXh5nzrduW9+vRU1h3aKCZQy55l9Na +vHeb3/36AYc/i5lfqqNUyLDLBhs4Yd5rlVT///v+B7q0ssM= + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, { + 1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {1, 3, + 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBWIQbd/06PiMbGsHXv/1U1IljBy+77zV9VfU2kH9Le8+ +A0sjhxvSNYlGT60cboJoVyOH/DXdtzM2IPjh4tsvMugh+P3BJSrT51s6/AcD +Q4cvIPNcLR22mP84lDLL0IHLTbWUKcrCIQKkr8/Awe/ixJh/j80dPm8IyJ7F +buDwJHHhNZP15g4PQAoW6MH5cxYp7/zTrgPnB9wCWajtkAYC08wcfE6w2842 +1YLzf719fcCyWROu/g+IvxjBF66cVHJ2iQKcvyPYKuK/u6yDiTEQLDZ3+LLv +49b0azIOdb+tCs5JmDu0KrCrntki4/AiS/vb9FgzBxGQ/hYE/01bbrfRbCmH +A7WyFulfzB3OgAEm/9Rhp7WZcRZwPjiY9iP4y1946P03tHSIUY2QObdHyuE5 +yH35VnDzYXyY/eD4m20Jd1+31ysWE0FLuPvB8cJqCfcfjA/zP4wPCx99rZXC +F65Ywfl/vpU+mPPRysEfFN5B2nD1sPCH8VtACeipLpx/XeiT4/ljBpD4trJ0 +qAWFo4UhxH+KVnA+OL30I/j1IPqGlUO0guPHZBlDB5UnzfPOWlnDzYOl18eg +cLiP4MPSLwAYsEa/ + "], CompressedData[" +1:eJxTTMoPSmViYGCQAWIQfaRtefgpJjsHXUX5LzliOg4R4tsvMtyzdXiSuPCa +ib+Ow9QJ/FVm2rYOG/TyFjPO0XZYcn8f35xgG4ft5j8OpWhpO5gYA0GytYPE +vDjN0x+04Pz1qk+a5/FqOXC4qZYy/ULwz4DAHBtU/hobB5Eer1csVzTh/AtX +w97o71aH84UrJ5WcXaIA5+8Itor47y4LsXeBjcOXfR+3pl+TcUhNAwIxG4dW +BXbVM1tkHKaD3B9t7SAC0t+C4L9py+02mi3lsPSFh97/jzYQc89g8hNi77gx +R9jC+U+ztL9N34ubv7dW1iI9xB5uPowPs1/9Le8+g5l2cPeVbBX9fZrPDu5+ +WHzA/Afjw/yPHl8AwpXMQQ== + "], {{29.421899999999994`, + 17.618800000000004`}, {28.945299999999992`, + 17.618800000000004`}, {28.532799999999995`, + 17.206299999999995`}, {28.532799999999995`, + 16.729699999999998`}, {28.532799999999995`, 16.2688}, { + 28.945299999999992`, 15.854700000000001`}, {29.4063, + 15.854700000000001`}, {29.867199999999997`, + 15.854700000000001`}, {30.296899999999994`, 16.2688}, { + 30.296899999999994`, 16.729699999999998`}, {30.296899999999994`, + 17.173399999999997`}, {29.867199999999997`, + 17.618800000000004`}, {29.421899999999994`, + 17.618800000000004`}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGIdIGYC4gaWo/2G3+0dnmdpf5suq+VQvFX092k3Bzjf +/NrRXJMZCD6P//opqQscHPS1VgpfeKIJ58+YwF9ldlodzheunFRydokCnL8j +2Criv7usw/19fHOMZzk4fNn3cWv6NRmH29I1iUahDg6tCuyqZ7bIODxNXHjN +5L29gwhIfwuC/6Ytt9totpTD8hceev87HRxiVCNkzu2Rgrh3n4PDGTCQcriY +H89+7iOCLz71CmeGlCNO/pRvbPEzRJzg5sP4MPvVnzTPO7vKEe6+nbe6/qb6 +OzqkpgHBMxkHYxDwdoT4R0wWzof5H8bfpJe3mFFGDc73vTgx5h+zhsNkkH1z +HB3OXw17oz8bGp4MTnC+8CfH82m2CP5/EEh3ckgICVJfoKnp4K5ayjSrw8nB +ABQfKhoO2Zw/F6RvRvC9T7Dbzj7q5OADor9qOzwBhed6JwcWzi75ZD0dhze8 ++wxmdjlBxP11HCLEt19kSEPwg0tUpv/XQPDB9j+HhZ+2w01Q/O11dDC32Rs0 +jVEb7r85i5R3/nmuAefD7AObZ+EIN6/H6xWLyUUHBx9QeCzWhoRvuoNDwC2Q +wdoOsPQJMx89vQIAbxouwQ== + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4vk2OldmuTk7dNt47kr7pOgA44e8vfxxRqO8 +g7tqKdMsB2eHGTNBQNbB/NrRXBMDZwf5XQv2pfJJOyx/4aH3f6azwxyQ9E9J +h4TDl7VTXzo77Ay2ivjfLumwpvt2BoO7C5yfCJIPdIXzF4Ds43NzeNOW2230 +WxbOd57QLJQmpQTn88cG3DcSV3Y4UCtrkf7H1aET5N5Lyg4+J9htZ191dcjM +/9B6skTFoe63VcG5Ba4OjyLEt190UIXIx7o6SEy9wpmxSNXhDe8+g5mrXBzO +gICOmkNFxArTs8wuDiycXfLJ69Qg4mecHf5+K30wJ1Adzp+zSHnnn+MacP6J +w05rM+O0HDbq5S1mFHFxEAeZ76TtYAEKnwkIPo//+impEq6o8g2uDi28QAlV +LTjfYz/QY8s14PxXxVtFf79Wd+jxesVishPBNzEGgt2uDv4XJ8b8O6zpcFO6 +JtFor6uDO0h/u5ZDDufPBemHXR1+vH19wLJZ2+HLhoDsWeGuDrqK8l9yxHQc +0kCAz9XhSeLCayb+Og5/YnKP/tvlAueD4+u8M5yfDlJvB+X3a8H5YHdsVofz +YeEJFs92dkiJvePGLKHqUA+KjxNQ+RwVhxOaVpNO/wempwn8VWbcKg4OTY+O +z8h2cfiwaL3C2Q5lB1C0MXxzcQjnFGs35leGp5fyw9tcZ+5VgoRPBTT+hRD8 +UpD8XQU4v+b+j1vG3nKQeBdyhaTnh9IOK0DptdEFzhf55Hg+7a0znA92T7Mz +JD1Ky8H5wpWTSs4uUYDz0fMLjA8Afgd1CA== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4pASlen/Fdwdpk/grzLr1nSA8Y1BIFkBzr/v +Gu84S1DGoW15+CmjFHcH9U8qL2dxSjnU/bYqOMfgAed/2hCQPUsfwefxXz8l +NcHD4U1bbrdRtJTD5G9s8TNyPBzOgIGUg96EBT8Mz3k41Nz/cctYW86hMmKF +6dnNHg5//wOBvbxDMMj+Bg+HGNUImXMxcg7iU69wZiR5OFSA1HND1Vsj+Adq +ZS3S37jD+RUg+dPuDr0R3f6MAfJwPn9swH0jc0U4H+Z/82tHc00ueMD5b3j3 +Gcx85AGx10kbrv7Pt9IHcwQRfI/9QIvddeD8Ke2tUZfn6Dose+Gh9/+iu4Op +zd6gaQf1HB7s45tj/Mjd4bZ0TaJRqoHDxfx49nMn3R2Wg9RNNICE9wx3B32t +lcIXQgwcNurlLWaMcXcABcd/eQMHlsWTrBhl3R1YOLvkk9/pO/yKyT36T8nd +oQYU8L/0IPKqUPXxCP6L4q2iv7N14fyAWyAHaDukgUCbm4PPCXbb2aJacP5m +8x+HUrIQ6QEWHgDA+u7p + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQ3bo8/JRRjp/D3/9AYC/vcCE/nv1coJ/Dge59TSaP +5R2+bAjInnXe18F1zdHlDBWyDrW/rQrOLfB1SE0DgmcyDgmHL2uneiL4LIsn +WTEe9YHznyQuvGYS7uOwRkiHL32fnIPOhAU/DOV8HMoPb3Od+VbB4QPI/O/e +Ds4TmoXSfilCzHvp7bAWpP6eksMN6ZpEo6feDrqK8l9ytqlAzOXzhfPf8u4z +mDkLwb+7j2+O8SdfBxbOLvnkcyoOc210rsyq83OYs0h55x91VQcX1VKmWQ1+ +DjPBQBWiv8nP4dfb1wcsHyP4BlorhS+4qMH5Z0DgjabDBr28xYxvfCH+8tdx +ML92NNeEA8EH+3+vD5wv8MnxfFqqj4M+yLwn2g5LX3jo/Rf0cTC32Rs0TVHb +wcQYCLK9Hf6A7F+s6QCKhv/q3g4zJvBXma1Wh/OntLdGXY5RgfOVrz0KZohR +cpgP8p+bt4Nw5aSSs0sUHHxOsNvOrvWGhPc9OYc13bczGM57Q/TVS8PjY2ew +VcT/dkmH45pWk06/R/D/xOQe/WflC+eDw7vN10H9k8rLWZxSkPRx09dBfteC +fal60g6uoPAU8HMIeXv544yH0g45nD8XpFv7ObQqsKue2SLj4ND06PgMZz+H +L/s+bk0Xk3VAT28A3pEhjg== + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQ7XOC3Xb2WV+HX29fH7B8rOpQEbHC9Gyyr4ORMRBc +VnX4E5N79J+Rr8MW8x+HUk6pOlzIj2c/99IHzm9dHn7KqAfBf5K48JpJuA9c +f8Lhy9qpL70dLlwNe6P/G8Gv+bQhILtK3WHGTCD46O1w+gwQ6Gg4bNDLW8zI +4+PwKEJ8+0UGTYe5NjpXZpn5OKSngYCWg+6EBT8M+3wcxKde4cxw0nY4rmk1 +6fR7BB/mXhT5dF+H7Q5Nj47f0HLYWytrkd7j6zClvTXq8h9Nhx6vVywmO30d +ju3a0cv2QcNhz62uv6nHfR18L06M+ces4YAePgAM2I4f + "]}], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZiR+AxksEk1hxj1lJhJLb2UuBMA +8t8CMw== + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJjIGYC4uASlen/WwIcZswEgkpVB+FPjufTRAMd/oPA +fi2H60dzTRqkAx22OzQ9Ov5Dy4Hj54L0zWqBEPWS2hB15gj+/X18c4zdMPnP +s7S/Tf+r7aD6pHne2U8BcP6Ghy+nbioJcNgAkshVc9h5q+tvqjpUXlbLQfr1 +IzMpiQAHmXlxmqcvaDm82L6e+TlPgEPNpw0B2VbaDlO+scXPuOLv8CRx4TUT +fx0HV9VSplkv/BzeFG8V/b1a20EFbJ8fxP03tBx8TrDbzpb1d5izSHnnn+Na +EPc5+cP9u6b7dgZDvr8DC2eXfLKflkMOJ9DDzf4OG/TyFjPe0XSIyT36b5N1 +gENG/ofWkyEqDjz+66ekevg7uK45upyhQtZh6QsPvf+W/g6paUDwTMbhA9CZ +s+T9HUQqJ5WcbZFxMDEGAm4EH+ZedP4ZMJCC6J/uD+fLO35MPrMU6t56aYfl +IPtW+juEvL38ccZBaQeJqVc4Mw4h7P8DcvAjqP41cg5bW2oubGYMcOi08dyV +pqQACU+OAAeQs4yTFSDhHRLgsPLby4ozDcoO4PRxIMChVYFd9cwWGYcI8e0X +GQ5B+VNkHMQ9Av5InA5w6I/o9mfcIO3gLyeW5Xs5wEF+14J9qXzSDrtB8Xk7 +wOFNW2630Wwph8WTrBh9BQLh/kHn167bllQvieB/BvlfGTdf02rS6fqIQLj5 +MD4sPMHusw+Eu79/wQ/DZ0ZQ+SMy8PS8I9gq4r+7LDy9g82zlnNAzx8ATHt7 +EA== + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYCYo6fC9I3MwU7JIQEqS/wVHeA8eWWv/DQ26/h +UBmxwvQse7DDetUnzfN4tRxebF/P/Fwg2CHglnRNopG2Q/vy8FNGL4IcfE6w +287+qu3grlrKNOtIkMOTxIXXTPx1HCYs+GH4bBaCf/iydqpkFoKfH89+TtIw +yEGkx+sVyxZtB+nXj8ykvgQ6yIPsr4fatybQYbtD06PjEpoOxiDQHuggC5K/ +rwbnG4FoYRU4/4FrvOOsifIOj0VkTz59HuiwM9gq4n+7JMS9BUFwPtj+pQi+ +8CfH82kfgxxiVCNkzu2Rcrh+NNek4XeQQ39Etz/jBmm4/2fMBIKdspDwYgt2 +OAMCa+Qg5j0MctgBMi9d1kHbatLp+gNBDl/2fdyafk0G4p7ZCP6a7tsZDNoI +PticB4EO6WlAoKYI5+8A+T9CFc6Hxc/nDQHZs4SDHOYsUt75Z7kWxP/5CD7M +PhgfrP9MkIO+1krhCyxaDuIeAX8k7gdB/GOp6XB/H98c42dBGOkBxgcA3hr4 +8w== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGCQAWIQnZ4GBJ+CHVg4u+ST9XQcvrPFz/B5GezwJHHhNRN/ +HQfhT47n07YGO/hcnBjzb7G2g7bVpNP1DcEOAbekaxKNtB3e8O4zmOkV7GBu +szdoGiOC/zxL+9t0WS2H9uXhp4wKEPwX29czP5+B4IeUqEz/PyfYQV9rpfCF +J5pw/owJ/FVmp9XhfOHKSSVnlyjA+TuCrSL+u8s62OhcmfVsZrDDl30ft6Zf +k3HYeavrb2p5sEOrArvqmS0yDq6qpUyzPIIdRED6WxD8N2253UazpRy8q5v1 +fdYFO5wBA0x+bO7Rf5uOI/gF8eznJB/i5k9Y8MPwmVsI3HwYH2a/zOtHZlIS +IXD31azbllT/FeF+WHzA/Afjw/yPHl8AAavKxw== + "], {{79.05630000000001, + 17.618800000000004`}, {78.5797, 17.618800000000004`}, {78.1672, + 17.206299999999995`}, {78.1672, 16.729699999999998`}, {78.1672, + 16.2688}, {78.5797, 15.854700000000001`}, {79.04059999999998, + 15.854700000000001`}, {79.5016, 15.854700000000001`}, { + 79.93130000000001, 16.2688}, {79.93130000000001, + 16.729699999999998`}, {79.93130000000001, 17.173399999999997`}, { + 79.5016, 17.618800000000004`}, {79.05630000000001, + 17.618800000000004`}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4h9s8TN89oY4TJ/AX2XWrekA4xuDQLICnH/f +Nd5xlqCMw4QFPwyf3QtxUP+k8nIWp5RDj9crFhPdUDjfTbWUaZYLgh9SojL9 +f0yow5u23G6jaCkHCY+APxLJoQ5nwEDK4YmI7Mmnk0Mdau7/uGWsLefA8XNB ++ua2UIe//4HAXh5if26oQ4xqhMy5GDmHSPHtFxniQh0qQOq55Rw4Qeq9EPw1 +3bczGJQRfLB5QqEOvRHd/owB8nA+f2zAfSNzRTgf5v8X29czP5+C4B+5rJ0q +OS/UQXzqFc4MJ224+j/fSh/MEUTwPfbXylq468D5U9pboy7P0XVQcPyYfEY0 +1MHUZm/QtIN6DjY6V2Y9kw11uC1dk2iUauCwtaXmwmbBUIflLzz0/k80cPgG +8u/PEAd9rZXCF0IMHNSeNM87eyvEARQc/+UNHALkxLJ8d4c4sHB2ySe/03fw +qm7W99kX4lDzaUNA9i89iPx+qPp4BP9F8VbR39m6cH7ALZADtB0YQKAgxMHn +BLvtbFEtOH+z+Y9DKVmI9AALDwCKk+oK + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQPWHBD8NnSeEOf/8Dgb28w9aWmgubQ8MdDnTvazJ5 +LO/gplrKNEsk3MF1zdHlDBWyDj1er1hM/oY5pKYBwTMZh9p125LqLyL4AXJi +Wb79CP6BWlmL9IgwhzVCOnzp++QcnojInnxqHeZQfnib68y3Cg6uIPM1whyc +JzQLpf1ShJinGOawFqT+npLDzltdf1Plwxx0FeW/5GxTcWAAgS0I/pHL2qmS +vxB8G50rs56phjuwcHbJJ59TcZB5/chMKifcYc4i5Z1/1FUdCuLZz0nmhjvM +BANViP68cIdfb18fsHyM4BtorRS+4KIG558BgTeaDqpPmuedVQp3eJK48JqJ +v47Di+3rmZ9vCIPzwf7vRvCvHs01aYgPc9AHmfdE20HB8WPyGdMwB3ObvUHT +FLUdQMGU9ijU4Q/I/sWaEHsOhDrMmMBfZbZaHc6f0t4adTlGBc5XvvYomCFG +CeK/C6EOwpWTSs4uUXD4tCEge9brUEh435NzWDLJitFXJMwBFL3/66Xh8bEz +2Crif7ukw4aHL6duWoLge1U36/ucQvDB4f0hzEH9k8rLWZxSkPQhGe4gv2vB +vlQ9aUh4moY7hLy9/HHGQ2mHpkDPuQ1e4Q6tCuyqZ7bIOLzl3Wcw0y/c4cu+ +j1vTxWQd0NMbAFoVG9Y= + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQ/WlDQPYs4XCHX29fH7B8rOrA+XNB+uZ7YQ5GxkBw +WdXBq7pZ3+dYmMMW8x+HUk6pOmxtqbmweSGCP2HBD8NnRQj+gVpZi/QIhP7a +dduS6hXDHC5cDXuj/xvBrwFZXKXuMBMEVMMcTp8BAh0NB9UnzfPOGoU5PIoQ +336RQdNB5vUjMymPMIf0NBDQcngiInvyaXGYg/jUK5wZTtoOGx6+nLppCYIP +cy+K/IMwh+0OTY+O39ByWNN9O4Phc5jDlPbWqMt/NB2EPjmeT+MMdzi2a0cv +2wcNBy2rSafrBcIdfC9OjPnHrOGAHj4Ad4aOoQ== + "]}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQ3Xzg1EJXs0iHLeY/DqV4aTt8Z4uf4fM3wmGt6pPm +ebw6DmdA4EGEw5PEhddM/HUcur1esZjsRfAVHD8mn1mI4At9cjyf1hnhcOKw +09pMOR2HxyKyJ5/mRziI9AA1btF2SAMBsQiH4yB5Oy2HA7WyFul3wh0SQoLU +F3hqOoCsPbst3CEl9o4b8w81ON/34sSYf84qcP77ResVzu5QdPCsbtb3uRTu +8Pc/ENjLO0i/fmQmxRLh0KrArnpmi4wDx88F6ZvVIhwiVCNkzt2RcmgK9Jzb +EBbhoP5J5eUsTikHV9VSplkzEPzgEpXp/9cg+PtB7jsS4VBz/8ctY28piP9O +RjhUgPjdUg73/Xun51lFOjhPaBZKs1JwiEyxvu9vGunwpi2322i2lMOJsn3z +pdIjHWJA9u+RcmiY6tydUx4JCdczUg53VNgapzYj+PuB0bGtG8F36c55/nsm +gj/n/fJj3usR5nnwMGm3b4PKr5FyaHdMeHrhFIJ/peKlmuEDhHtgfJHKSSVn +W2QcjihsKMrYGAkPL/4Iyy0n+iIdvuz7uDX9mgzcPTuCrSL+u8vC+cIg/UsU +UN0rY+SwGeThpkgH+8qIFaa2Rg7Pf6/8eCk00iEZHJ+GDvamcbs8TSIdPm8I +yJ513RCSPh5HOFwHBewyBF9fa6XwBRNDh/VFGRPfykTC+atlolKs9RF8WPoF +m8+B4EeIb7/I0GfggJ6+AYAoWoc= + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQ3Xzg1EJXs0iHMyCQo+IA4ytfexTMEKPkYG8at8vT +JNLBeUKzUBqXksPTC0q3f6pFOoRzirUb+ys6bD5Rtm8+V6RDwNvLH2cslHdY +//Dl1E03IhxUP6m8nLVS1uHF9vXMz1cg+Dtvdf1N9Ufw/eXEsnz5Ixzc1xxd +ztChCOdLzYvTPB2gCufPWaS8889xDYf7+/jmGLtFOMiA5C9oOSg4fkw+sxDB +318ra5F+AsHPj2c/J/kxwiE9DQS0HF6qGXKsEYl0+PP29QHLxZoO6kCujFak +w99vpQ/mGGrC/Q+zD8ZPBWlvQ/Bh4QUAE2yNbA== + "]}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4hp707hdmtEO3Taeu9I+KTrA+CFvL3+c0Sjv +IN/6OnCHWrTDjJkgIOvgwcOk3S4X7SC/a8G+VD5pB/Y1MlEpwdEOc0DSPyUd +/Hun5wlVRzvsDLaK+N8u6RCwQ6719UoE/3jZvvlS+jFwPksYn+6m3hiHN225 +3Ua/ZeF85wnNQmlSSnA+f2zAfSNxZYfvwY+Xzm6JcegEufeSssPb5ce8zQtj +HDLzP7SeLFFx4I+w3HIiLMbhUYT49osOqg6lIOtMYxwkpl7hzFik6rD/1ELX +bbejHc6AgI6aw3ag8wI7oh1YOLvkk9epQcRzoh3+fit9MCdQHc6fs0h555/j +GnD+icNOazPjtBxWfLzkmzQh2kEcZL6TNiR8ziH4W04APSwUgyrvFuPQwuu/ +foqqFpzvsb9W1mK5Bpz/qnir6O/X6g6xuzx5mJIR/PKXaoYcKTEO/hcnxvw7 +rOmwwHXb579AvjtIf7uWw5Ols48oZMQ4/Hj7+oBls7aDOCgAjWIcdBXlv+SI +6TgINB84tZA3xuFJ4sJrJv46DlOcu3OeP46G86+fA4ZwLoIPVq8K5fdrwfkm +xkCwWR3Oh4Un2H020Q4psXfcmCVUHdodE55eyILK56g4tACVu7YB09ME/ioz +bhUH/ySBCMs90Q4fFq1XONuh7HBEYUNRBmOMQzinWLsxvzI8vZQf3uY6c6+S +w3ml2z/rnKDxL4Tgl4Lk7yrA+TX3f9wy9pZzCAUmn7n8MZD0/FDaoX4q0MPH +o+H8FmDylqtF8K9UAD3gEQ1Jj9JycL5w5aSSs0sU4Hz0/ALjAwAplm+S + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4i9/r1S8FIt1mD6Bv8qsW9MBxjcGgWQFOP++ +a7zjLEEZh57peULNFrEO6p9UXs7ilHLgj7DccqINwZ/wtsbedB6Cb3Pfv3f6 +tliHN2253UbRUg4v1Aw51uyJdTgDBlIOundV2BrfxjrU3P9xy1hbzmG7XOvr +wAexDn//A4G9PMT+Y7EOMaoRMudi5BxC+HQ3zd0e61ABUs8t52BrGrfLcwmC +/z348dLZNQi+PUg+J9ahN6LbnzFAHs7njw24b2SuCOfD/O/Bw6Td/g7Bd39Y +JbLue6yD+NQrnBlO2nD1f76VPpgjiOB77K+VtXDXgfOntLdGXZ6j69Aw1bk7 +Jz/WwdRmb9C0g3oOBRkT39aUxzrclq5JNEo1cBC9ee57cHasw/IXHnr/Jxo4 +1Iisc38YFOugr7VS+EKIgYPC7Z91WSaxDqDg+C9v4LC+CGiASKwDC2eXfPI7 +fQeZqBTr++LA8Pu0ISD7l56DaadjwlMJqPp4BP9F8VbR39m6cH7ALZADtB1m +zASCkzEOPifYbWeLasH5m81/HErJQqQHWHgAAKrM9zQ= + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQPWMmEHjGOzxwjXecxajgILLO/WGVS7zDm7bcbqPZ +Ug429/17p7fFO5wBA0z+hrnvlx+bjOCbdjomPJ2B4P9Z+fGS76Z4hxjVCJlz +e6Qcjpftmy91H2E+jC9SOankbIuMQ/1U5+6c7VD+EhmHJxeUbv+cF+/QqsCu +emaLjEPsLk8eptnxDu5rji5nsJCF850nNAulaSnA+Reuhr3R/60K5/8Hgfla +DlcqXqoZFsQ7PElceM3EX8dBnCWMT/dXHJzvwcOk3X4OwX/+G+iBpXEOPifY +bWd/1XZYIxOVYl0f51DzaUNAtpW2A9D33uaeUHlTLTjfQGul8AUVDYf9pxa6 +bkuOc3hVvFX092t1SPgUxDnMWaS8889zDYeWA0AFbXEO6WkgoOWwAhhcSRPi +4O4F27cfwf/yF+gDOYR/wO51i3cIvCVdk1ik6QCLTxbOLvnkPjWH9UUZE98+ +iYOHx3lgcNZFxTmc2LWjl81A1aE2a0/JZIU4SPxvVIbzyw9vc535VgHOTwU5 +75kMxH0BcQ7qn1RezuKUckgQiLDcsgDBB4f3ZgTf1jRul+eROIi7LKUc2EEe +Oh3nUHH/xy3jbikH9PQHADE9MKY= + "], {{125.14999999999998`, + 8.670309999999999}, {124.68899999999996`, 8.018749999999999}, { + 123.68799999999997`, 7.4156299999999975`}, {123.06699999999996`, + 7.4156299999999975`}, {122.43099999999998`, + 7.4156299999999975`}, {121.87499999999999`, 8.003129999999999}, { + 121.87499999999999`, 8.687499999999998}, {121.87499999999999`, + 9.274999999999999}, {122.19400000000002`, 9.831249999999999}, { + 122.67000000000002`, 10.132799999999998`}, {123.06699999999996`, + 10.3719}, {123.942, 10.593800000000002`}, {125.14999999999998`, + 10.768799999999999`}, {125.14999999999998`, + 8.670309999999999}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYCYp1Nc98v10twmD6Bv8qsW9MBxjcGgWQFOP++ +a7zjLEEZh591WXtK7BMc1D+pvJzFKeVgfd+/d3oagv975cdLvkUI/gWl2z/r +6hIc3rTldhtFSzksP+Zt3tmY4HAGDKQcTi903fZ5ZoJDzf0ft4y15Rz6D33V +iJmc4PD3PxDYy0Psb0twiFGNkDkXI+cQu8uTh6k+waECpJ5bzuGyb5JARCmC +r39Xha0xEU0+MsGhN6LbnzFAHs7njw24b2SuCOfD/B9uueVE2SwE//riAluu ++QkO4lOvcGY4acPV//lW+mCOIILvsb9W1sJdB86f0t4adXmOrsPnv1cqXkYl +OJja7A2adlDPIfs5MITiEhxuS9ckGqUaOOyfL6V/NyLBYfkLD73/Ew0cgLZd +X+yT4KCvtVL4QoiBw2GFDUUZtgkOoOD4L2/g0J0DNEA3wYGFs0s++Z2+g2PC +0wtK+sDw+7QhIPuXnsP578GPl+pD1ccj+C+Kt4r+ztaF8wNugRygDVHHnuDg +c4LddraoFpy/2fzHoZQsRHqAhQcAoNP+Vw== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQbct1fXFBY6LD3/9AYC/vwKjdLnazKtHhQPe+JpPH +8g6/V3685BuV6OC65uhyhgpZB+v7/r3T/RIdUtOA4JmMw+2fdVl7LBD889+D +Hy8VR/CvVLxUM/yT4LBGSIcvfZ+cw+mFrts+v01wKD+8zXXmWwUHe9O4XZ5P +EhycJzQLpf1ShJj3IMFhLUj9PSWHA6eAGu4nOOgqyn/J2abisLtksgSLViKc +D+SF8fki+DnPgS5OSnRg4eySTz6n4mACNJ6nLdFhziLlnX/UVR0Of9WI6Qfy +Z4KBqgPQ97Zc7YkOv96+PmD5GME30FopfMFFDc4/AwJvNB2OKGwoykhMdHiS +uPCaib+Ow2yQgAaC3w1ygCiCb7nlRNm+/wkO+iDznmg7fP4LDJFXCQ7mNnuD +pilqO7xffszb/GCCwx+Q/Ys1HZRBAbAhwWHGBP4qs9XqcP6U9taoyzEqcL7y +tUfBDDFKDsDYSRLYkeAgXDmp5OwSBYd8oeYDp45Cw/uenMN8Kf27KrcSHEDR ++79eGh4fO4OtIv63SzqAgjNMKRHOBzlPzRTBB+tzT3RQ/6TychanlMN+kIEx +iQ7yuxbsS9WThoRnVqJDyNvLH2c8lHZIn/i2xr400aFVgV31zBYZh7kgD5Yn +OnzZ93FrupisA3p6AwDBey0b + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQnS/UfOBUZKLDr7evD1g+VnXoP/RVI8Y+0cHIGAgu +qzo4Jjy9oGSc6LDF/MehlFOqDvvnS+nfVUDwbbmuLy7gRPCvVLxUM/yTANd/ ++2dd1p4HCQ4Xroa90f+N4Nd82hCQXaXu0AGy4FGCw+kzQKCj4XBEYUNRxssE +h0cR4tsvMmg6fLzkmyTwJcEhPQ0EtBxOL3Td9hlon/jUK5wZTtoOJZMlWMKU +EHyYe2F8A441MlEOiQ7bHZoeHb+h5aB/V4Wt0TPRYUp7a9TlP5oOyQIRlltC +Eh2O7drRy/ZBw+G4t3mnY0Sig+/FiTH/mDUc0MMHAKzTip4= + "]}]}, { + Thickness[0.007054176072234764]}, StripOnInput -> False]}, { + ImageSize -> {141.75865504358654`, 22.58844333748443}, + BaselinePosition -> Scaled[0.29815266074630126`], + ImageSize -> {142., 23.}, PlotRange -> {{0., 141.76}, {0., 22.59}}, + AspectRatio -> Automatic}], + GraphicsBox[{ + Thickness[0.0061330880098129405`], + StyleBox[{ + + FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGI7IGYC4jMg4PPDngEEAowdIPx/cP7B7n1NJo8ZHOwr +I1aY/jV2MAaBz4wOX3fe6vqbauKg/knl5SxODocniQuvmZw3gejn4YXzq+// +uGW8WhDOnzUTCCxFHByaHh2foY3g1/+2KjiXYQznS8+L0zzdYOTwHwTiBR0i +xbdfZNhn6JCeBgTPuOF8mY1i85kUEPyS5SUb/vFzOXR7vWIxOWgIcc8ZDof9 +tbIW6UcMHexKHGtPx7A7fN4QkD3ruKGDCdhDbA5L7u/jm6MMNe8BG0S/IFR/ +D5eD9wl229muUPkEHofb0jWJRqGGDjGqETLn/vDB+eBwaxCG8x+4xjvOuijq +0AMyb6MBnH98145eNgN9OH8GyN87dSD+vS/kcP5q2Bt9aW2HJbeWPzY8zAPn ++z/xvGQazAHnQ/zD4pASe8eNuULb4TrvbbHUMkaHFl7/9VNUdeDxuV71SfO8 +tToOLeK1rJnHftuD9VvrOjz2e5nwV/6HfS0o/Dv0oOH7yX7qBP4qM289h5yp +CYUWn7/Z+98CeuiSDtR/P+xFQB76ou0w/8TkJdnLftofP+y0NnOfFjx9gOPb +Xwsevs+ztL9Nl9WC2s8J54P9u18AzgeHh6GoA9h8E21Iergp7gCzPxoU3jWS +DkdB4XdB16E/otufMUAKGm56cD44/hgN4Hxw/E01cHBbc3Q5Q4SkQyPL0X5D +cUOHN2253UazxSHpI8XQIQ0MxByiFRw/Js8xdNAApW9PUQd9rZXCF7YYwuMH +nD4vGDpEgdyzR8yhYE337YwJRg59IPsMJBxOg8JDzhjONwDpv4Lgg+PrhQkk +/cwRcTgFUj/PFBq+fHA+WP0Hdjj/y76PW9OnMUPSa7KpQyo4vv7ao+Q/pPwM +AGkkpqI= + "]], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl +k2omMe5HZgMAEs4CVw== + "], CompressedData[" +1:eJxdk31IU1EYxjeVQioKLaw528bcx51su1enDlF6KhKlxBShUZaZn31YQkqY +E0nT0JVpaFiKlEUWmZpoipSGJopfZYaFSV8YSegfmohgZTv36hn0wvnjx33u +Oc953vcoTpyLTnIWiURi+9plX072dYtUkRKeNceYQXA4HhOtuROuQs5yUPqI +mcMQqY1qGHWP3N+YOCTzpUbkaFnsX3cHa6bya4YHWMp102GGlTIWlzdFNpbv +W9OzKL9ScHhMqkZF6eaLAT5G2ILDO5K7lVghFadAWH1vncisxELnXGvKohQi +UqwSW7NuZAy/kmJvab5b8k8FCuTrVUPlUsFftRwvbZ15pgQphglb5ZgpTLP5 +VklQRPZ/qxB09RLhHJkSsSqLdOS5BM2Gs/fEUm/h+5AELq7FsoQGB7cj71uf +WUWZJTl4q+n/LYFL3YmnNHR/Ps8dDD0/asLTGu/LUH/+wS+ibyo01H+Tyh5c +hFq4330pnhI/v1VI5GP0osyfZ91J+arFFineIkMEydVZjZjZsbnKSzKab/bn +pQm/I3IkHJ0MdW7XQq+QLZwZN1Lu79nz5OQnI9rI/T5okV5v+5gKFgHEn5iB +xaNtVFTCIo7MgysDj4p3rqm17Kp/hvY7e77p4OkgRsh1hYWMND5OB9L2pO0c +Aon+q07YX86hhfi3+lC2kv87DJS7crzMKd4sQrIsD/3TWMr8HH3XO9il9zp3 +QQcvftD0qCTz9FgDkx8pH8q8rVwdZT6fSQa+RDamQV9H+7V1TVrk83OqFfRd +2tV3oEEj6c8sI+T3TC3oS3XCnJSo6X3W+ED/+pCqCqPjO5mPYg4ppJ+hOsp8 +7pUGyr/sMdz+wWJDqCrTqZjFVPzdcVMXh5nzrduW9+vRU1h3aKCZQy55l9Na +vHeb3/36AYc/i5lfqqNUyLDLBhs4Yd5rlVT///v+B7q0ssM= + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4htCnxzPLzNz6Lbx3JX2SdEBxg95e/njjEZ5 +B9UnzfPOzjJzmDETBGQduNxUS5mqzBzkdy3Yl8on7fAiS/vbdF9zhzkg6Z+S +DjEKjh+T35g77Ay2ivjfLunwaUNA9qzlFnA+WH6PFZx/HWSfmY3Dm7bcbqPf +snC+84RmoTQpJTifPzbgvpG4soP41CucGUI2Dp0g915SdtDXWil84Yi1Q2b+ +h9aTJSoO0yfwV5lFWzs8ihDfftFBFSJ/xcpBAqRvkapDyVbR36fzLB3OgICO +mkO31ysWE0ULBxbOLvnkdWoOJsZAsNnc4e+30gdzAtXh/DmLlHf+Oa4B5584 +7LQ2M07L4Q9InaMFxF1O2pDwsbKE87eY/ziU4mUF53OA5KWsHVp4/ddPUdWC +8z3218paLNeA818VAx36Wt1hg17eYsYeBP8/CPRbO/hfnBjz77Cmgw+Inmzt +4A7S367lkL+m+3bGAmuHH29fH7Bs1nao/21VcO6ElYOuovyXHDEdh/Q0IDCz +cniSuPCaib+OQ19wicr0fks4Hxxf283hfJDytGlmEH6/FpwPCQd1OB8Wngwg +8MHMISX2jhuzhKrDDFB8rDaHyOeoOGi85d1nIGkBEedWcZCeF6d5+oOFw4dF +6xXOdig7+Jxgt53NauUQzinWbsyvDE8v5Ye3uc7cqwQJHy5rSPwLIfilIPm7 +CnB+zf0ft4y95RyOg+LJzgqSnh9KOzwHpVdZSzj/ADDY0r+Yw/kyIPcomEPS +o7QcnC9cOank7BIFOB89v8D4AK/SXwo= + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQvfNW19/U+44Of/8Dgb28A8viSVaMRx0dDnTvazJ5 +LO+g+qR53lknRwfXNUeXM1TIOmzUy1vMKOLokJoGBM9kHCZ/Y4ufsccBzje/ +djTXxALB19daKXxhir3DGiEdvvR9cg5H2paHn1Kydyg/vM115lsFB58T7Laz +r9o5OE9oFkr7peig/pZ3n8FOO4e1IPX3lBwk5sVpnt5g56CrKP8lZ5uKw0wQ +aHSA8+UdPyaf4XWE84U/OZ5PS3V0YOHskk8+p+JwMT+e/dxHR4c5i5R3/lFX +daiMWGF69rMjxJyZqhD9Xx0dfr19fcDyMYJvAHK3ixqcfwYE3mg6PE5ceM0k +3tHhCYj213HI5vy5IL3aAc4H+98Awe/xesVistEeEg5PtB22mP84lMJl72Bu +szdomqI2xNw9tg5/QPYv1oSEm5mtw4wJ/FVmq9Xh/CntrVGXY1TgfOVrj4IZ +YpQcltzfxzen2NZBuHJSydklCg5/vpU+mPPQFhLe9+Qc9tfKWqS32DmAovd/ +vTQ8PnYGW0X8b5d0+B2Te/RfkgOcrz9hwQ/DdQg+OJh+Ojiof1J5OYtTCpI+ +fB0d5Hct2JeqJ+1QAQrPZkeHkLeXP854KO0w30bnyqx1jg6tCuyqZ7bIOBRv +Ff19epujw5d9H7emi8k6oKc3AK+iITg= + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQXf/bquCcg6PDr7evD1g+VnVY3X07g+G6g4ORMRBc +VnXQnbDgh+EyB4ct5j8OpZxSdWBZPMmKMRbBL9kq+vv0P3s4X19rpfCFKfZw +/epvefcZ7LRzuHA17I3+bwS/5tOGgOwqdYcZM4HgpJ3D6TNAoKPhcPyw09rM +f3YOjyLEt19k0HRYcn8f35xge4f0NBDQckg8fFk7ldHBQXzqFc4MJ22H3zG5 +R/8lIfgw96LI33Jw2O7Q9Oj4DS2Hz0BrZ/13cJjS3hp1+Y+mw/5aWYt0HUeH +Y7t29LJ90HB4A3TeTCtHB9+LE2P+MWs4oIcPADoCjb0= + "]}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4jXdtzMY4l0dEkKC1Bd4qjvA+HLLX3jo7ddw +6PF6xWKS6eqwXvVJ8zxeLYcczp8L0qtdHQJuSdckGmk7LAMq+6/p6uBzgt12 +9ldtB5Cys49cHJ4kLrxm4q/jsPNW19/UfgRfwfFj8hldBL8yYoXp2d3ODiIg +i7ZoO1zOj2c/5+jsIA+yv17LIRtk32Ynh+0OTY+OS2g6/AeBdCcHWZD8fTU4 +38gYCIRV4PwHrvGOsybKOyQcvqydqunssDPYKuJ/uyTEvZYucH4FyP7FCP6B +WlmLdBtXhxjVCJlze6QcXFVLmWYFuDr0R3T7M26Qhvt/xkwg2CkLCa90V4cz +ILBGDuIfaVeHHSDz0mUd3vDuM5h5y8Xhy76PW9OvyTgkgtwzEcH/vCEge9Z6 +Zzgf5A1jaWeH9DQgUFOE83eA/B+hCufD4qf+t1XBuQZnhzmLlHf+Wa7lwAAC +Fi5wPsw+GN8EpP+zi4O+1krhCyxaDic0rSadFof6x1LTIUJ8+0UGNcz0AOMD +ALrR8W4= + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, + 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgAmJeKP1lQ0D2rO/uDk8SF14z8ddxWGCjc2XWOTc4v8fr +FYsJo5tD7W+rgnMcmnD+m+Ktor+9VeD8gLeXP85YKO+gO2HBD8Ntbg47g60i +/rdLOkz5xhY/Y487nB8hvv0iwzcPON/nBLvt7KueDs4TmoXStBTgfLD971Xg +/BkzgcBS0yENBPg84e5Dd/+vmNyj/y65O4hPvcKZ4aTtoAdyT58HnM/jv35K +qoSnQ2b+h9aTIhpw/gPXeMdZB5XhfLB7pBQc6kD+3uDh8B8E5ks7bNDLW8zI +g+CD/efiDueD3bfPzaH08DbXmXcV4PxHII8nqML5f7+VPphjqOnAAAIKCPei +ux8AwwS4MQ== + "]], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIIaxWZDYzFDMAOUzoLFxqUEWJ8YcYswk1V5i9NLa +jwDSKwJB + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJzIGYC4oqIFaZno30d3rTldhvNlnI4qmk16fR1X4cz +YCDlcCE/nv3cTQR/f62sRfofBD+kRGX6fwk/nPwb0jWJRkv94ObD+CKVk0rO +tshAzA/0c2hVYFc9s0UGoo/Hz+HLvo9b06/JOMy10bkyi83PwX3N0eUMFrJw +vjBI/xIFON8D5LDjanC+/PIXHnr1Wg4lW0V/n57m6/AkceE1E38dB5UnzfPO +bvKB879sCMielY7gg+238XHQVZT/kiOm43B3H98cYyEfhx9vXx+wbNZ2+ABS +X+7tsNn8x6GULE04n4WzSz5ZTwfiv1RvuHkinxzPp/31cvC5ODHm32JtB/um +R8dnTPZyCLgFUqjtcBwU3upeDuY2e4OmMSL4z7O0v02X1XIwMQaCYgQfHP5H +EPwp39jiZ5zxctDXWil84YkmnD9jAn+V2Wl1OB8WXjD+jmCriP/usg7zQeF1 +zAse3gmHL2unNnrB40Pe8WPyGVUveHzB+LD4NL92NNdkg5dDjGqEzLk9Ug5r +um9nMDz3gsc/KBr+K3rD+SyLJ1kxxiL4G/TyFjNO8YbrT00DAjkfuPkwPsx+ +dVD8HfKGu8/nBLvt7FpvuPth8QHzH4wP8z+MbwYK70R1OP/4rh29bBc0IP77 +6+1w4rDT2sw4LUj6rPSB8++D0gOTL5wPyz9zFinv/HNcA87PyP/QejJEzQE9 +fwEAKpeNkQ== + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQveHhy6mb/gQ4bDH/cSjFS9shNvfov02HAxzWqj5p +nser42AMAssDHJ4kLrxm4q/j8HlDQPasZgS/fXn4KaMMBL8iYoXpWf8AhxOH +ndZmyuk4eFc36/uYBTiI9Hi9Ytmi7TBjJhDs9Hc4DpK303LwOcFuO9vV3yEh +JEh9gaemg/jUK5wZv/wcUmLvuDH/UIPzfS9OjPnnrALnv1+0XuHsDkWH+MOX +tVMN/R3+/gcCe3kHlsWTrBin+ju0KrCrntki43B3H98c41v+DhGqETLn7kg5 +vNi+nvm5TICD+ieVl7M4pRxWd9/OYIhH8Hfe6vqbWozgqwOD4WxXgEPN/R+3 +jL2lIP7rD3CoAPG7pRzOgABDoIPzhGahNCsFhxhQ+P0OcHjTltttNFvKoXbd +tqR63UCHGJD9e6Qc5B0/Jp+xDYToOyPlECG+/SKDF4IP8o5kEIK/v1bWIj0B +wd/aUnNhcynCPLB/aqDya6QcQMFsMhHBf8O7z2DmskC4e2B8kcpJJWdbZBwq +Qf4pD4SHVzdIf2igw5d9H7emX5OBu2dHsFXEf3dZOF8YpH+JAqp7ZYwcgktU +pv/3CHSwBxlsawRJHzKBDsng+DR04Py5IH3zrwBIOrpuCEkfqwIcrgt9cjy/ +DMHX11opfMHE0MFfTizL9zGCD0o+M78i+LD0CzafA8EHh2ufgQN6+gYAF9hX +FA== + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQveHhy6mb/gQ4nAGBHBUHGF/52qNghhglB86fC9I3 +/wpwcJ7QLJTGpeQg/MnxfNrbAIdwTrF2Y39Fh+ASlen/LwQ4BLy9/HHGQnkH +cY+APxLzAxxUP6m8nLVS1sFfTizLNx/Bl3f8mHxGFMHPAVmw2t/Bfc3R5Qwd +inC+1Lw4zdMBqnD+nEXKO/8c13BwVS1lmsUT4CADkr+g5dC+PPyUUQaCr/qk +ed7ZPgT/+tFck4btAQ7paSCgBXHf7QCHP29fH7BcrOmgbTXpdP2HAIe/30of +zDHUhPsfZh+MnwrS3obgw8ILAIzdmE4= + "]}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQ/Y0tfoZPZ4jD3/9AYC/vIPP6kZlUTYjDge59TSaP +5R3WdN/OYLAOcXBdc3Q5Q4Wsw6cNAdmzlEMcUtOA4JmMwxMR2ZNPvwfD+Vtb +ai5s3orgqz5pnne2LthhjZAOX/o+OQfP6mZ9n6Rgh/LD21xnvlWAmO8f7OA8 +oVko7ZcixDz3YIe1IPX3lBwUHD8mn3ENdtBVlP+Ss03FIR1k7i0EX8tq0ul6 +hRA4f9EkK0ZfnxAHFs4u+eRzKg5NgZ5zGyaFOMxZpLzzj7qqw9WjuSYNk0Mc +ZoKBKkT/lBCHX29fH7B8jOAbaK0UvuCiBuefAYE3mg49Xq9YTDxDHJ4kLrxm +4q/jECAnluV7PRjOB/t/I4Jvo3Nl1rPWYAd9kHlPtB3al4efMooJdjC32Rs0 +TVEbYi5HsMMfkP2LNR2MQeB5kMOMCfxVZqvV4fwp7a1Rl2NU4Hzla4+CGWKU +HJpB/vsW5CBcOank7BIFhwjx7RcZhKDhfU/OgfPngvTNVsEOoOj9Xy8Nj4+d +wVYR/9slHSQ8Av5InEbwNzx8OXXTBwQfFNxpYiEO6p9UXs7ilIKkD4cQB/ld +C/al6kk7XAOFZ3SIQ8jbyx9nPJR2eLF9PfPzghCHVgV21TNbZBxCSlSm/y8J +cfiy7+PWdDFZB/T0BgDv7xtg + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQHSG+/SKDVYjDr7evD1g+VnUoiGc/J8ka4mBkDASX +VR02PHw5ddObYIct5j8OpZxSdZB5/chM6gSC/50tfobPTARf9UnzvLN1wXD9 +T0RkTz51D3a4cDXsjf5vBL/m04aA7Cp1BwYQ8Al2OH0GCHQ0HHq8XrGYRAY7 +PAI7TNOhOdBzbkNesEN6GghoOXhXN+v7zAp2EJ96hTPDSdtBwiPgj8RpBB/m +XhR59hCH7Q5Nj47f0HIQ+uR4Pk0yxGFKe2vU5T+aDhURK0zP6oc4HNu1o5ft +g4bDhAU/DJ+ZhTj4XpwY849ZwwE9fABjO4ZR + "]}], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZiR+AxksEk1hxj1lJhJLb2UuBMA +8t8CMw== + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJjIGYC4o7l4aeMboQ6zJgJBJWqDq6qpUyzMsIc/oPA +fi0Hzp8L0jfnhTlsd2h6dPyHloONzpVZzyrDIOoltR1MjIGgG8EX+uR4Pm0m +Jv95lva36X+1HSLEt19kcEPwn4jInnx6PNRhg+qT5nm5ag5vePcZzKwKhcjL +ajkEyIll+WaHOsjMi9M8fUHLQeb1IzOphFCHmk8bArKttB1q121LqrcNdXiS +uPCaib+Ow7WjuSYNx0Mc3hRvFf29WhvinzMhEPff0ILY/yjEYc4i5Z1/jms5 +LJlkxej7JQTVv1yhDiycXfLJfloOL7avZ34uAnSfXt5ixjuaDhMW/DB81hfq +kJH/ofVkiIrDzltdf1O/hzi4rjm6nKFC1qENFJ4fQhxS04DgmYzDmu7bGQyP +QxxEKieVnG2RcTgDAjcQfJh70flgdWekIPrlQ+H8I5e1UyXVQiHurZd2AMef +RqhDyNvLH2cclHY4UCtrkW4SCrd/w8OXUze5QPWvkYP4JyTUodPGc1eakgIk +PGNCHUDRaJysAAnv5aEOK7+9rDjToAzxj0iYQ6sCu+qZLTIOPV6vWExEofwp +Mg5e1c36PnJhDv0R3f6MG6QdmgI95zaohTnI71qwL5VP2uEtKD71whzetOV2 +G82WcrgK8l9yGNw/6Hywe3MQfFCyOFuGmx+Te/TfptUI82F8WHh6gtw3CeF+ +cPi1QeWPyMDT845gq4j/7rLw9A42z1rOAT1/AABUt34K + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYCYmudK7OehUY4JIQEqS/wVHeA8eWWv/DQ26/h +sKb7dgZDdITDetUnzfN4tRykXz8yk0qJcAi4JV2TaKTtsOtW199U6wgHnxPs +trO/ajtURqwwPSse4fAkceE1E38dhyOXtVMl34XD+T/Y4mf47EXwl0yyYvRt +CXcQ6fF6xbJF2yFATizL1z3cQR5kf72WgwzIPoZwh+0OTY+OS2g6pIHArTAH +WZD8fTU438gYCIRV4PwHrvGOsybKO0h4BPyRsA532BlsFfG/XdJhJ8i9hxF8 +sP0/EHw31VKmWS4RDjGqETLn9kg5cP5ckL7ZL8KhP6Lbn3GDNNz/M2YCwU5Z +SHhFRjicAYE1cg6LQeaZRDjsAJmXLusQm3v03ybhCIcv+z5uTb8m4yAGcs/7 +cDj/wT6+OcZ1CD4DCJiEO6SD/KGmCOfvAPk/QhXOh8UPKFrOpoU7zFmkvPPP +ci2I/w8h+DD7YPz/ICAf4aCvtVL4AouWg2d1s76PEdQ/lpoOQp8cz6dZYqYH +GB8Azi7qIQ== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGCQAWIQLdR84NRC10gHFs4u+WQ9HQfhde4Pq2wiHZ4kLrxm +4q/jUJe1p2QyR6SDz8WJMf8WazvE5h79t+lyhEPALemaRCNtB3nHj8ln5kY4 +mNvsDZrGiOA/z9L+Nl1Wy2Hnra6/qYcRfOnXj8yk3iD4bcvDTxl9iHDQ11op +fOGJJpw/YwJ/ldlpdThfuHJSydklCnD+jmCriP/usg758eznJN9GOHzZ93Fr ++jUZhze8+wxmnopwaFVgVz2zRcahImKF6dnZEQ4iIP0tCP6bttxuo9lSDts+ +/71SwRjpcAYMMPnVIsAAkULw7U3jdnma4OarG3KskZkVCTcfxofZL37z3Pfg +7Ei4+xIFIiy3eETC3Q+LD5j/YHyY/9HjCwBsg8wN + "], {{ + 100.35599999999998`, 17.618800000000004`}, {99.8797, + 17.618800000000004`}, {99.46719999999999, 17.206299999999995`}, { + 99.46719999999999, 16.729699999999998`}, {99.46719999999999, + 16.2688}, {99.8797, 15.854700000000001`}, {100.341, + 15.854700000000001`}, {100.80199999999999`, + 15.854700000000001`}, {101.23099999999998`, 16.2688}, { + 101.23099999999998`, 16.729699999999998`}, {101.23099999999998`, + 17.173399999999997`}, {100.80199999999999`, + 17.618800000000004`}, {100.35599999999998`, + 17.618800000000004`}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4p7peULNAlEO0yfwV5l1azrA+MYgkKwA5993 +jXecJSjjoG7IsUbGKMpB/ZPKy1mcUg4rPl7yTWpA8HXaxW6em47gX6l4qWa4 +IcrhTVtut1G0lEPLgVMLXbdFOZwBAymH42X75ks9j3Kouf/jlrG2nEPADrnW +1zejHP7+BwJ7eYj9B6IcYlQjZM7FyDm8X37M23xjlEMFSD23nMP1c9+DH89F +8Ce8rbE3LUPwb4DkU6MceiO6/RkD5OF8/tiA+0bminA+zP9Pls4+ovACwX9Q +JbLO/WOUg/jUK5wZTtpw9X++lT6YI4jge+yvlbVw14Hzp7S3Rl2eo+sgo39X +hS0zysHUZm/QtIN6DjxM2u1ihVEOt6VrEo1SDRzWF2VMfJsS5bD8hYfe/4kG +DkDbHlb5RDnoa60UvhBi4LCnZLIEi16UAyg4/ssbOHiADOCLcmDh7JJPfqfv +sP3z3ysVgsDw+7QhIPuXnsN5pds/64Sg6uMR/BfFW0V/Z+vC+QG3QA7QdjAB +xfPhSAefE+y2s0W14PzN5j8OpWQh0gMsPABco/jw + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQvdb9YZXIthiHv/+BwF7ewbTTMeHpihiHA937mkwe +yzvotIvdPJce4+C65uhyhgpZhxUfL/kmBcQ4pKYBwTMZhxdqhhxrVBD880q3 +f9Y9iobz76iwNU5dHe2wRkiHL32fnMPxsn3zpfqjHcoPb3Od+VbBYcPc98uP +VUc7OE9oFkr7pQgxryTaYS1I/T0lhy0ngBqKoh10FeW/5GxTcVgjE5VizR4D +50ekWN/390XweZi028UqYxxYOLvkk8+pOMwBGu+9P8ZhziLlnX/UVR22y7W+ +DjwQ4zATDFQdHlSJrHM/GOPw6+3rA5aPEXwDrZXCF1zU4PwzIPBG02FPyWQJ +lrIYhyeJC6+Z+Os4ZIAFEHwPkAPuRcP5y2cfUdiwKdpBH2TeE20HGf27Kmyd +0Q7mNnuDpilqOwg0Hzi10DTa4Q/I/sWaDuUvgQEgEu0wYwJ/ldlqdTh/Sntr +1OUYFThf+dqjYIYYJQfxm+e+BytHOwhXTio5u0TBgT/CcssJO2h435NzKMiY ++LYmPdoBFL3/66Xh8bEz2Crif7ukAyg4739H8HWBzmuUjYHzTYyBwDnGQf2T +ystZnFIO64uABubEOMjvWrAvVU8aEp4dMQ4hby9/nPFQ2oEljE9309wYh1YF +dtUzW2QccoVAHoxx+LLv49Z0MVkH9PQGAOGnF2U= + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQzR9hueVEWozDr7evD1g+VnUI2CHX+towxsHIGAgu +qzps/fz3SoVkjMMW8x+HUk6pOqwvypj49ks0gu/+sErkGIJ/R4WtcerqaLj+ +F2qGHGtKoh0uXA17o/8bwa/5tCEgu0rdwWUbyIJoh9NngEBHw2FPyWQJlrZo +h0cR4tsvMmg6iN889z14drRDehoIaDkcL9s3X+p4tIP41CucGU7aDjJRKdb3 +vyP4MPfC+FOcu3OeG8c4bHdoenT8hpbDhLc19qZuMQ5T2lujLv/RdPge/Hjp +7JgYh2O7dvSyfdBw2H9qoeu25BgH34sTY/4xazighw8Al+6Phg== + "]}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQvfXz3ysVnXEOW8x/HErx0nbomZ4n1BwQ57BW9Unz +PF4dh/KXaoYcJnEOTxIXXjPx13FY8fGSb5IAgr/Addvnv19i4fzvwY+Xzr4T +63DisNPaTDkdB/9eoIGHYx1EerxesWzRdpgxEwgyYx2Og+TttBxC+XQ3zdWP +dUgICVJf4Knp4NKd8/w3Z6xDSuwdN+YfanC+78WJMf+cVeD894vWK5zdoeig +e1eFrVE11uHvfyCwl3eY8375Me/wWIdWBXbVM1tkHAJ2yLW+rox1iFCNkDl3 +R8qhxt40btfKWAf1TyovZ3FKOWyYC9TwGsG/UgH0MEMcnB8Ccp94nEPN/R+3 +jL2lIP6TiXOoAPG7pRwEmg+cWtgb5+A8oVkozUoBEn4dcQ5v2nK7jWZLOfxZ +CQywXXEOMSD790g5bDlRtm/+qTiHM2Ag5cAfYbnlxDUE/wswOl7eQ/BL982X +0n+L4J9Xuv2zjikebh7YP5zxEPk1Ug57SiZLsMgh+OxrZKJSjOPh7oHxRSon +lZxtkYH4hyUeHl7g8H0Y5/Bl38et6ddk4O7ZEWwV8d9dFs4XBulfooDqXhkj +h+e/gR6+GudgXxmxwtTWyEFGHxhBK+McksHxaehQkDHxbU17nMPnDQHZs64b +OhwHBoeUeZzDdaFPjueXIfj6WiuFL5gYOjxZOvuIQgGCfxeUoJoQfFj6BZvP +geBHiG+/yNBn4ICevgFnL2W1 + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQvfXz3ysVnXEOZ0AgR8UBxle+9iiYIUbJoSBj4tua +9jgH5wnNQmlcSg7iLGF8ulVxDuGcYu3G/ooOT3+v/HgpNs4h4O3ljzMWyjtM +ce7Oea4d56D6SeXlrJWyDhl7SiZL/ImF87ecKNs3fxGCf17p9s+6pFgH9zVH +lzN0KML5UvPiNE8HqML5cxYp7/xzXMPhiMKGooyZsQ4yIPkLWg4LXLd9/vsF +wb+jwtY4VToOzrc1jdvl6RLnkJ4GAloOMlEp1vfT4xz+vH19wHKxpkMEkOtf +G+fw91vpgzmGmnD/w+yD8VNB2tsQfFh4AQBzf5tk + "]}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4nDLLSfK7BIcum08d6V9UnSA8UPeXv44o1He +QSOm/9BXmwSHGTNBQNZh/3wp/bsWCQ7yuxbsS+WTdpj7fvkx7+AEhzkg6Z+S +Do4JTy8opSc47Ay2ivjfLulw+CvQhDoE/++VipdqBxH82UcUNhR9SHB405bb +bfRbFs53ntAslCalBOfzxwbcNxJXdpjq3J3z/HWCQyfIvZeUHSa8rbE3fZTg +kJn/ofVkiYrDQtdtn/9eSXB4FCG+/aKDqgPIOsMjCQ4SU69wZixSdfhZl7Wn +ZHqCwxkQ0FFzADnvUG6CAwtnl3zyOjWH/yAQn+Dw91vpgzmB6nD+nEXKO/8c +14DzTxx2WpsZp+WQL9R84FRhgoM4yHwnbUj4TEDwP4M8vAlN/kyCQwuv//op +qlpwvsf+WlmL5Rpw/qviraK/X6s7nCjbN1/qNoIfyqe7aS6Q739xYsy/w5oO +2XtKJkvcSXBwB+lv13IAhs7vlXcTHH68fX3AslnbYSkoAA8lOOgqyn/JEdNx +UL4NDIENCQ5PEhdeM/HXcUi2vu/fOxvBZ20EhnACgg9WbwPl92vB+SbGQLBZ +Hc6HhSfYfe4JDimxd9yYJVQdYnd58jDFQ+VzVBxAyvfkANPTBP4qM24VhwOn +gDHWnuDwYdF6hbMdyg6/V3685LsqwSGcU6zdmF8Znl7KD29znblXyYFRu13s +5ilo/Ash+KUg+bsKcH7N/R+3jL3lHEDJJ2MjND0/lHaITAF5GMGPBiZvjQwE +nzkM6AFfaHqUloPzhSsnlZxdogDno+cXGB8Ac6iLsw== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4skSLGF8pokO0yfwV5l1azrA+MYgkKwA5993 +jXecJSjjEP/0gtJt10QH9U8qL2dxSjksdN32+W8Ogp8sEGG5pQLBN+90THja +kujwpi232yhayoFfd9Pc9+2JDmfAQMrBgGONTNSCRIea+z9uGWvLOXzViOk/ +NDPR4e9/ILCXh9jfm+gQoxohcy5GzuGwwoaijNZEhwqQem45B4stJ8r2VSP4 +U527c56nI/iWIPn4RIfeiG5/xgB5OJ8/NuC+kbkinA/z//75Uvp3FyD4tlzX +FxcsTXQQn3qFM8NJG67+z7fSB3MEEXyP/bWyFu46cP6U9taoy3N0HaJTrO/7 +JyY6mNrsDZp2UM/hsm+SQERqosNt6ZpEo1QDBxW2xqnOQPXLX3jo/Z9o4AC0 +zZYrONFBX2ul8IUQAwftdrGb55wTHUDB8V/ewOHjJaABJokOLJxd8snv9B2W +H/M27wTGT82nDQHZv/QcTOJ2efKYQdXHI/gvireK/s7WhfMDboEcoO2QngYE +fIkOPifYbWeLasH5m81/HErJQqQHWHgAALdK6HQ= + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQnZ4GBH5JDg9c4x1nMSo4LC6w5bruneTwpi2322i2 +lIN5p2PC05wkhzNggMkvzpj4tqYYwTeJ2+XJU4bgT88Taj7QlOQQoxohc26P +lMPfKxUv1WYizIfxRSonlZxtkXGITLG+798K5S+RceBm0m4Xq0xyaFVgVz2z +RcbhRNm++VLlSQ7ua44uZ7CQhfOdJzQLpWkpwPkXroa90f+tCuf/B4H5Wg7M +YXy6mxKTHJ4kLrxm4q/jsHT2EYUNagj+/vlS+ncFEPxekAf+JDr4nGC3nf1V +2+H98mPe5i8THWo+bQjIttJ2APre3vQcVN5UC8430FopfEFFw+FnXdaektuJ +Dq+Kt4r+fq0OCZ9HiQ5zFinv/PNcw+E2SMGbRAdwPKRpOeQDg+vUx0S4e8H2 +cSLcP1mCJYzPEsEHu9cnySHwlnRNYpGmAyw+WTi75JP71Bw+XvJNEpBBhAcj +MDhvXkt0OLFrRy+bgarDjXPfgx/vTITE/0ZlOL/88DbXmW8V4PxUkLnPZCDu +u5jooP5J5eUsTimH0wtdt33+ieCDw5s5Cc632AIU4U5ymDETCCylHOaCPMSf +5FBx/8ct424pB/T0BwDk/jM2 + "], {{146.45000000000002`, + 8.670309999999999}, {145.989, 8.018749999999999}, { + 144.98799999999997`, 7.4156299999999975`}, {144.36699999999996`, + 7.4156299999999975`}, {143.73099999999997`, + 7.4156299999999975`}, {143.17499999999998`, 8.003129999999999}, { + 143.17499999999998`, 8.687499999999998}, {143.17499999999998`, + 9.274999999999999}, {143.494, 9.831249999999999}, {143.97, + 10.132799999999998`}, {144.36699999999996`, 10.3719}, {145.242, + 10.593800000000002`}, {146.45000000000002`, + 10.768799999999999`}, {146.45000000000002`, + 8.670309999999999}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4uPe5p2ON5Icpk/grzLr1nSA8Y1BIFkBzr/v +Gu84S1DGYbIESxjfyyQH9U8qL2dxSjlcqXipZiiQDOdPde7OeS6N4GfvKZks +oZHs8KYtt9soWsrBMeHpBSXtZIczYCDlkGJ937/XOdmh5v6PW8bacg4aMf2H +vtokO/z9DwT28hD7DZIdYlQjZM7FyDl8D368dDbQvAqQem45h+znv1d+lEPw +T5Ttmy/FjeDngOSZkh16I7r9GQPk4Xz+2ID7RuaKcD7M/x8v+SYJuCD4BbZc +1xd7JDuIT73CmeGkDVf/51vpgzmCCL7H/lpZC3cdOH9Ke2vU5Tm6Dr3T84Sa +WZIdTG32Bk07qOfA2ggMIY5kh9vSNYlGqQYO4ZZbTpQB1S9/4aH3f6KBA/f1 +xQW235Ic9LVWCl8IMXCI3eXJw/Q8yQEUHP/lDRxU2IAGXE9yYOHskk9+p+9w ++2dd1h5g/NR82hCQ/UvPIX3i2xr7m1D18Qj+i+Ktor+zdeH8gFsgB2g7zASB +jUkOPifYbWeLasH5m81/HErJQqQHWHgAAMLo+uc= + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQfWNxgS2XdorD3/9AYC/vMOeIwoYilRSHA937mkwe +yztMde7Oec6c4uC65uhyhgpZhysVL9UMfyQ7pKYBwTMZh5LJEixhjxD8jIlv +a+wPIvj5Qs0HTi1NdlgjpMOXvk/OIcX6vn/v9GSH8sPbXGe+VXC4ce578OPe +ZAfnCc1Cab8UIeZ1JTusBam/p+QQDdLQmeygqyj/JWebikMon+6muZcRfJ1N +c98v/4bgszUCXcyT4sDC2SWffE7FAWT8Uv0UhzmLlHf+UVd1iOk/9FXDIMVh +JhioOgB9f30xkP/r7esDlo8RfAOtlcIXXNTg/DMg8EbTIW6XJw8Td4rDk8SF +10z8dRxMQAKXkuF8FZAD9iP4V3yTBCJWJjvog8x7ou3QOz1PqHlKsoO5zd6g +aYraDh2OCU8vZCU7/AHZv1jTYQ8oAKKSHWZM4K8yW60O509pb426HKMC5ytf +exTMEKPk0JPz/PfKxGQH4cpJJWeXKDhwrJGJSsmHhvc9OQeLLSfK9jUnO4Ci +93+9NDw+dgZbRfxvl3TgBwbn+9MI/gyg8w7cQ/DBwfQx2UH9k8rLWZxSDhGW +QAPZUhzkdy3Yl6onDQlPkRSHkLeXP854KO3AqN0udlMuxaFVgV31zBYZB4tO +oAcVUhy+7Pu4NV1M1gE9vQEAELAaHw== + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQzbFGJiqFOcXh19vXBywfqzpoxPQf+voi2cHIGAgu +qzrc+VmXtedOssMW8x+HUk6pOkRYbjlRdgrBv7G4wJZrM4KfL9R84NRShP6S +yRIsYV3JDheuhr3R/43g13zaEJBdpe6gfBtoQU+yw+kzQKCj4RC/y5OHaXKy +w6MI8e0XGTQdenKe/145N9khPQ0EtBxSrO/79wLtE596hTPDSduBX3fT3Pen +EXyYe2H80wtdt31+meyw3aHp0fEbWg4nyvbNl/qc7DClvTXq8h9Nhz8rP17y +/ZfscGzXjl62DxoOCU8vKN1mTHHwvTgx5h+zhgN6+AAANaCQaA== + "]}]}, { + Thickness[0.0061330880098129405`]}, StripOnInput -> False]}, { + ImageSize -> {163.05480448318804`, 22.58844333748443}, + BaselinePosition -> Scaled[0.29815266074630126`], + ImageSize -> {164., 23.}, PlotRange -> {{0., 163.05}, {0., 22.59}}, + AspectRatio -> Automatic}]}, + "PointLegend", + DisplayFunction->(FormBox[ + StyleBox[ + StyleBox[ + PaneBox[ + TagBox[ + GridBox[{{ + TagBox[ + GridBox[{{ + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #2}, { + GraphicsBox[{{ + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]], { + LineBox[{{0, 10}, {20, 10}}]}}, { + Directive[ + EdgeForm[ + Directive[ + Opacity[0.3], + GrayLevel[0]]], + PointSize[0.5], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full, + ImageSize -> {20, 10}, PlotRangePadding -> None, + ImagePadding -> Automatic, + BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}}, + GridBoxAlignment -> { + "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}}, + AutoDelete -> False, + GridBoxDividers -> { + "Columns" -> {{False}}, "Rows" -> {{False}}}, + GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}}, + GridBoxSpacings -> { + "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}}, + GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}}, + AutoDelete -> False, + GridBoxItemSize -> { + "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, + GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}], + "Grid"], Alignment -> Left, AppearanceElements -> None, + ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction -> + "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], { + FontFamily -> "Times"}, Background -> Automatic, StripOnInput -> + False], TraditionalForm]& ), + Editable->True, + InterpretationFunction:>(RowBox[{"PointLegend", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.9, 0.36, 0.054], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[0.6000000000000001, 0.24, 0.036000000000000004`], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, 1.35 CurrentValue["FontCapHeight"]/ + AbsoluteCurrentValue[Magnification]}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.9`", ",", "0.36`", ",", "0.054`"}], "]"}], + NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.9, 0.36, 0.054]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.9, 0.36, 0.054], Editable -> False, Selectable -> + False], ",", + RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.365248, 0.427802, 0.758297], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> + RGBColor[ + 0.2434986666666667, 0.28520133333333336`, + 0.5055313333333333], FrameTicks -> None, PlotRangePadding -> + None, ImageSize -> + Dynamic[{ + Automatic, 1.35 CurrentValue["FontCapHeight"]/ + AbsoluteCurrentValue[Magnification]}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.365248`", ",", "0.427802`", ",", "0.758297`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.365248, 0.427802, 0.758297]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.365248, 0.427802, 0.758297], Editable -> False, + Selectable -> False], ",", + RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}], + ",", + RowBox[{"Directive", "[", + RowBox[{ + RowBox[{"PointSize", "[", "0.009166666666666668`", "]"}], + ",", + InterpretationBox[ + ButtonBox[ + TooltipBox[ + GraphicsBox[{{ + GrayLevel[0], + RectangleBox[{0, 0}]}, { + GrayLevel[0], + RectangleBox[{1, -1}]}, { + RGBColor[0.945109, 0.593901, 0.], + RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle -> + "ColorSwatchGraphics", AspectRatio -> 1, Frame -> True, + FrameStyle -> RGBColor[0.6300726666666667, 0.395934, 0.], + FrameTicks -> None, PlotRangePadding -> None, ImageSize -> + Dynamic[{ + Automatic, 1.35 CurrentValue["FontCapHeight"]/ + AbsoluteCurrentValue[Magnification]}]], + StyleBox[ + RowBox[{"RGBColor", "[", + RowBox[{"0.945109`", ",", "0.593901`", ",", "0.`"}], + "]"}], NumberMarks -> False]], Appearance -> None, + BaseStyle -> {}, BaselinePosition -> Baseline, + DefaultBaseStyle -> {}, ButtonFunction :> + With[{Typeset`box$ = EvaluationBox[]}, + If[ + Not[ + AbsoluteCurrentValue["Deployed"]], + SelectionMove[Typeset`box$, All, Expression]; + FrontEnd`Private`$ColorSelectorInitialAlpha = 1; + FrontEnd`Private`$ColorSelectorInitialColor = + RGBColor[0.945109, 0.593901, 0.]; + FrontEnd`Private`$ColorSelectorUseMakeBoxes = True; + MathLink`CallFrontEnd[ + FrontEnd`AttachCell[Typeset`box$, + FrontEndResource["RGBColorValueSelector"], { + 0, {Left, Bottom}}, {Left, Top}, + "ClosingActions" -> { + "SelectionDeparture", "ParentChanged", + "EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator -> + Automatic, Method -> "Preemptive"], + RGBColor[0.945109, 0.593901, 0.], Editable -> False, + Selectable -> False], ",", + RowBox[{"CapForm", "[", "\"Butt\"", "]"}], ",", + RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}], + "}"}], ",", + RowBox[{"{", + RowBox[{#, ",", #2, ",", #3}], "}"}], ",", + RowBox[{"LegendMarkers", "\[Rule]", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}], ",", + RowBox[{"{", + RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",", + RowBox[{"Joined", "\[Rule]", + RowBox[{"{", + RowBox[{"True", ",", "True", ",", "True"}], "}"}]}], ",", + RowBox[{"LabelStyle", "\[Rule]", + RowBox[{"{", + RowBox[{"FontFamily", "\[Rule]", "\"Times\""}], "}"}]}], ",", + RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& )], + Scaled[{0.01, 0.01}], ImageScaled[{0, 0}], + BaseStyle->{FontSize -> Larger}, + FormatType->StandardForm]}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{False, False}, + AxesLabel->{None, None}, + AxesOrigin->{-2.2291666666666665`, 0}, + AxesStyle->Thickness[Large], + BaseStyle->16, + DisplayFunction->Identity, + Frame->{{True, True}, {True, True}}, + FrameLabel->{{ + FormBox[ + GraphicsBox[{ + Thickness[0.010628122010840685`], + StyleBox[{ + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJ1IGYC4or7P24Zd0s5LH/hofe/0NAh5O3ljzMYZeD8 +A937mkyaZRy2mP84lFJl5NCqwK565ouMg/S8OM3TAsYO24OtIv63yzqoPmme +d7bKGK7/84aA7FnbjR12gOSPSzrEKDh+TL5j7HD2DBDkiMP5D1zjHWdNFIHz +t3ptsJizk9+Bx021lMnL2GEmGHDA7bcvcaw9PYfRwRgENhs6sOr/4rrU89Me +bB+7AZy/1aHp0fEdOnD+m+Ktor9XazrIbBSbz6TA5AByxhkeDQfVTyovZ3ny +wPlg/00RhPPB/lko4nB8145etg0aDv9BQF7C4XmW9rfpsloO8rsW7Ev1k3aY +PoG/yixbG6LvjJQDC2eXfDKfjoP7mqPLGW5IOkxpb426vEfbQaRyUslZF1EH +HUX5LzlmWg6zQd67KeQAcx8DCCwQcEB1Lxec3xfR7c9YwObw51vpgzkfteB8 +kR6vVywlunD+X5B8oQEk/h5zOdT/tio4J2Hk0A+SnyAADT8jB2GQe54IOuyv +lbVI/2IEjR9hh9vSNYlGosYQ96aIwvlBoPBwlIDzYekHHP7HjeD8rztvdf1N +RfBh6QkAoBQWdw== + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{11.075, + 17.718799999999998`}, {9.20469, 17.718799999999998`}, { + 8.249999999999998, 16.2328}, {8.249999999999998, + 13.312499999999998`}, {8.249999999999998, 11.898400000000002`}, { + 8.503129999999999, 10.6797}, {8.92656, 10.087499999999999`}, { + 9.348440000000002, 9.496879999999999}, {10.024999999999999`, + 9.157809999999998}, {10.773400000000002`, 9.157809999999998}, { + 12.5969, 9.157809999999998}, {13.514099999999997`, 10.7281}, { + 13.514099999999997`, 13.818800000000003`}, {13.514099999999997`, + 16.462500000000002`}, {12.7297, 17.718799999999998`}, {11.075, + 17.718799999999998`}}, {{10.857799999999997`, + 17.295299999999997`}, {12.0297, 17.295299999999997`}, { + 12.499999999999998`, 16.112499999999997`}, {12.499999999999998`, + 13.215600000000002`}, {12.499999999999998`, + 10.643799999999999`}, {12.0406, 9.581249999999999}, {10.9297, + 9.581249999999999}, {9.75938, 9.581249999999999}, { + 9.264059999999999, 10.799999999999999`}, {9.264059999999999, + 13.746899999999997`}, {9.264059999999999, 16.2938}, {9.71094, + 17.295299999999997`}, {10.857799999999997`, + 17.295299999999997`}}}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {0, 1, 0}}}, {{{28.67809999999999, 16.031299999999998`}, { + 28.9609, 16.031299999999998`}, {29.260900000000007`, + 16.031299999999998`}, {29.260900000000007`, + 16.364099999999997`}, {29.260900000000007`, + 16.698400000000003`}, {28.9609, 16.698400000000003`}, { + 28.67809999999999, 16.698400000000003`}, {19.665599999999998`, + 16.698400000000003`}, {19.382800000000003`, + 16.698400000000003`}, {19.082800000000002`, + 16.698400000000003`}, {19.082800000000002`, + 16.364099999999997`}, {19.082800000000002`, + 16.031299999999998`}, {19.382800000000003`, + 16.031299999999998`}, {19.665599999999998`, + 16.031299999999998`}, {28.67809999999999, 16.031299999999998`}}}], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGINIGYCYuFPjufT1jo6vMjS/jY91twBxl9yfx/fnM9m +Dhfz49nPaTo7MICBOQb/d0zu0X9FCH778vBTRntw81kWT7JidHWFm1/326rg +nIOrg8Zb3n0GnuZw/ooXHnr/CxF81SfN886uQvD7gktUpt9H8Pn8109J5bCA +m78cpD/RwuEPyH1RLg7PQf7ztYD476+zw0wQ8ISqb3VyUAfZb2nh8CRx4TWT +784OW8x/HErxsnaY8o0tfsYeF4enIP1vbSD6fkL5Z23h/JKtor9P/7OD87u9 +XrGYZDrA7QeH208HB1fVUqZZEc5wvu6EBT8MjznB+eJTr3BmJDk5gLz3/4KD +QzHYXEeHbM6fC9KzHSDhecfRwaYyYoXpWjuIe8Wd4Hyw/YZODjyg8MiwdwAF +s3GQE4TWcoCYM9sJ4u9YBwf7pkfHZyg7w/lvgMEw8xIa38nF4cRhp7WZ9+zh +/P21shbpLXZwPjg+g20h+t46O6SmAYGaDcR97M4O4eLbLzLYWTmgpzcA8usO +Gg== + "]], + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJ1IGYCYr0JC34Yxnk4lGwV/X3azsaBZfEkK8ZeBP+m +dE2i0VwPh3qWo/2G7rYO2Zw/F6Sv9nB4nqX9bfpdWwd5x4/JZ/Z6OHzYEJA9 +y90Orn9/raxFeosdRN7Vw0HjLe8+g5V2DhJTr3Bm/HKH89d0385gmI/g8/qv +n5LK4e5wVeiT43kxO4c0EJjmBrd/no3OlVlqbg7/QaDexqHH6xWLyU1XiH1X +rOB8dZB5mpZw/qG25eGnFplD/KXn5mBiDASXzRwSD1/WTr2I4O+81fU31d4d +zg8pUZn+f4G7g4HWSuELKuYOdb+tCs4JeDg4ND06PuO2OcQ9ZR4O4iB/NVlA +3Jvm4eB3cWLMv8sWDsc1rSaddvdwmD6Bv8pstYWDCNBbaVvdHVJi77gxvzB3 +YACBDHe4+8DmK7ijunedG5xfGbHC9Gyxm4PXCXbb2a4WcP51UHi1WcL5xw87 +rc20s3b4E5N79N8uNwcfkPqnNhDz5Nyh4WfrkADyv6c7JJwO2kLip8rdYekL +D73/D6HyOxF8VlD8inrA+bD0sxcU/lMQ/AMg9xoh+LD0BABsyxAI + "]], + + FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4k8bArJnpXs6mBgDwWYrh9XdtzMYyhH89DQg +sPNyuC70yfF8mrXDcU2rSaftvRxmzASCTGuHhMOXtVMdEfw/MblH/zkh+O3L +w08Z+SD4e251/U3193KIEN9+kcEPwV9yfx/fHGYEv+63VcE5DVM4PyX2jhtz +hwncPV93giRMHFSeNM87+8rT4QwIxJg47K+VtUif4gkxLxjBvwFy/zdjB4mp +VzgzmrwcGMDABIOfw/lzQfpkBB9s/3IEH+zfkwh+OMgf/7wg9v8xdnBXLWWa +JeDtwO0GZPwydphvo3NllhuCD1bf5g13D4wPc6/PCXbb2abecP+4gMx7gPBv +j9crFpOLiPCA8WHhBeP/+Vb6YE6gjYN906PjM3Z7OUjMi9M8nWDjsAYUv+FQ +/T+g8ffS02H6BP4qs9nWUHs9HXj8109JtbB2QE8fAIRc61Y= + "]]}, { + Thickness[0.006780741842916356]}, StripOnInput -> False], + StyleBox[{ + + JoinedCurveBox[{{{0, 2, 0}}}, {{{35.142199999999995`, + 16.171099999999996`}, {56.5531, 16.171099999999996`}}}, + CurveClosed -> {0}], + + FilledCurveBox[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxdk21Ik1EUx5+t5gtpaS/q9NGmbtNAxbdyiLpjcZ/nYQhGVu5DsLTWEtMl +zsDQEC3DpAjfmit0lTADdQZJKmQSiZYaCGK4PlRqVGCEZmaart09ekcdOB9+ +3Mu59/z/54Tm6o9pt1EUJXBkmiOFjpz3HohtViHo2B21U1cYBhN6jfubGhef +w9GFIGPEPfXuQSmM4XiJ4EnSyouzKhlsf1iXLEAMBFu+cDEaORh69q2Ndrl4 +9VTB0EY8++95Cwsj/b033bqlhLM9/a4nWMMIO9/JkPAsZ4HtGLJQRhqib5tX +4poYwmr/pxNUtYsXu4/mm/QMyBalX02PaLAFleXEn2DA2OyIPhpaUqImTYcY +iMDnr2iIwfVCGLj8fsWWkC+GhmU3jTFq89xTzOtRyoAV6xESCF6Z1gatmYH9 +/eYBbWEg9NlurGvfulgxNVSQWMESbne0bf/Iwi11babAx59wX1ay2s76El4a +WOjRNYlAkr5wZkzLQutIfVu+fFXJyEqEpnaG8B+sp8rFS7jfXwguNJ4uUvxY +Vzr97EcQif9fIyR+/sT1T4pgLuf+VKIeQZvNMht3xAOc9TkE9GO/VqFkF3/f +F/F6TXvDYHmwQpeCAGOz2G3TFwRV/uWivGoBHDdI79jVCAIq6YbYrGXl1nwo +cqPTRIMLyi19UzsfKBOLvyuddfJcXG3Jfh3vxRJ26jm81f8az0kceb8e+1PG +wUWLoXsjcwfM4n5aOUjAUexD+APSpJuK9hDuxP5d8ePn+RLH+3tADNN4PqI5 +sON4HggBjZOe51dZ2FtaZxifCwKonBk2jrLQi/3S0cSfe/g/v2lePw8OnunL +vjWXSECF9wRxED41k0XNhxKWYh4LJ0zhMMuho/bdecrKwgwe5IpI/j/jDGHZ +XFXL+GEXO/X4jOCqt2MQP0Xw9a4hsl//7/NfFHu04g== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJFIGYC4v8g8DnAITn2jhszh4FD7bptSfWyQXD+/lpZ +i3QdBH/Dw5dTNzlg8m0rI1aYxiL4h9uWh5/ahNAP48PMh/Fh9qPzz4BAjCmc +z+u/fkrqDARf4y3vPoOXpg6cPxekb76H4At/cjyfdhKTD9MP48PMh/Fh9ss7 +fkw+Y+uP6h55BH/Hra6/qd/9MPgw/8P4sPCB6YfxYebD+DD70fkb9PIWM+5R +g/MNtFYKX3BB8CWmXuHMWKQK9z+MDwsfdD5MP4wPMx89/gFlCQi+ + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJ1IGYC4g0PX07dxBHqULJV9PdpOxsHmdePzKQUEPyO +5eGnjDRCHepZjvYbuts6BMiJZfnqhzo8z9L+Nv2urYOm1aTT9RahDh82BGTP +creD699fK2uR3mIHkf8T4qDxlnefwUo7B9UnzfPOXkPwC+LZz0muRPAVHD8m +n4kNcbgq9MnxvJidwxkQUAmB2/9i+3rm52+CHf6DQL2Nw4N9fHOMjwVD7Lti +Beerg8zTtITzD7UBPbLI3CGkRGX6/w/BDibGQHDZzMGzulnfxykEzv/GFj/D +pxLBP3JZO1VyVYiDgdZK4Qsq5g4R4tsvMjwKcXBoenR8xm1ziHtEQh3Ep17h +zGiygLiXJ9TB7+LEmH+XLRxq121Lqv8b4jB9An+V2WoLhyWTrBh9t4Q4pMTe +cWN+Ye4wEwR6Q+DuA5ufFYLqXgME/+rRXJMG4RAHrxPstrNdLeD866DwarOE +848fdlqbaWftIOER8EfCPMTBB6T+qQ3EvIwQaPjZOniB/F8X4tDj9YrF5KAt +JH6mhTgsfeGh9/8hVH4bgg+O3ycIPiz97AWF/xQE/wDIvUYIPiw9AQBdaBll + + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGINIGYC4k8bArJnxYc6bDH/cSilysQBxudyUy1l0jJx +kHn9yEzqQ6iDiTEIYPKfiMiefModBufH5h79t0kdN/8MCOwJg5sfICeW5bs7 +zEH1SfO8s1kI/kwQ6ETwb0nXJBptRfBtKyNWmN5F8Dfq5S1m/IMwnwEEHEwh +dEqYg8y8OM3TBqYOB2plLdIdwhxeZGl/m65r6lC7bltS/cZQhx6vVywmiqYO +Ry5rp0rahTn4nGC3nV1q7hBSojL9f0eYg9/FiTH/Nls4tC0PP2W0IMwhQnz7 +RYY4Szj/y85bXX9dreB8jbe8+wxWWsPt19daKXyhxcZBwfFj8hlGBP/BPr45 +xqdC4fwlk6wYfZeEOlwV+uR43s3GoSnQc25DXahDDEjjGmuHH2zxM3wKQx1S +Yu+4MXNYQcK3HcEHmz8x1CE9DQimWUHMnxfqMAMUnp7WEHfvCnW4DjJ/mrXD +1paaC5vfIvhg9xuEwfmcPxekb44Kc/gPAu+t4Hyw/15awvndoPBjtITYZxUG +iQcZC4cJC34YPnsUConPlWYO6OkNABjzCWk= + "]], + + JoinedCurveBox[{{{0, 2, 0}}}, {{{78.4531, 16.171099999999996`}, { + 91.89409999999998, 16.171099999999996`}}}, CurveClosed -> {0}], + + FilledCurveBox[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJrIGYC4kjx7RcZzoU4ZOR/aD15RdWhx+sVi0lgqIMo +iLFF1eHBPr45xl2hDq+Kt4r+Xq3q0LY8/JQRSxic/40tfoYPZxhcf4CcWJYv +e5iDx/5aWYt0NTi/4bdVwbkVCH7ALemaRCF1ON/34sSYf80Ifguv//opR9Xh +5ifH3nFjjtCA2/8oAujwBg2HJyKyJ59uD3X4DwLxGnD3wtSbGANBMIIPNl8a +wW8K9Jzb8C4EVf+iELj54PCYGwJXD5afFwL3H9j8+SEOZjZ7g6YxqsL5Z88A +wR9lOH/2TCDwVHSQef3ITGpOiIPrmqPLGSpkHAri2c9JzgxxqLj/45bxakkH +kU+O59PWhjiof1J5OctTEmL/3RCH1DQgcJNx2PDw5dRNP0IcakDqtWUd3vDu +M5ipFQrng8OnB8EH6z8Z6uAOsu+GBJz/ui232+i3IJz/Zd/HrenXWCHu6wh1 +mH9i8pJstd/24PCXRPA9q5v1fR6FwPlXj+aaNKwHuudF069pO//bg81bGOLw +ovZx9nkdZgeQs9OKQhxmgPw/k9cBFKwMUSEO/k88L5le5ob4tzDEIQDEn8zi +AFZWC42PegZI/HaHOIg1yUwxuPzVfskkK0bfFVD5/x/tQ0pUpv+/EOJgu3aR +vUnxe/sz4HBH8F9sX8/83CEUzge7rzMUYo/kd3tw+B8MhYTvMkYHMY+APxL/ +Qx2W3Fr+2LCZwyEm9+i/TfJhDq0K7KpnpgjA+Rrg+BGF82Hx+QMUXmdDHfhj +A+4bHVeApN9IBF/TatLpeg0EH+w/5lCH0sPbXGfGKjiA3X8kxIEBBBLkHNDz +JwDv9J2A + "]]}, { + JoinForm[{"Miter", 10.}], + Thickness[0.006780741842916356]}, StripOnInput -> False]}, { + ImageSize -> {94.08659526774595, 34.861070983810706`}, + BaselinePosition -> Scaled[0.3495664698586527], + ImageSize -> {95., 35.}, PlotRange -> {{0., 94.09}, {0., 34.86}}, + AspectRatio -> Automatic}], TraditionalForm], None}, { + FormBox[ + GraphicsBox[{ + Thickness[0.01869508319312021], + StyleBox[{ + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGI1IAaxQYAJSjNCxZjR2DA5dDXI4rjYpKrHpZcY95DK +ppabKTGTVHfiEgcA+NYCcw== + "], CompressedData[" +1:eJxllHtIU2EYxueFvICXbbrZPGubbuo03ZmKmkW+VpalobTAlTcop5VF/qGm +qVFKEmipYXgLK4osmmllKSZmLbG8JoJWSopGWGngBbOs1r7zzU+oFz4Ov3N5 +3svzciSHTu7TmLFYLBPDiTAcU8OpQnHACpxrE+Q9oIRYmZrq32IPeSvBaf1B +Snhe1J7vr2ODwvMu942/Ehbb5x6nZHIgarAs7g93jd0/FtT2ddOE66bDffRl +NJwXW8h6/TlQokqXVtjRWG+KDVdK7U4HeCkgjslnDXoUiRIYsRnlaQIssc4S +Bf5+hliwwDxMQUh6aF7PmCnWLaegF0XkSkgH0j28yj9DZgpPFPnWCHA/uab4 +vlaA9TMtMfcKgHrAu2Y6YU14Om8qdWDGhvD+2aG5SokjrOq1qILV+i4eYWZ+ +P3iwmp/pZ4xL6uNmX07vk3IwN1EwEZYYWl3Ghl3azjpWkJAw813uBsLF6qIo +E3sRqFD+G2yIZq4iQOPwG2JDzvjye79YMa5jMx+8JaLF48MKwppkQ3xS4D6K ++UAj/3bQxr74oOY3D7Iu0SBuvd6u+caH17pt9Ufv0yBCbOtE/KznbLRN2eqE +/dEb/eUJwCaqoVzjpMR1xzlDmrZo9IhYif3iCgmf0j0Jq9orITwqF2r1Ohf4 +tZQxcfUcTZjZtzs+hCPRft30gho0391ieBS4/CLpmNy4F+sJe8xLP1fL+YRX +/RCgfbaX4/rPiPD1gwtko7k9FYNdfPS4b4wEMlB9Qlfi51nzzhJloIz4nxQ/ +ttMsa41/o7oH15jJ926NK9FeR7jhubQJIJnxwY3ov2ptubgu2v0/ZuamoqAJ +9WHtBg5ob25RQKE+GmWQhHTchNjHl1L8/pAIwtAevRVC+LM8YVCdB96Le2Jo +hvzJrmUP3GeFBHLmG6NTD8rBdXhSxWpzgQaZwWBvT3As3vPFvFwKy7NfOzYV +eOG5lcowb/cmzOTzUxBeMMhVf6fxHl9wBSTX16o07okIdIV1Md0PlRCOnmfx +YIQzHzpw2/g/KXAkzPiS4EAYz82KfP/v/+kvoGcbfg== + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJpIGYCYp8T7LazRU0deiO6/Rk/8DgUrum+nfHB2IEB +BBREHG4IfXI832bscAYEdMQhtIyxQ2oaEDyTcfi8ISB71nEjiPgeBYfiraK/ +T88zcuCPDbhvpK4M51+4GvZG/7YqnH/qsNPazDoNuP7/ILBfy0Ffa6XwBRFj +B5l5cZqnL+g4lIDU1xk7ZOR/aD1Zou8Qo+D4MfmNscNMEKg0cIC53xgELhs6 +8Pmvn5J6wsTBvjJihamtkUO31ysWE0Vjh4Nty8NPHTJw2GL+41BKlZFDCy9Q +4VF9h/7gEpXp9w0dan9bFZxboePwZeetrr+lhg7u+2tlLdq1HKRB7nAwdGgG +qXfVgPNh/oHx72jKrvlfrORwHRReywwdYlQjZM7VyDlwu6mWMmUZORzs3tdk +cljCgQfkvh9GDiFvL3+c0SgCdY+xQzooPNmE4O5ffmv5Y0NnLgf0+AEA0Jq9 +Pg== + "]], + + FilledCurveBox[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQ/R8E9ls5PHCNd5zFqOBg3/To+IzVVg5v2nK7jWZL +OfhcnBjzb7O1wxkwwOTX/7YqOPcCwbepjFhh+hfBP9K2PPxUko1DjGqEzLk9 +Ug5fd97q+itqCzcfxhepnFRytkXGoYHlaL9huQ2Ev0TGwecEu+1sURuHVgV2 +1TNboHxWGwf3NUeXM1jIwvnOE5qF0rQU4PwLV8Pe6P9WhfPB/pyv5bDF/Meh +lChrhyeJC6+Z+Os4iE+9wpnRZAnnL76/j2/OZQs4X3penOZpAwuIOV+1HdJA +YJq5Q82nDQHZVtoOpw47rc3cZwaRN9WC8w20VgpfUNFw4PVfPyVVw9zhVfFW +0d+v1R1sQeETa+4wZ5Hyzj/PNRwOgcJnk7lDOthgLYdpE/irzG6bw90Lsc8C +zr8hXZNoJGoF5y8BuXezlUPgLaBEkaYDLD5ZOLvkk/vUIPbpWsLDA6ye2dzh +xK4dvWwGqg4b9fIWM8qYQeJ/ozKcX354m+vMtwpwfirIHc9koO4zc1D/pPJy +FqeUQ7SC48dkGQs43xsUDqkIvuqT5nlnV1k4zJgJBJZSDo2g+D1u4VBx/8ct +424pB/T0BwBWAyzX + "], {{26.749999999999996`, 8.670309999999999}, { + 26.28909999999999, 8.018749999999999}, {25.287499999999998`, + 7.4156299999999975`}, {24.667199999999998`, + 7.4156299999999975`}, {24.031299999999998`, + 7.4156299999999975`}, {23.474999999999998`, 8.003129999999999}, { + 23.474999999999998`, 8.687499999999998}, {23.474999999999998`, + 9.274999999999999}, {23.793800000000005`, 9.831249999999999}, { + 24.270299999999995`, 10.132799999999998`}, {24.667199999999998`, + 10.3719}, {25.5422, 10.593800000000002`}, {26.749999999999996`, + 10.768799999999999`}, {26.749999999999996`, + 8.670309999999999}}}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{ + 31.570299999999992`, 8.464060000000002}, {31.093799999999987`, + 8.464060000000002}, {30.665599999999998`, 8.018749999999999}, { + 30.665599999999998`, 7.5421900000000015`}, {30.665599999999998`, + 7.065629999999998}, {31.093799999999987`, 6.62031}, { + 31.554699999999997`, 6.62031}, {32.064099999999996`, 6.62031}, { + 32.507799999999996`, 7.050000000000001}, {32.507799999999996`, + 7.5421900000000015`}, {32.507799999999996`, 8.018749999999999}, { + 32.064099999999996`, 8.464060000000002}, {31.570299999999992`, + 8.464060000000002}}}], + FilledCurveBox[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIAaxQYAJSjNCxZiR+AxobFxqkMWJYZNqPrXcQIl6 +YtwAANeLAk0= + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJrIGYC4rbl4aeMzrg4sHB2ySfr6ThczI9nP7fTxeFJ +4sJrJv46DsteeOj9D3Rx8Lk4MebfYm0Hi2tHc01eODsE3JKuSTTSdjhQK2uR +XuPsYG6zN2gaI4L/PEv723RZLYcTmlaTTh9H8ENKVKb/l3CB83u8XrGYKLo4 +6GutFL7wRBPOnzGBv8rstDqcfwYE5ijB+TNB4KUiRJzFxSE1DQjYFB0ixLdf +ZLjm7FB9/8ctY28FB5bFk6wY5zo7yO9asC/1nJxDZcQK07PRzg7qn1Reznop +6zD5G1v8DB4EX/iT4/m0o05w/n6Qf3qcHGJUI2TOzZFzqADpz3ZyMDEGgsvy +Djtvdf1N9XeC2Jet4BAM8p+Dk4P7mqPLGTIU4fzyw9tcZ55VgvNh4V28VfT3 +aT0neHiv6b6dwXDcER7eN0HBHOsID+/Ew5e1Uz86wMMbxoeFJ9g/No5wPjg8 ++hB83QkLfhhOc4SHN4wPC28Y/46m7Jr/xUpwvvOEZqE0KwUH8alXODMWOULC +o0YO7l5w+D+TgYTvZ0eH9UI6fOn/pOD+BYcnp5QDKyg+tiL4rqqlTLMEnOH8 +FaD0lugMidc3UpD0MsPZQaRyUsnZFhl4/MPcA+PD4gccjvLA9ANOILLw9Pam +LbfbaLYUJLwWQtPTGSmHHM6fC9IXI/hg+w8i+CBvpd3DzVd70jzvbJYr3HwY +H+ZecPoQd3VoVWBXPbNFxuHBPr45xpdcHL7s+7g1/ZqMAyz/gdOLhSycLwzS +v0TBAT1/AgA/tpjX + "]], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{ + 45.1703, 8.464060000000002}, {44.69379999999999, + 8.464060000000002}, {44.265600000000006`, 8.018749999999999}, { + 44.265600000000006`, 7.5421900000000015`}, {44.265600000000006`, + 7.065629999999998}, {44.69379999999999, 6.62031}, {45.1547, + 6.62031}, {45.6641, 6.62031}, {46.1078, 7.050000000000001}, { + 46.1078, 7.5421900000000015`}, {46.1078, 8.018749999999999}, { + 45.6641, 8.464060000000002}, {45.1703, 8.464060000000002}}}], + + FilledCurveBox[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJpIGYC4sTDl7VTGT0clt9a/tjQmctB3vFj8pleD4eD +3fuaTJwFHep+WxWcO+HhEKMaIXMuRtjhuKbVpNPsng4zQaBSzKEiYoXp2WZP +B5HKSSVnl8g4sCyeZMV41NOh28ZzVxqTEpxvZAwEl1Xh/GZe//VTXDUc3vDu +M5i5ytPBfX+trEW7loP3CXbb2aWeDrUge1foOICUpWp4OjzN0v42fa++AytI +/1UPh+Ktor9P7zNwgLnfvhLoEFsjB9UnzfPO3nJ3MAbbZ+jwJHHhNZN8D6i5 +Bg66Exb8MFzm4XAGBHL0HYJLVKb/v+HhIDMvTvP0BR2Ivxg9Hf6DwH4thwjx +7RcZxDwdTh12WptZpwHnX7ga9kb/tiqczx8bcN9IXRmuH2z+HgWH1d23Mxiu +ezikpgHBMxmH5S889P4vhNqvI+5wU7om0SjXw4EBBBRE4O7vjej2Z/zA44Ae +PwAWsLfc + "]]}, { + Thickness[0.01869508319312021]}, StripOnInput -> False]}, { + ImageSize -> {53.494963885429634`, 21.12078704856787}, + BaselinePosition -> Scaled[0.31887090512778543`], + ImageSize -> {54., 22.}, PlotRange -> {{0., 53.49}, {0., 21.12}}, + AspectRatio -> Automatic}], TraditionalForm], None}}, + FrameStyle->Directive[ + GrayLevel[0], + Thickness[Large]], + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{Automatic, Automatic}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->500, + LabelStyle->{FontFamily -> "Times"}, + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{All, {-0.00135, 0.001}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, {0, 0}}, + Ticks->{Automatic, Automatic}], + InterpretTemplate[Legended[ + Graphics[{{{}, {{{}, {}, { + Hue[0.67, 0.6, 0.6], + Directive[ + PointSize[0.009166666666666668], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], + Line[CompressedData[" +1:eJwtmnc8VX8YxyVklWTP7Gu7l2te4w4UZWSUttFSGgppSTvtklLRkNIukoZ8 +v49SZmTvTcslo4yE3znnl396nde93+/5fp7383me55ybZvBWn7WCAgICZ6YL +CJD/TlF/PJCaZ5Rgtr4AbZwd4T9tggcDj93neEQVoCetqW2FYzyQ6A2mxx0t +QEWbL9xaOsyD5UIRPzsvFyD8xj7x2SAPOob2ea18UIBOfrydV9rHg+vZsd6/ +cwoQ43y+XuYPHsQv3zv4sKIAPVW+hwK/8ABVbrM88K0AiYS4nKpq54GGziql +yKkCZLnxxlmpZh68Wuh8/ZhCIXKgZxVI1/HgmId23it6IVJ9EWfdWMGD03rj +J0QXFKKaUaWmTZ94UFRbPBi1rhCtG1+X9T6fB/ZBCePTDxWi+p5ccaF3PGi8 +Vz5N5WYhMh/bo+b5lgfJF/8E0XIKUaR2Qt+tLB7E6sxWNWgoRDc3zoyZesaD +IwFz6BojhSiztKt43UMePKJPuy4pW4SeeanU1d7hwa9HTWv76EUoofdZis9N +HgR9Sj32waMIBd27Y1R7lQe955dOv7CxCMnHjm1fm0Dc78+fOt9jRSgz4lH0 +xFkebJ4RJyqRWoRYR5H9jRPE+lfTL7yEInQ/0wy7H+FB5MxNkUubi5AA+RfL +g4ciOKN/rAixN5hNod08mJ465bZPvhit7815eyySBzHdxqwp82IUffahzbJt +PFApdj0a5VWMtnuObrfaxIN6Pw+jzk3FyNcwdZPqOh68Ocg2dDlejNS0n2pJ +BhE8/DQOJaUWozIbpUThFTxoK+JbfoditHFTR7HoEh7Quu9wjZqLUe8bcSTn +Q8T/9oL7wWPFaBntwhZjDx4oibSEnpUrQU+eRTcvnM+DPMmVh9MZJejHYiS+ +k8eDiy8LRgs8StBs5ZDhB448OCSimV8dWoIOvmD1dNjyIP2W+I1fR0rQoy5V +ppIlDxwYhnRuSgk6niZS7kHngd6L/bsRKkEqk6O5sUZE/EwkYkIbS1DgtyGR +DD0ezLxaYscbLUEr143caNckrsffP1sg9wnNjJ5+WkqNBxu8B1oPmn9C29UU +S1mKPNC66lfwzesTOrnYMmSdDA+s6npD923+hJZqL194dhYP0sRz8tgnP6Gm +Q3FxWWI8iGK8qzO//wnJRoNykxAPUhZO3PHN/4SmUYB4YLRii/Ht7k/olsp8 +W61xLswOlAvTFCpFI0WJH7nDXPAOGFxTqlWKBGcNpgUNcOGns7DCA04pyu3y +bY7hc+GHrufBzMBSZOmF1l39ygXeeMnd3v2laJUHwzmzgwvDeQcO+98oRfat +jyJLmrkgfihMhY9KUakQY7yjjgs7LU9vSm8pRXIop2qkkljf1BlxZ7IUSUv4 +CkqUcWHTzm3WBeplKLen/5BqEXF/EYvnSk5lSC/w8lLjD1woO2H07crqMiK/ +XA/ZARdmTV9WMz+2DKVsezY+L5sL19xag3RvlaHW7mM5/llc2GzTtMX0XRka +zS8pCEnnQmyZ90RIZxn6Lr9fbfsjLmw8dl0kRPAzelVBVII0Ltjs8fYylPmM +QsaNbp9N4YIeD9XN0PmMvpzTq7qezAVm69eUceZnND/+jOeTRC6s8/r0WNj1 +MzoouGYOiufC6/gtY7pLPqOrLXfnlp7hgvGj4iMrNnxGJ2lLolriuPAuscvn +/q7PaElzhPzPw1yIXvo6UPLk53/+IeLf5/b0SBKx39lRc+k9XHBbcslR7sln +1H5y1VOtKC6suXh9Vjb+jJR/MyKZ4Vy4eSd47s7yz8isePth1zAuTJ3o2ObW ++Rmpz9JsDljPhRhn9enmvz+j7zn2+zcFc0G9Qq6GPqMcnWv4sDFmJRfaLQq/ +uyiVI+k1b2+cD+BCXqiNY7hROdqyTEP9ji8XinaEVGY4lKM7OQPdrzwJHovc +74t7l6OXp+kjJW5csBbqxdHB5ehuUdOidmfiPCcWKExElKOtEcO/fztxwah7 +7dPLx8qRnfPuV+IsLhSMf+5xv1qOTIbWbJlrRcQ/S5Ou9LgczT+QpcBkcEFK +LmCvIJSjU31bMucbc+GNQsRnkcpyNGp3xnkljQuhKNJY70s5OrlOtiBciwsq +YivPBY4R68OnOR1V40LFiMHfF5IVyHS5//2rilw4faJpq55GBbLTmT3jqQwX +PHMjetItKtDWEkbA+1lE/icNbgmYV4FKfN8k1YpxoVZ58R+l5RXI5839qh4h +LqQ63Dg9vKXifz4CXIgQKtXvO1iBqnVy1GXHOTB/a0exwOUKVKnfTtcf5oBG +TFOU6cMK9EcizMp+gAOT9LcGO3EFcitdaebN50DrsQNdDZUVCLZmqaz5yoH3 +B43Tln6rQIH9keM7OzjwWDMnfOhvBdLzTio92cyBq2ssnO9JVyL5swYJN+o4 +cGrBWfVovUpk+ljN63klBw7WfBYIYVWirQ+i/34s5cA+4dEfG7wrUe1Ru+SG +Qg7srRNqjltbiTZwQxh9eRyI8Rqp+bC7Emk0D76aBhw4vLGsTvVcJToW786S +y+ZA5LT7TufvVCLNlGKsn8UBJv/GBt3sStQnGuVqn84BMMz0rf9ciX7mu5V5 +PeKAUk63wOMvlUi71XVZSBoH2LeZ227+rUQnPDd/jUrhgFXzzVvP51QhPfmc +qBPJHBjfaJjwRb8K/ba0Er2eyIEzC8vdbZ2q0PDjumvp8RzoPZDw7qF/FTKK +SWV8OMMBFYmdfx3CqlD83SuFdXEcUPgWOfrzYBWi016F8A9zoE3xQlbulap/ +/uHAruRiq+fPqpAgI/y6zB4OtERq7crLr0I2byScaFEckEm5tO93SxVKuVbW +bhfOAVktfWfX4SrkWP32qGcYB7p+15RkzaxGs9dXmgSv58AhtdsK83Srkcwi +mdrIYA70JZ7SGbGvRu7xew/GreSA/ob4oY9+1SjLRIqeHMAB85MvD2eFVSMf +jeLWZ74cEBEcq/1wuBrpbHp2Ps+TAw9LlvT+SqpGBrOwS50bB9R7KvN4L6pR +sNjIeI8zB1at3Lwq41M1KlkRkDnlxIFN2jpv2F+qkXbX9c0yLA4s+alRNjBZ +jdT3HNWjWXGAsePUxQKFGpStKdVqx+DA8JN14h/oNehvrc1lT2MO3E95Sv/q +VoPak6d7BdM44Oa5foZZSA0K3bFVJEqLA5Xpp88k7a1BCQF7c+LUOOD5Seuj +2aUaFOJhGJGsyIGsm3pPvj2tQTWLdhmmy3BAzPiKa35hDepZG9qWN4sDC7bu +PlvcWYNS4/4k1IlxYOfGouO/J2rQtBzjBXwhDlxUizN3Uaz95x8OXDuedeqN +eS1K9YnIlBlnw/mHPpf9PWrRj8y4DbRhNmw/utJHfkMtqtZjq7IG2MBTqs35 +e7AWBd+7XObJZ8NECK4XvV6L4m3PHQz+yoZ76+Tv2r2uRRsaDCyjOthgr9mk +daGqFrWcWPM1rpkNED/bW6q/Fv1xZ19JrmMDHT03yZCoQ6+Vc9zTK9lw5uaH +7N20OqT8p2E8r5QNdXaufzbw6pDG9yuP6grZMPu05fe9q+tQ4dexFfw8NjAv +xx/P2lOH5Ib/SAoAG1yWBtbJJdYhs/SqtzLZbBA6PRBxPbMOcbNQGC2LDfr8 +pD++5XVogfBrVVY6G15FBYda9dUhj+vvSzwfseGxMTfXRaKeqH8te4PT2CA9 +y17woH49Yj0RM4lKYUOjsrdxj0s90tF1aY5LZsMs3xinAyH1SPTLudPJiWx4 +mPWR5XygHnX28x3S49mQ7mKgybxRj7JclvblnWGDhsDdn9459ehAV/X1ujg2 +jHbbp11trEcun4K9+IfZYDfSO0/6T/0//7Chy+J1eaZiA3q+9/EzmT1sGLt2 +3fmIdQNazdsURItiQ4TZ9ZsHFzcgQT/bOaxwNqzoe9n9KLIB3Xii8N4zjA0P +6npkhBIakLmvSETwejaE9NkaHc9sQJgjrBsVzIZDZilGtlUNyHm3bE3cSiK+ +STpyCr8aEPy1OJYcQMSPmftVU7YRMQtDbNJ92RA4svP2UmYjSmm9/T3Pk4jn +l/nzkV8jEmH/ulrnxobFAswar8hGFPzDbyHfmQ19LrYesy41olctHyamnNjQ +nxXweCyrEXlecHgqw2JDxW7tDfJ1jSh8d0YgzYoNkq8Nf24Ya0Qal3XmsBhs +uBm+hTug3ISWf4t/72nMhrjUvqCn9k1Ic4tAZDCNDZ8WPfS4vaoJ7dDfqBel +xYa1u1KFP8U2IR+F8to4NTYsV2mIM77dhN7aWcYlK7LhjvXChtwPTSjjwiW7 +dBk2uJb+GT71rQkx5/7uyZvFBk5rd+tpiWbEafNOrhNjQ/zGmQl5ps2osfq+ +J1+IDext4fIMn+Z//iGu+6XXVEY2ozU5d4Npw06Q9KNv38Mrzai1c94HT74T +eK4WXfM6pxlt29FJi+pwggDPVfIT7c1IJWzXieQ6J8h52X8xSqQFtXwS680r +dYLoa7hV16gFZSVe9OLnOcGpsaJhce8WdK9EKUMm2wmGy+c06Ea2oKehV2RZ +6U7wRudyXNTVFvR5q8zO4DQnqBpYIjyBW5BY67H6uGQncLP193jd3YKWvRxm +pcc7gcz4maCHEq3o3ehqIv+cgGktzK1ktCLu7fdEvjlBRu/LPnpAK5Ka0Amh +RTlB2S/7r4UxrWjFwmMfPMOcoFHL8OHtO63I6PwPWlSwE9Ts3G+HSlrR3mLP +E8kBTgBD9glKv1rRgvHn/DxP4v4L0psbZrah6xrKXnxnJzCkRy8u1GxD4awD +6TIsJzikP8Sss2xDBQu+y7AYTuDD1No1w534/iKfqGCaE1z2FdZesqoNDS98 +Wxen5gR+R5PM87e3oVIHGitdxgmOl3xNW3KsDenrxBO8nICh9/WgaFIbEqT4 +EPvFX31f/6wNBZZvJvg4wg8ZwY3FH9qQfWJTniffEf6kqUU1N7ShJL+FBB9H +iPXq/SrV34b2iuTEJdc5wl7xcBws3I5aHpvy80odob/u3t9q5XYE7rc8+XmO +UP/m4o1QejvSaZZNl8l2BLtnzHtqru1IfG2cDCvdEaRfH5cfXN6OtnVMRgan +OcLq6nM/voS3oyX+kXVxyY6gJ+yh8/dYO8rN4dulxxOfz895z7jeju6rrE2u +i3OEOTfaC45ltiP5rS1TU/sdgSX2xmKyqB1Z6AcE06Ic4Qu7fltieztivCzP +8wxzBAWBCv7S0XYkpbqA4OMIFa6paVypDvRpcV5ccoAjyMl53/LR60Bb1jsQ +fByhbWN1fZxDB+J7ZHnynR3Bcj5z0Te/DuQlbkbwcQSZx2EztoR1oPNJaQQf +R9h5Jeav8uEO9EJIg+DjCOtnbqT/vNaBsriJBB9HaBY1u/3jeQe6ung2wccR +Wk5+8ptZ0oEC2ccJPo6w9pKLy5Kujn/+cST4X44o+NuBjibsJPg4gDr3XUeg +XCf6KfCT4OMA7M6PZzVMO5EVdx3BxwH4Enf2zJjXiYKWEuW3zgE03q64KxfY +iTa6+hF8HKBpqFdqwa5O5CdWTPBxAM3nAa/SLnQijRQOwccB+saSbhg96kTF +s18RfBzAueDNh5oPnSjA3zQqOM0BtNUzDO+3dqKCrakEHwc4NX6wNGWsE8kH +KhP+cYCYQJP09zJdyFXvHMHHAX4vTK+QMO1Cfu+ECf84wCjMstgzvwsNLdxD +8HGANf2H1eRDulBhSz/BxwF0pHyb2/Z1oeadhJ5gBzBX27W9MbEL6Ss2EXwc +IF55pEk4sws9wYsIPg7AnfFJNbCsC23ekk/wIePxh/HjRxfaoONA8HGAc09i +VVNFulFSewbBxwEYoauaTmt1I4m7+gQfB9CSuRie5tiNMsMJu6s5QMgjzab+ +Zd3oojNRPmQcYIg5Q3Xjzm6UoU6UIzEHqHvkzJC52P3v+dQB1GQbVPjPutGF +b0S5HbaHlI35jb8+daOVdT0EH3uIfCYZbtLTjYLLiHbUYQ+Xu+83Joh+Qbc+ +1RJ87EFS/IaKqd4XpFLpQfCxhzI1Pn2Y9wWVtb4n+NhDp8Z5lb6gL+jtkC3B +xx7my5xplIv9gjpnPSP42MPkr45tm69/Qc4MPYKPPQh+PNv46+0X1LEsieBj +D4uPXlR51PgFvTw5h+BjDxOWA/T4P1/Qx/dEvsXZw2DVHZUHSl/R7OlThH/s +wTYko7Hf5ita6kLoibKH0FvXmsMCvqKQo4SeMHtQ8v5yWjv6K2J8JPQE24P3 +1gt82cSv6L0QcbsAexCaujHGfvUVyXKJ43vaA2tq1ou0uq/EfEyEw9kehre2 +qruNfUWCr4n2wrIH5iJpa13lbyhpkNDDsIehlNQJFusb+mNIbE+zB/O1V7af +XvENKQUTx1Wzh9+XfyYoxXxDfy8T8mXswZ6Vtr7txjd0q4QIpxhxfy/42p77 +7Z9/7GFtpZ28etc3ZGhObDfMAkaB/NBFke9IPoQ4Hp8FMSZ+Ma4G39HHC4Tc +DhZ4Th96ab7wO7LNJfTUsSDFbejG0q3fUVgfoaeUBVEC/lbZF76jEGWifeWx +oISmuGdJ1nek5kIcJ5sFqdh+i2nDd5S4hZCXzoKp/HdS7MnvqO4SoSeNBW3s +B6tPaf1A9TmEnmQWOBgOrZSZ9wMldRJfj2eBxuFk8epNP5C2KJFvcSw46Hl/ +bfm5H2ijETnvsCA0Tn6raNYPRPck9ESx4GvR8lkHGn8g43BCTxgLpO//NORO +60GrLxIfB7Pgh3ZF3gJaD8p/SfJhwWbW9KZkjx60vpHkw4LrPw9us4noQQ5T +JB8W7GUvOqhyrQe5aRN6WCyYYbpFet67HnRyHnHJYIHTq3q17O89SDiM5MMC +vdb4tJ3SfPSctLsaC16lJD3Za8tHV1+QfFjwS/CXeVEQH2U1kHxY0DV1hRl4 +gv/PPyxIvHLmueNzPjqpS/Kxg/ay8qdrm/jIfQHJxw5qUkIMqoV7ESec5GMH +O+c4a5w260WbL5N87OC9+o6Lp5f2os85JB87eJvff6TmUC/a2EUsz7ODkJk5 +v9Y/6UV2EiQfO8j6WdvGqe9FbHOSD3G9heO+RqgPxSwl+dhB8IkxeplZH+qP +JfkQ+3EFEg4u70NJ90g+dvDxsn9UzLE+tOczcfs4O9gTN1b17nkfujhK+scO +GhT4z7za+hCQ5T/KDh6/3v3FZOZP1D2f5GMHD7sHF62z+4mmtpF87KDjmt/Q +6PqfaPYVko8dzG+6UdSd8BMp5ZJ8iM/vVtUa5/1Eit9JPsT68UHl0sGfaJY0 +GV478N08Udg1ux+N2ZB87OC7ZtSts/r9qCmQ5GMHV651xq9n96MXpN3VCH0N +LrfCAvrREbJ8yNgBryWp8Pq2fuRBhlPMDhzTvklOHu//x4f4vqXBphO3iPXk +dsO2cO74qi7em34U5EXysYXKm8ejDSv7keBOko8tWMSk0Rz5/ejqdXJDW7iv +kT0QIzyA9D+SfGzB7vj7Gr76AHrcS/Kxhe5MqDlmM4AM5Eg+tpB2N2PAy2cA +Xbcn+dhC7MorNJewASS0huRjC9H1EdHrjw6gtSdJPsTnyi5dWTcHUHYGyccW +7mmIb7LIHkCiZL7F2cKXnveSzdUDyIMUFGsL9nu3Fz7vH0AnyfIfZQsfz/uv +zJEYRJ9IPWG2cJr/6PCU3iCaTeoJtoUrp6KddnMHkR+pJ8AWesNfnTZZNYiu +kfb3tIW9SWFblXYPog4yHM62sEQyocvh0iAyIdsHyxbCcxm9VzMGUTR5ybCF +0mxuHL1sEH0gt6fZwo7x/FeTPYNIhrS7GrE+NnePsNgQWkPKlyH0uZtVOOsN +oUyKjy30L5V++5Y39K++2ULGk/W2m4OGkD/FxwYezDd3X7x/CD0gj8e3gQ5a +eN/O5CEkSMrtsIGlC3X0KrKH0AoyfHU2oJy1YGBNwxB6ReIotQHVtV+96GND +SI5cnmcDQUtHOEzFX2g7eZxsG+i5sCd/m/UvVEmW73QbeCUd0da9+BeyJPWk +2cDH6rZT8VG/UCIZ/mQbUGnNLdl16ReaJPMt3gaemSjcTMz6hdaQt4+zgVO5 +bSL9Nb9QMflzyX4buHtVfVrsyC/EJPVE2cDyBN5Mb8XfKJnUE2YD46ff3V9v ++xuJkB8H20Ds4Ws1H5f9RpvJ2wXYQG90afzmvb9RNXl8TxuYv2l5+/Lrv5ED +xccGDizn4vPwG92mypMNPHY7ZCLV+RuJU3xsIMdS3bhKeBiFU3xs4OVcmew2 +/WFEdus4NRtImhHcwFw4jBwpPjawrlf8xOetw+g2xccGFMtnFj2PH/7HxwbK +MjZebXk5jNZRfKxh8QXNce+mYVRC8bGGD1vN+eLTRpAZxccaVBckb5bUG0EJ +FB9rWKoTvN9/wQgapfhYw8HxWM0v20bQSoqPNVz6POaLLo0gTPGxhrO3S+Rb +3o4gqnynW8P2iLFQl84RdJTiYw1sXqzHL7FR9I3iYw2DUkG5P+ijaCH59Xhr +ONNw7YN+wCh6RPGxBtnb9GVP9o8iKep5m7h/6Nz9e9JG0TaKjzXQwvsVrpaN +okqKjzUsmDASlR0dRRYUH2L/mRVe3zXG0CWKjzXMvd3Rp+Q+hkYoPtZQ+HZl +950dY2gpxccaRpbxLE4nj6Fsio813N4XX1eWP4bUKT7WUKnjWb15cAzFUnys +Ic57h8F6tT+og+JjDTkC06uz5/9BzhQfa4iwnKjdFPEH3aX4WEN6X5D5zpt/ +/vEh1hszuppL/iBqu2ErKOrb2Htj7A/6SPGxgjhLKc8cvXGkR/GxghIBdREr +v3F0guJjBSe9L8uJHxxHfRQfK/iss2ev7bNxRC3Ps4JL+wrt8lrGEVVus62g +bdlB7wcz/yKqPKRbwcO3d3J67P+iaIqPFfxKsTh4POwvospXshW8m2l8PTbp +L3Kg+FiB/MQZ6aqSv+gmxccKvm5b0XRw4u//z3OxVmAXenHylOkEWkPxsYLw +x0L3plZPoHyKjxWMC+0R/XZ+AhlRfKzg49aRua55E+g0xccKWnp39SmNTKB+ +io8VcPYLRoQYTiJfio8VDGqff6a1ahJlUXys4HujbuqSC5NIieJjBXpp4CmY +P4n2UAG1gowjQc+0/k6iVoqPFZzZKVr4ijGF2BQfK3i890Vi3voplErxsQLF +hA1zXa9P/eNjBQOgudKhegqFUHws4c/+fn1/EQFMHY9vCdoGlTGuWgKYktth +Cf2NNs+2Owrg4xQfSwhM1MypXyaAKRyllhC56vSdPTsF8P98LIFuujc04KIA +/p+PJZyb0Se6LV0Az6H4WMKVHx2H3pUK4B0UH0vg1S5r8OIL4BqKjyXEf/KX +VBSfhm0oPpZw7FOlkor+NHyV4mMJmrVVgktdp+EJqr5ZwoofAfnla6Zhqj1H +WcLFhD0Lzhyaht9RfCxBdn3Ajssp07AuxccSalf9dOzNnYap2wVYQtde9pOz +7dPwDyoAlsDNXZAbM00Qe1B8LKHNSDr6jaYgpsLLsoT8t+cquFxBTOUbwxL+ +7ij6rBAiiCMpPpYQvQhttz0siOspPpZg5x/2Ku2OIKbar4wlOO+vuhWcL4ip +di5mCdfKhk03fhfE//++zQQn18rVSGI6/p8PE7Q7Q5mrTadjKt/4TPC+++bR +wkXTMdVuO5hQdPZDwdGI6fh//zDhzI0Tx2cmTsf/+4cJCdVi/Lbs6dib4sOE +HwzekEDbdJxJ8WHCsUyr65uFhLACxYcJG1Z28fUMhPBuig8TLhgvbDX2FMJN +VMCYIK61JXL/DiFM1et44v4O7k/VrwjhFIoPE8r2t50Sx0JYhPIPE1S/0Wfx +uoXwBooPsV+Urn+VhDAupvgwQcLo3qEic2FM1etgJsQIv76iu0wYn6X4MGFE +OOBy9wFhPETxYcIm4yN7xR8IY3+KDxO+RrPdLlYI49cUHyas6ImbODgujFUo +PkyoPxR0pUZHBO+n+DBhETdf9aynCP7fP0z4pJd97FG0COZQfJiwkOHQYHpb +BP9f35hQEOQhK18qgv/3DxPWvOqxDB4Twf/XNwvoYio6yejOwNT4wreAoNoK +M4NFM/75h/j8hopo6r4Z//xjAYFnBvMPPZiBeyg+FvAlZcnWgtoZ/+dbngWs +aXafDBcWxU8oPhbww6EkItZC9J9/LCAsr7FiKEj0n38sYGjbLsWSc6K4iuJj +ARG8Oy5iIIqtKT4WMMlavezhT1GcSPGxgNhlaYsz5orhP5R/LEDyxj47dW8x +vIw6sAU0LUsunIoVw1TBDbMAZmtu/voMMaxJ8bEAReMe5uIuMXyQ4mMBJzlK +0sXy4rib4mMBZ+cuXPHRTRy7U3wsQOHjIfn5+8TxY4qPBRhZgpN3ujiWovhY +QEPYtLqWbnEcQQXUAkQ2z2sdUpb45x8LwJYX/M96S/yfbzLEefPb7dKPSvyf +b2JEfDWszi7NkfjHh4gP76zP8V8S+P/5wBwWm/YedjCW/D/f+OZQ3O6lt2uN +JGZQfMyheuVLK1ayJE6k+JhDWIp21qEaSTxJ8TGHo08vpvrMnonXUnzMwfSI +uOA995n4E8XHHDZqHyk9dGQmNqf4mAP9hJD4F5iJr1F8zGHv6+OZpX9nYiHK +oObgly5d6mA7C2+k+JhDQfiNxRZRs3AFxcccXv1heD59PgvbU/4xB8uFhZnp +A7NwKsXHHOquOU33oUthcWq+NgeduVsz0rZK4S0UH3MwqFnyLuOpFK6k+JhD +A4yZ7+iXwkwqQc3h1lbDg78UZ+N4io85PE5kqojbzcZDFB9zOLP82prdy2dj +L4qPOXi8WrXKZd9s/IDiYw4tT2JEN92YjYWp+doc5juNB/fkzsYrKD7mcD60 +avPHrtn4OcXHHNJNxA3+zpD+x8ccck8mXTxlJI19KT4MiD908tlOL2mcSvFh +gINc7d6cHdL4F1lQOxiQzd4/tjJRGvMoPgyYI3JYb2mOND5L8WHAwrXd0592 +SOMmylAM8Ft1+/xq0TlYl+LDAOZATtlG0zk4jJqvGTCoZok++83BGeTrljQG +HO8SXXl+zxw8ShmUAUPOto8epczB9tR8zQBLp48PtYrm4BhqYGXA4sqny4cG +5uC3k6R/GOA1bThbXVkGT6MGGgaI11dHvODKYA/S0GEMOLDxlGnBJhl8h0pw +BqS9UPq+OEEGC5GvkwIYcOLNvtQgLIO3kK+nPBmguutV4LfvMriNbEjODNg0 +UKjWIyuLV1IFgAGh2hmNoWxZ3GFLXjJARyr86powWbyN1ENjwMVMkWWNibJY +lPIPA57L7FAu/SCLH1ANmUHMZ1mN9kOy2J/iwwC1qbJkmqbcPz5EPE4SJcpL +DiOKDx0OlB/TCY+Rw4eo51M6MMt1v5c9lsO+1PMpHW6cuPrkQbMcNr1BbkiH +NxPdEdNmyWNpsmGV0uGEoah9laM8nqAaEh0UpKcJaW+TxwPyJB86LE3/XNJ7 +Sx73Uwang7vEzkvMKnk8Sho4jQ5j6r8CR0QUsDjVEOiwmD/P2MpOAeu8JPnQ +YduO7aP9mxWwG1XQ6WCXueMDLUUBR8wg/UMH/GRBfEONAj5FNRg6tJ+hLdOU +VMSbl5B86JAQy5wjy1XEClSDoMPnQ9uzM6IVcRzZAALocC2x3X/iqSIu+ETy +oUMfOtA+9FURl/4i+dChZthn1SUNJXydajjE+dn+JV1LlbANl+RDB86140at +8Uo4iWqAdMif0bvnSKkSzj9D8qFD65GDObViyhhRDZkOR+Tc+qtdlHEM9X6H +DulZbNnYg8r/+NAhMTTUoAYr41SqwJpBt8l7s7oJZdx6kYy/GWRN96QdtVfB +91vIeJuBSo/Y7LY9KlhMn4yvGQh3DX/vzlbBf7eR8TSDo32yLy7/VcExr8n4 +mcE58TXhvx1UceI0Ml5moGHTpT61XxW7upHxMQP7nQk5me9U8cFzZDzM4Gf+ +Tg95ETW8qJY0mBkYG54s1XZXw2/USL1m0J9cxm4+o4afhpD6zICl7ZLKrVLD +dvfJBmQKWm96Rn2V1XHxT9LAphB6qMScGaSO62xIPabQfqPfReS+Og48TOox +hZtSAeZFA+p4dQWZ0KaQUCE4up81FzdrkXpMIedb/yXa0bm4PpLUQ+zvoyWV +Wz4Xzy8mC4oprDm2gK4npYGttUk9puB/Nu1Dl6UGvrmP1GMKLew781RXauAj +DaQeUxBKcs4qOaxB+I3UYwolN49IDz/SwNnXSD2mYOG1YWlitcY/PqbgncY/ +/XxSA5evI/mYQO+9OU/n6Wti5c+kHhPQ8Wt46+ejiRtZZEE2AZH7vJcNezWx ++gOSjwlEp3ler0/TxHXK5IRoAse9xsMXVWrimWfIgmsC9rfczLlTmjh7OmlA +EziVZNv60EgLf9lDTowmEMEpjj4ToIXPDJOGNYGxs5OT349o4Sc7yAnUBDSP +V4aj51p4/hA5QZrAFwP3cokOLbw6knxhZALcyGC1itnauG+MfMFDXG9UXSzN +1saHo0kDG8OtQUlO51ZtnPqNTFBjMBstuB10Uxt7u5OGN4b23d4xp8q1iXnn +OaHHGD7svv05ZLoO9uggC4QxFI/kXv1qqYOvKJ4i9BjD9MGHTQqhOjiaTT6x +GUNgaNClX0k6uHkp+cRlDL0rO/L3levg8jXkBGsMyWWm4c9FdLFXEKnHGGKR +64UEe10c4EXqMYZThoZGOjt08U9TckI3hhyZetbqB7r/+BiD227fPNcOXfzo +HZlvRlC78kpeg7Ie/hpFFngjOIIe2Kv46eHHqmRBNoLVSceMRc/o4cnn5ERm +BJtGzC7eKtDD9fbkE4kRpJTd3vF1Og07vzxC6DGCvzqdRfVONGyrTb7xMIKY +kd4r0Xtp+GXsCkKPETDn5bW9f03D78rmEXqMQFZ23Y3sERpeNtuC0GMEiqsq +q1db6eMYrjqhxwg8dCUPP4vUx2brxAg9RnAndPaDxy/08YY9vwj/GIKpUdu8 +JcP6+MTzVkKPIdj4TLtbaW2AvzoVE3oMgZ4/Jum22wAf1nhJ6DEEoROFe1/m +GODV/uQbG0PIv7rtt7qgId7VcpbQYwhbx/qi9s8zxBXZewk9hjB0x3la/WlD +HNobSugxhJU3wy8aVRtixx1LCD2G8PJbJH2nmhH28XAh9BjCcMyi6ux1Rvj2 +HlKPIcwKETo09swIW06SEyRxnXDGlv7XCAtUk7/XGYKoXP/o6vnG//gQn3fq +5x5PMMae+8nf4wwAT9pceNBpjCt9yAJvAKEbNMI+mJvgpN1lhB4D6Jzb6ll/ +0ASnDZNvbAzAVTfS7kulCe75+IzQYwCXojtM+bqmeFvPLUKPAbxTohn3RJti +8zXxhB4DaBHlmXeWmGJLxhFCjwFUuFhxqjTN8A6fnYQeA3jzWWAp2mmG+/ND +CT0GcPx+yq5bpWb40fkVhB4DkP92utxRho7vPiUnJgMI1sraeN+Jjts0eYQe +A7g63f34uTA6flNgSRheHz6t1Q+efZWOzxzWIwytDzO06XSXAjrBQ44wrD5w +WEGDpiN0bMYSJBJYHyKeZN/7pMfA45a9hB59eLbXyVdzCQN/cKkh9OjDzzv8 +AYPjDHx2Yw6hRx90Dd8f/vqagRenphB69GGV2HuJZXwGVh46QujRh+s8/tED +c81x7eL1hB59aKlzHF7pa44Ty1wJPfqgWPhm6c9j5njxSh1Cjz74ywamW+aY +4//fX+tD9hvTCfqQOX7xsp7gQwOBt3oO7QYWeOPhdIIPDVwU54e7BllgtXXH +CD40OFx24UrgFQv8acVygg8N8tpFsswqLPDuDSaEHhrM8kr9+FyCibXiJoiJ +iAZLFDYV812YuAQVExMNDa7aLc9riGXiCLFEcsKCllcR6fveMvGc0GDCwDQw +v/DyQvUoE2c2GxINgQY7P2pv6LC0xH7rB4iJiwbI/zUjdYcl7hPOIiYmGkiy +o38qZ1jiI6+jiQlOD5YfCbzlOmCJj81iE4bXg43xtCEvhhUOOD+HmAj1QLDu +4LnV263wGKd/IT9PD+i+23dFZlrhjRr10qx0PfgmNPz4/IgVfmT8qSYuWQ+0 +e2eaZrKsMVpXcq0uTg9+SbwZa4q1ximlNYG0KD1wDfozWzLfGvuv4etGBeuB +cW/pDs4sG9xIm0no0YOEp9Za+xbbYBMlW0KPHpy/x1TFN2ywn802ooHpwZy6 +D0EzfthgtyMZRIPSA5pjz6C/pe0//+jBWENq2YMDtvjqvQAi33RB5cngiHCZ +LZ6KeUvkmy5UvqzatF7NDjMPGREFVRfkR92NysLssMOLO0QD0IX6Lf5WDjl2 +WFHOqDEuWRcMVX+dSp/Fwjgl+2ZdnC5ICdDMjINY2GbVEmJC04VY5T7Vx5ks +fGjepFFUsC7s2OS2mClmj5NWPRvI89SFP4M2jbmr7PHx25uJiU0XBNPfPvR/ +YY958lb7gmm6kHKnKv+npAMuyxLjpcvoAnyONTu31gEbHfkmKiCgCzvNczus +sAOOXfyo1JOvAwd8LOXllB3x0JTpxeQ6HSh5tXdyeZQjPnpg21J+ng64r718 +TaLKEds1blNnpetA/5IjvdoWTlhqJr0zLlkHPp1z/ZUa74Sn5J+k1cXpwDep +xqdnfjvh2WM/NtGidCBpo+a5bcZszH3+hZgYdSCgH2mVrmLjiy63hvI8dcBE +6aNU23k2nv5MmdCjAzrdVkvufmDjC4M+u4NpOmDpJz2m8YdYP9PdIV2GWL/O +/7eXGecfHx0oUJm+0GItB/cWRbzz5GuDfoTyRNE1Dh7bfO9wcp02pGy9JqpQ +ycH636+68vO0wWzW0S0KEly8236hKCtdG8q8GkxLeFzcuv5tYVyyNtxlJrpZ +7uPirZt6TtTFacPutxj5vORi1Xn1C2hR2rDtq/cZnUEu/vLniGRUsDYcfbHg +1QMTHi47OlCS56kNr/Se2XeH8nDDD5XTMixt+GMXo1J1l4en04Q9gmnaEDT4 +wm9nFw+7sx5LpstoQ9vCJd9KtZzxC5psydSUFmx3D65pCHLG3YGKpzz5WrDj +xVqp9FvOOG55okdynRYYBPQfWt/hjFMULs7m52lBrLkgc1LbBRskSFTbpWvB +NedrcyPXuWDNqsmrcclaEHUm27Xkvgu+ULU5uC5OC75Lhdyf3ueCd1wKMKJF +aRH16fw8FQtXDEr4d2SwFsx8M09TZpcrPrbqVm6epxakdhy26sGuGK2ZOiPD +0oI+rtux2zPm4XXG9SuDaVow0nBRxt57Ho59YWqaLqMFzx+sb8y8Mu8fHy3w +ychtmdk1D09KeFR68jUhaiBFbZ7ZfLy1Xu5ecp0meG6QSAzcMx8v2bAshp+n +CR/kxz2WFczHT14pL2ala8KMiXAnprwb3lG02OxEsiYIqWwL61vjhp8nzxKv +j9OES9t+Vx3PdMOrzblfaFGaMDAxbdd0YXe8//jA+6hgTRB8nxCwarE7nnNT +9fYHT014hZ/tuHLPHcvten9IlqUJ9F8+RZnj7viUzJe1ITRNWBG4d8UzrwU4 +authtwwZTTAVMjE8lboA15y6bjpNQBMeta6xmP9nAY5t0J7tzdeAb2O95494 +L8SB+dO/X6/TgKilF1Z3312Io30dX/fmaUDY5KKk9RML8duYylj7dA3o/WY8 +X9LPA1u4vXc6mawBLYraIZUPPHBLxszh+jgNYJ1h9r6d5omzszNu60dpgKxb +0JeCAE9cGJIxf2ewBgS73fcceeqJJR9Kdn/w1AD5s5J682d44djzudGyLA1w +Vz4Zlr3KC+sqlE8PoWlA/w8drUVZXniKxTqaLqMB+wU23xaa4f3v/ehcWGnq +3ztg7o13fXTsSKqbC82TRVv6V3ljn2Lz57bpc0F1eylN4KQ3vjmraXtN3FwQ +Or5aUfOlN3Y7Z6e5I3gupLNj2L6d3niZtyeSYs2FOUmGNy9JLcKlngruj2Tm +gsXVNdY9rEU49WRC3ny+OkiyjEUWbViEu0QKTbrz1OFKzAHJgouL8FFIP3Ig +WR2+rlnj7p27CCe+8ipRi1KHjt4q/L13EZ7qS5n2xlMdUpQqwy4q++BPIQ91 +F9PUQevbqkXe83ywuEKozeCUGrgvjd6sFuGDP/O7I87UqcH3+gDroJs+2LfQ +SN4oXQ3u1tjqHij2wdce2akWxKnBXi8V632/ietLc46tDVaDSOeJMH91X7zs +2PPF01lqcOpF60cxV1/cFKN28paMGmSnvHO+GuaL5fZ567D5qjBL8u4XkQu+ +WPHgQq3WPFWIGIh75JXli4tOSx+JSVYFEd8tlyLqfbHjzRsL1aNUIZ3umxo5 +7ov3vB6ORp6qEH7CpsZH1Q+H1cuLr6apwrJAdWNJez/8//9/U4XtGUJ3by3z +w1tMMpbdqlOB+Ngenky0H74eZKLMS1eBsqIK4aCLfvhoUrhjd5wKGJ1/03Pi +qR9mtsTkHwtWgdTKlN/nCv3wFT3/F4YsFbC/cFJ7R4cfzon8NaNURgWGSiIi +GX/8cFrxChzOV4bcQ6t6imf743n6ZxrlPihDZtb8I1w9f3zz5PEVb5KV4eNa +C16CnT/+8HsBd3WUMvSdU9fN8/DHN9bVnRLyUgY7G3GjstX+2K7FxP4BTRlu +LB/2y9rmj8+tWOjtLaAMtPGOlF2x/rj+gVL47zolaIyfdKg/7o8XXtjjmpiu +BJCy0yvhkD/unLP9s80JJaijedY+JtYnG0/Mqg1WAg3tg9Va3v74dKuq4A6W +Ety/KOP+S5PY36j8vqSsEnjtFbTU+uKHi2Yri6TyFYHb4HnpUZIf1jw7Im/7 +QRH8n4xujnch4nc3tKk4WRGujE5l17T54nlLti1eEaUI6q/XxEZt8cXStySO +/PBUhI8/9bK39/lgocOsDVE0RbiZ5BpWHOjzr74R++P38bEfFmG23NKFx+oU +ICrgOuOCKpHv7109JNMVoGF9jYvAOm/MlCgUPBunAHKNtTcTeF74W09rmFSw +AtypyEnpvOGBi9eePHnaTgHmvFx1/kfbAvwhuniVmIwC0I+9CXsg4o75Oje/ +HOyRhz5eOVNbej7mbRTT/vNeHq72pnz3E3DFWfNnyG5NkgftQ2Ynnap4eAFc +ed0eIQ8gtFOp8xQHK5SDjI+HPCz/Oqi/388RT+7eqwW68pCbtHn0foAtno1K +uo0m5eC60apbrnpM3DrpbJFcIweoe9ZnhcUmWDQluk3lqRy8vhugGXRfE59L +W9+bdkwOuFvXNaQqCeMwqTnLOIFyUDH6CpwWSDndrt+p981GDnK7J33cU3Sd +nESu+CRJy8F+I/6ooKy5k0FCZMvKH7KQuXDlumkZtk6RR2cWGb+XhcrQ7zbn +qtlOcg2BcmJJskAPujvz2ZSzk9S5rTAYIQt9J9cyApe4Oa2/Z1v83UMWor7r +pd5s8nDKuJqp+MlSFv7eH6jwCPZ2+g/4BtCJ + "]]}, { + Hue[0.9060679774997897, 0.6, 0.6], + Directive[ + PointSize[0.009166666666666668], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], + Line[CompressedData[" +1:eJw12XdcTf8fB/D23pekoZL2vI17697bPXeUEZXKSHYlJCNUCFlFVshWJJGZ +Mgrx+bwliZIRClnRTtp7/M453379weM87j2fc16f5+f9+XzOucbBa/2XSUlI +SFSQ/1D/j9B/YnDVnfBrw4JaFK6xcbbkkBhab7eMV15Zi7J+ZPx82SeGrR9P +jDkaXYterT52cV63GL7uZ7yTja9F+BHvdHa7GLTeLvddebwWHSi6VFjWIgbd +y8eS8jNqEfPoC7N7jWLoUzx+dPB+LbqtexUtqRXDjeFVs22Ka5FciOfBD7/E +4LRb96vX11rkEn4hSf2bGA6fujAx8F8tcnfILdasFANwB6xnydQh/fuJ7K/v +xVC01raHr1uHPvWOr1r1WgxpTqw9Osw6FDYQlvvshRh89o4t/zm1Dn1ueqok +UyCGnffzJHWX1iHHvlgDn8diqFFQtJu8uQ5FmZxouZgrhridioHLjtahtHDV +7SPZYphm+DAu5lodulf2pyTshhimVI+7vPVpHcr21ausuCyGTa9Mizd+rkMn +/man+6eJ4VtFdf3itjq09Opl64qzYohU8pXnK9Yj7R1965edEIN7cLiJunE9 +urfx5qahJDGwfzi7l7vWI24C4l3YL4YVO7Nm7Z9Zj67ds8de8WJ4ObVipfOK +eiRB/e0Qw2KX21vfxdUjwQr7EbRFDGZTWIeWnqpHy/8+ebw3SgzG2yPO/cmq +R5uSbrgGrSPzf/HLDCqqR+t9etezVonh9vza7Gff6lGAVcYq/TAxiKSsHhh2 +1SMDk9sTVZaKQbFM/8kalQb0xnX8adkFYpDECGebNKDwVdUlCnPFYPdRHWo4 +DejvIyU01l8MBzU0kKp/AwoyP7bGxlsMEyLxQ4uVDSgre9O3GVPFUN1tcJe1 +owE1zkFKMWIxfLlofZ19qgFp6IZ0X+eLQWZ9/XnrrAa06z63qdpNDPumaKta +PW9AN//oO493EcMJqZh1XlUNaF+m3DtvBzLvJaWXBzsakN5w79Md1mLgW77T +blNqREvqO+TumImh4vireTETG9HCsJ4Lv4zF0FvTfdSQ04hUN0kfUjcQwwX9 +ObjBrxGtN9Ap4+qIocS1/tfHlY3owByXkDCGGGI5t/p+72xE80zmz0hSE0OO +8WW5MWcbUdXuxMRcRTFEtLxRCLvTiMZsAt0qGTHcSrOV+PKqEUnSQGLY6Iqa +1/5uRBf1prpNHBABur+zzHywEfW8Ol0k6hbBYZ1NlyXHNiEptfbMpW0iqFly +MXLItgk9/RPwbXuzCJ4eHnLUm9KEXHxR2Nk6ERilH2wIWtKEFnkzPe5Vi0Du +nM+Jx5ubEO/HzajSbyLYsFnMEiQ3oTIZ5kB1pQhC3VeV1txsQmPRkw895SL4 +XPt87q2iJqSpHCCl/EYEH6ICKk/+JK/X1Lpb/5UIZjUyfNL7m5DZklPzbJ6L +IMhD/uGbMc3k+Jq8mwPk/e22HW9o34zS12UPTMkXgVD89PDhac3oR83eJ7Nz +RfBIf8hNP7QZ9b4oLQ7JEYGfxi/d4u3NqEE7zmD9TRHITFjNPHamGT14fz5/ +RyZ5fc+L27bca0YhA9aXktLJvHu3jex404xqj5h9OJ8qgle/JfMuNzajqcmH +fbJOi6Bjnl1GvexftEsqVAsli4DVKPVimvFfdPb7FcOywyI4fTzO8CXvLzpg +Pjf6e6IIxs7LuBUW+BfN/bZR+98eEdxmR0ZO3Ph3tH5EsMKhNnwwiWwvqddR +M1YE7mLps503/qJfBxbdnhgtArt1xcNKxX+RbhczyjmS/DzP5Qzx5y+yL1m/ +Z3KECMJ1pq88JtGCJqgZfwtcLoK7yQprpQ1aUMMTXtyqYBFoW665fsytBR35 +8jx8+0IRpFTG6gnmtCDN0McXjgaKgJvOLFDe0ILWBBlNuBwggt74pPNdSS3o +8pO2mgc+Ini3+0T20M0WlHfIoad0mghenBP3mrxqQVdeVfn98hDBl9dnolbU +taC1G7u7uggRKOuetiiR+Yc4HlseKHFFMOP+10qfif+QbUfoGkOWCJI/SPp0 +E//Q1J2545yZIqiKUdr3dOE/dLBlzb2pNiKwvdCVkB37D/VyDnssNBfBTq9n +Xs/O/EMHwsYUR04kx8/mDeV9eeT5kZJEgoEI2LZyxrM+/UN282dfO6sjgrOh +sU7vO8nrT9KQv80QgcSRlbKPFFvR2lJm4DM1EeTeTijXH9+KSgMepVQoiiBC +c+yeoxatyP/RtQ9NMiIwvz9mnI5r638+EiL4czb+YPaUVvRx0pMJYwaEkF6w +/E/Q3FZUbvHLwaJbCKE2+RPGLW9F/coRLF6bEMwr47g10a1oWtlC+5nNQmh5 +fp/zPKEVwdpcvdA6IeR2LdDPO9mKlrRGDcRUC2Hn8qifj660IrOZKWUHvgnB +R28k4W1uK9JOsjxxoVII+pr96r1FrcjuloHv3XKyvalhscwKMs/1TYNFZUIo +KBC/3FrXiioSOKlfXgrhzPZjfZ97WtEKUQizpVAI67b6q0xTaENG39ofSIIQ +vB7vlnyl04b2Jntxx+YLofx0seQiyzZknF6CLXKFcC/imYscpw21KERP5uUI +oZm9MbXAqw39ezHtje9NIWzr/+KaPL8NmfyYHBSSKYSwez3ymyLa0H6f1XXR +6UK4suyVUuS2NmSm/SR6f6oQhGoBwu2H21CXC0vh/GkhOGUdvXHhQhvqvlV5 +LieZbM8zYdrH7DZkvT2D+fywEAw/OOgZFrSh5CtnXlYmCkEn6KjRtvI25GD+ +IKR5jxAiKjLn/fvTNlo/QtCesbEoqrsNSTEjzzNihTD+QXeYhkI7cn2kTJhH +CyFKz56Lx7ej9HNvfnEihWARbSDeZd2O+B8fJ/hECMG5+On2ee7tSGN5uW3w +ciGc1tRv8fBtRww/RkVUsBBm+9sc9VjajrySt+5KXCiEFfvblwduaEe5tuoO +qYFCqHi4Zv2O+Hbkb1TyIztACOd+pmU/PtWOJq3KPlroI4SHw/smql5vR5Zq +2LNymhDsxpgXRz5uR8GKPQNNHkIYNIq92FjWjkoXBN4bIYRgbBqfFfOrHZn8 +Ob+awRXC8eyXM3U729GE2AQzc5YQpgW8biiX60D5xuo/OEwhEKpHNmeM70CD +Fa6nfGzIvN81JQ7adKBfqdK+weZC+Ffkv20/0YFWblgrFz1RCFeL/Nsu+Heg +E4FbnyQaCOHSN80Fpcs6UIi31cZUHSH8VD7yRH1zB/rkt9kqhyGExX6vx4Yf +7EBNy1b+LFQTwoSsl6FfL3SgjMT+E5WKQjCaGH895G4HknxiM71ZhqyHWyO1 +Ui86RutHCHW+broPv5Df9994jzEggFuKjh4JLR2o8V7iCvNuAdz70hAaLtWJ +PpoJ9LltAhguWLJ1mXYnCr566o1PswASCk7uj7HqRMluR3YF1wkg4POBpDR+ +J1rxxdIluloAi+UFB376d6Lv+0PrEr8JIGvG3W3s5Z2o30twJrVSAPxrNWGX +YzvRQ90nXjnlAlA3qJhsdaQT6fZ/GSgsE8DEq3sNijI6kVHDmZuVLwUQ7dXT +uOlhJ3pZ17eguVAAKjJmt0VlnWhsd7+KBAig+gMj3OR3J7LP+fCYkS+ACPbZ +DP3eTiTKRRHmuQLQunKszl61C02XfajPzRHAZ6Mhx4UTu5D3+WelPjcFgDI/ +J2Swu8j57/vW4EwBPOdY/Jb17kLcLEXb6HQBNH2un7IzuAtNMvX8lpgqAPt4 +vfvam7qQQu2RQ6mnBXCcB1ZFh7rQ79Zm95xkAYyXqLiadKkL5XrOayk8TLb/ +ZrH9hoddaOefj+crEwWw40YQWvemC3m+DvZt3iOA0OQXs/fVdI3WjwCW773S +9XCgC93deiubESuA/Xt7UmW1utFi8aql5tECKEl+5LPKohtJzXLT4kYKwPbm +P/kmfje6kDXumU8E2d9vT77cM7sbOQbIbQxeLgAfyexk14huhIWyptHBZH/z +uWFyu7uRx5YxnxIXCqA1wVXYcqYbwaDT3tRA8vhr5qTW7G7k/DLENSdAAGru +iRoqxd0o/celhkIfsr3rVTKiH91ITtB5tnKaAG6apEse6+5GwY2zZjR7CMDq +2me5QdUe9OD786ERQgDFnN1jdpj2IJ9j7rcZXLK/vNd/M3TvQZFb7iwxZwkg +dc6WMd9m9SCjU5O0uEwB1M8+9zAvogfNr09+5mNDek7/WHp7Tw8yXiMRFWwu +AEe2hc/zlB60wSLcLHoieTz+uHvvvR7kP+5dRaIBOV7adM5Nfd2DHnNcElN1 +BNCJc8Nya3rQnWMnOTkMAdzeszpNONyDnA27mgrVBHCNcJ/aqN2LhD9nplYq +CuBXq+mibPte9PXjNZ9mGQHMO21enTy1d7R+yPHHEn04vrQXhT65EmzeTcDI +yyjnu1t60Y/fU577NBPAnFUg9S+5F63b8Ns8upqA8x/Miam3epFexOb9qZUE +zJh+pQEV9aLvrxX/FpYRwH7gLhXwsxflnj7u21xIwGK9ln0y/b3oaun4O4x8 +Aoo25m0rZ/Sh2yvPjOHmEBBeeOYntu1Db9cyYoIzCZiudCLn5ZQ+pPhj7+fE +VALWTL7W2rq0DwXldXNzkgko2fQp1WVrHyroXUyOPwLCLuo/PHWyD4kuPSPH +G0Hu4GJF43L6kPrQpBDzaLI9258auSV9aMGMvc99IghYL2ANRNX2IeujjebR +wQTk922TnCvZj7aW+OxPDSTAeF6eyTz9fjR94G5zoQ8BlxdVL93K7kfnjXR9 +mz0ImKI0kg/+/SiSuzOHwSVAcYGqo9maflQ8vYHBZRLQGKBaeDOR/L6ff3Sw +OQFNbcORsy73o+4ZjysTDcjvs6q5Bk/7UZm7OTeHQbZnlGcs/60fWUxKJr0I +SM/eZqLV14+kaB8CDOpchPyxA2jJu9WkDx8ePPux5QBzAPFOVxX6NPNh7eTY +t33eAyhl1gzShw9eaxVEieEDaKvck8TUSj7w+XvfuO0dQN9v2TUXlvFh9t2e +TcoZAwi8Lvo0F/Jhb9k8/jAMoEnfxuQw8vnwJemWodb3AaS0LJHBzSHb62nX +nzIwgNZVD0cFZ5Kfy1ixUnUG0dzZUZWJqXw4+MB/1RjWIHr6pJmTk8yHOVqr +H98MGETX9JalVibyQay12TIschBpr/0+MhLHhxkPou8IkgaRk0VgsHk0H4JN +VT35twYRM+9doU8EH5Zv+V22pGQQqetPJ334sCivz/dqwyB6PacwMTWQD9Oq +fIvHKAyhNcvdSR8+TGqoYV8xG0LN3rk+zR58aP+Wf36B5xDyVbInffhw59G7 +QXboEDqakkn68CEkztzfdfcQui9jRPrwQcHmyfmF6UMoV3Sa9OFDChyrznw6 +hM7O0SB9+GDmftVg3K8htESwj/ThQ+rFId8bEsOj9cMHvZZjm0ONhlHCiRjS +xx22TlxxViQYRv8k/pE+7vCKv+2O55JhxBKFkT7uoCJ+/3T1jmG0dB45/Va6 +g9h+efGjtGEUPnkW6eMOK6R5RTZPh9EsxRLSxx124Jn5z34NI6N0IenjDvtD +LmfGSY2gEo0HpI877PnndmCJyQgKnG0XHZzpDutD1MLCPEZQ8doM0scdZuGJ +rkeXjSDtJbpk/biDpXSM5K+EETTZ7Ajp4w5NdsoFs6+OoFkFsmT9uEO66Mfm +fy9HUMeMWNLHHXaPvNHMbhpBL7+3kj7uEMZY+LBUTgJ/iyHzBLsDr8qn7OM4 +CWyhU0X6uMOUoCdTOiwkcBb2I33cIf7QVVNTjgReveYF6eMOHVEaK1ZNl8Ar +JrmTPu5wktGlVrRAAqf8ukP6uENE2BxdlzUSWPmKBenjDlFrnPc/iJPA9yLJ +cjdwh2zrpEUzj0rg4x7k9MFwhwnnw04NpkvgOxPI6UjRHZ4+f+T85J4E/u/5 +lMyTfoB1rEgCH6snp9tuHtxw/pwSWymBF1Y2kT48qIm9tHxzowQOfkMuR9U8 +8N/UePLAoAS++LqC9OFBh2WW1R01SaxX7k368OD5kZaJf40k8Zsfz0gfHpTc +vBHHc5LEjzvcSB8eyG6vEaR5SuLfatmkDw/WyaSE6QRKYg+mGenDA3XBm9aM +cElcHZRC+vDgp0PcD89tkjjvgBbpw4PaTzccB5IkcdEzcrwl8kDfcXZjYbok +1pAeIeuHB/tEsXKX7kvieZ5knmge4Hsxi08WS+KQBDJPBA8WuGS8vvBVEjOL +yDzBPAgulPDDLZL4mQx5uUAelC491NApKYXHiMjb9+HBeVWvU4KxUth6O9kd +HjyoeMEKSreQwlIPyeWFy4OYIwGOujwpnNJO5mHyYPvyNMOrvlK434ps3pwH +DTMMJs4IkcLjg8nbNeDBE8ErN7kYKTx4iozP4EGvKDPs034pfLGU7E5FHpwJ +uHf18Xkp/F/98CBrfdvIgztS2MqRbK6bC/ppiyJKiqSwdgh5e81ccv0e+Nvx +RQoXHSPjVnPBxuzlHsd/UtjtKZmnkgtvthc57JWWxhEtZJ4yLlTWdLS1jZPG +Ibrk8lXIhanz/YrX20hjA0/ydvK5MOHH97uKQml8eg0ZL4cLQZEp93JnS+PK +k2SeTC5IaO1/tTlcGn9+QuZJ5YLC08wu/zhpnPKb/HoyF7Zu73IRHZfGJgrk +eEvkgr/XhgNTrknjcGtqv8OFI5OMu4ORNHbwIfNEc+HWx4UyJ8qlsU0kmSeC +C3pm+zy+10vjxcfJj4O58H1sWi5/WBq/yKN8uNCecTkolyGDl3+lfLgwv/y0 +g6elDHYfoXy4oH1xs2sTXwZPMyHzcLkwSW3q+quzZPCBKeQhkwsJujLft4bL +YNkIyocL7kW3YlfskMF3qXI34IKnpuf0VSdl8Nn7lA8X0gZezoi/KYNzv1A+ +XPCL5+3ILZAZrR8uBGel1AxXku2bUj4ceBTduHXRPxnsNZ3y4UDod9PJH2Vl +sTCS8uHAkhofYYi+LF59ivLhwO0Dy9YoOMnit08oHw74vVv5unCaLA7/Q55e +yIGpufMXnV4iiznKlA8HjnC4xrtjZLHAkfLhgM0iBe34w7J4+zzKhwP6xs94 +5y/L4tYdlA8HFu1edaLssSxOuUr5cKBzj6SR9gdZHPuWvHwiB76bxldtbJLF +x3up+uGAblj3q0YpOQzU9B/NgQ+piT9idOVwzVTKhwP2phvU9B3l8Mg6yocD +LoN35lZMk8MaZygfDlRNnJZ/bakcHv+U8uGA9RkXt+TNclingfLhwITFm94l +H5XDappU93Igd6PmnhvX5HCfK+XDgbbPEn5fnsrhqiWUDwc+HZ7savRFDt+n +yt2AAwuTq922tcvheGr6YHAgse7D7DYleexNdacimfeAwcGtJvKjPhz4s/1x +1QSePL5PNdftBjIFOVMqZ8njpb6Ujxs8mzVUenW1PJaKoXzcwIZ9IeJIgjw+ +e55q0A1cV54yS7ogjy2KKB83aGqs6c94II9v/aV83MDj8f6Gd+/kseVYyscN +BN/i28c2yePzPMrHDX56V4yNlFHAMqGUjxtYqcUF/DZQwMsOUD5uwJiw7UYE +WwHn36F83ODKtncGqn4KWIEab4luUGWz9XphuAL2pgLtcIMH1tv8kvco4APU +9B9Nfr/GpDrmvAJ+TeWJcAP5Imwd+UABa1B5gt2gunSmXdx7BTyLyhPoBpz+ +Tw0XmxXwOar8fdxA2sd/0Wc5RVxNdYeHG8woLjhgaqyIbanlg+sGiist1idw +FfEm6pBJ5nPYrTk4WxE/p5o3d4N2g/KVCesUMYMqdwM30HXUiTU9oIhDqfgM +N8iP8Pf8fFkR36N93ODT653FF0FxdH5zg82zr8jEfVXEs2kfV9gnDX3ruhXx +der2ml1BpbIsM0ZTCUtRcatdQab8vVqyjRJeQHVfpSts6SyxezZFCT+gOMpc +YQXvkbxCiBIeS51e6Aql11PPLN2uhNdTt5PvCjeJ6D9vzijhcmr6ziHbGxDX ++99Xwi5UnkxXeF8ld7nxrRI+TXV/qivo1SDdU81KeJgab8mu8IURMS1QQRmH +UpdPdIUxK9WYdpOUcQn1c0mcKxT8ufxOR6CMnak80a4w9/fXmjELlHEqlSfC +FdyezrMw3KSM5aiPg10hbLvhGfZxZbyaulygK1Tp2rouylbGH6nb93GFjJO7 +ZJNLlbE77eMKt9oMJT/VK+NL9PTkCko2stbmsipYifZxhTuejrsTjFVwJO1D +ns/PVOx0V8HUap1o4Ar12qFobZAK5tM+rrC+bMXFvmgVfIn2cYWpy+7fOZqs +MurjCtu+TmtnZ6vgMNqHDa0OZkuaS1VwKe3DhmvLvAazGlSwPe3DhuzNuUVx +cqr4BO3DBqnV4XiRiSrupX3YcIEIq50uUMULaR82HGq7xp2yUBVj2ocNz3a5 +4JlbVDE9feewwbNDIXLFKVWcQPuwQVs8ye/wPVVcT/uwwW793sUF71TxDOrr +yWw4vsMxReafKr5J+7Bh8hpT+dkqalidft5mgwd3SdpdSzW8jvZhg5mn3+rx +U9RwOe3DhtiGsA1xoWrYifZhw3SLi3dqdqrhk7QP2b6khPWMC2q4h/Zhw6yo +3VV3HqvhebQPG/bvtn4x/osazqd92OBq09u4o0cNT6B92LBwbcOU+jHqeAft +w4aRGSPffB3VcTXtQ+Z77nYrz1cde9A+bMioOH3fcLU6vkL7sOHGHv2evfvV +R33YwC8tjGzNVMd0c90sYGUdNZ33XB0X0T4suGS1W6ugWh2b0T4seJ42I2Ws +hAbeT/uwYENfw/RXahq4hfZhwaIL43XiDDQwfXohC/Yc+yrhbKOB6ek2nwW1 +7+3lGjgamJ4eclgQv0Tb4vw0DbyJ9mHBYm5SWECgBqanr1QWbAw5+1RhuQZ2 +p31YUFzJdkNRGjiN9mHBnHPLX2/Yo4Hp57kdLDC8YbndMlkDh9I+LNiKm+Mr +L2rgF7QPeX6SoeGWbA1sTfuwYFCvYJoa1sCHaB8WGIR+kD3xWgO30j4ssF4x +J0CtSgMH0D4sMLOY6rilUQPn0j4sUMm4ll7Zq4HH0z4sqPq6JcNSXhPH0h3K +grNv8tmrx2riH7QPCybHRSy4ZKKJBbQPC740HtQqZWriDNqHBQu1DILqCM1R +HxaUd+k7dXlr4hDaxwXsThxM7Zqvienba3aBqNZVZ+pXamI6brULXJXPNyuL +0cT7aB8XKPqy2fNKvCamOcpc4O3Kq13rkjVHfcjP701m213UHPVxgWv5s5S+ +Z2liLdrHBTZtf79mx2NNvIH2cQHHIRw69pUm/kT7uMBntkFzSoUmdqV9XCDc +rlFmXI0mPkv7uED9T7Pbu9s18RA9v7nATN/yxuoRTUwvz9Eu0KM32dBCVQsX +0D4uYNXw8e5kXS1sSvu4wO/cXVf55lqYvlygC1jHzxhSd9bCjXQHuIDELKc7 +jwRa2Jv2cYFFJuwXfG8tTHcv1wWmdMzlpczT+m+8MV3gybMTmuXLtHAU7eMC +6Hjr5N+RWvgz7eMC08NWVJVu08L08stwgaWuQ++SErUwvZwruoCs8m1zmxNa ++L/ft52B/X3bt4tpWqM+ztCas7Kj9YbWf+Ot2RlcEtavHJ+nhenlttoZ5Oaf +JvQKtEbrxxlCHb5GdZdqjdaPM0yX46rcqNDCM2kfZ8BVeVJu1Vr4Hu1DHt/1 +m5fWrIXH0T7OMO2Agsavbi28hfZxhkUhVWYDEgxcRXeYM0jwXqe2KDH+m6+T +ncF27NeN+WMYOJ32cYaaFtmbSycwsBxdP85g8dJb/MucgVfQPs6QNj2WbcJk +4BLah8xnMDdeg8P4b74OdgY9wS+bayIGTqJ9nMH4zni7v14M3EH7OIPkRonE +Kn8Gnk37OEN+/An3mCAGfkj7OINPXeX0J0sZWI/2cQZ0+tXdrBUMHEf7OIP8 +2fCo6WsZo/XjDFZND44kRzGwkPYh7/fgfdm9sYzR+Y3Mu23JB9OdjNH6cYb7 +Tx4Ork1gjM5vTiDyebp92QEGprcvzU5w1S4mSO4IY7R+nKBh0dck/+OM0fpx +Aukffyd4nWbgJtrHCfqysuT/nmP8N94KneBlmYEX9wIDZ9E+TrCez611TmeM +1o8TdA/JVX3OYIzWjxPMUd1pbZXJwB9oHyc4FHHtg+k1BmbTPk6QrrejovQ6 +A5+mfZzgoK6ss+FNBu6n64c8f6Vro/4tBg6ib9gJNvUGWqSQx4j2cYKYB5f1 +N5DHxrSPE/hfm/DiInn+LtrHCeRKnplb3GDgGtrHCU4ZnODLkdf3on3Izy8e +U+ZdYeBbtI8TzJz9+PBLMo867eMEGzlaxVnnGXgj3aFOEDXzeF7TGcZo/ZDf +PyVauOP46HhjOIGCusHDiMOj403RCVLyTEqy9/7fh7ze0TnJM3YwRvcHjuB3 +7r6mYNPoeGt2hJhPgskHSH8m7eMIm0W9DnZhZP/QPo4w98fXdxYLGHiY9nEE +jVtNFrF+DLyM9nGEKzfMWaaTGfg17eMI474m9ZmR49eR9nGEEO6kDTtsGfgc +7eMIh0r/pDONGFiGLlBHOHb43T6OFgOH0z6OsHZn46Rz0gz8nvZxBKvL9jEB +neR8QdePIxT2pcWF/NHCGbSPIzCr/gniyrWwEr2/doR1114/CXqqhdfQPo6w +Yymnu+uWFi6nfcj7kWE1zjyjhZ3pAeoIY4/BmVW7tXAy7eMIp5S+yEyO0MId +tI8j/Fu9y/pngBb2pX0cgfH4oSqHo4Wv0z6OoNIVdyPAUAvL0vtrR/ik81HG +VloLL6B9yDzmD8cXkfP1XdrHESqNbBonvPj/+uMIwzJ20exMTRxA+zBB4QN6 +op5Arle0DxP+HPoOmSGauJOaUKuZcNzxUNwIuX6JaR8maBe86tPW08RJtA8T +lvJO2bd0auAquqCYkHCx3SieXG9NaR8mbG2rev01QwNH0PtrJvBt5rDat2jg +O9TrlkwmvPNbFFTsq4F76QJlAje4y22RiQbm0ftrJjQ/Yl1f3qSOt9MbViYM +JqTNPXZIHT8epuqHCdctLLbybNWxJL2hYYJh5mCC/0s17E0VdAQT/BS962CJ +Gr5MD3AmLPIdn7q3QxXLUK+TAplgtXnp1Ss7VfEa6vWUDxPKE0wVJyir4p/U +guTBBNamZfhvkgpeSE8ATIj2Ni4Zq6GCq92oQyZslJtnc/KAMl5H5TFngvsl +ld9rpJSxAl0/TPhtwvt3YaMSvk4vyEwI3Fc307KafL6hfcj+equmoDz9/88/ +TJAezBnjeVsBI9rHAb4ov4uuUFPAu+nnUwdYMbLKrmClPA6gn08doODTLq4s +yGG7C1SDDjBydOz5NE05rEktWGUOoMScNOf4Ilk8RC9IDvDyblbIzysyuE2b +8nGAWbr3i/Y0SuNWusAd4FkoO26npTTupQo40wHqjrkc+hQihZXoBcEB2jJu +t+4+I4kn5VE+DnDr7OVria8k8DR6QneAi/V26978HUEb5an6cYBpIUquPPdh +dJBeYBzgbOS8sLi4QbR6LuXjAK3fT+Wi7H40jl4gyDw3nlv0v+1FidQCEOgA +RyuqHzN/dqPi15SPA9QE/1u/7HsnKuukfBzAybvJ60RJOzpPLzgOgE9+8nia +2YpcRZSPA2TEBT99X9OMUugF0AFmHOnm6QXVoxeHKR+yfxetHJx/8zdC9IJM +9k9F1Ijlw29oO/1+xwGM1n06dPBj+ej7aweo76+fguc/Qxn0BGsPEq7Dz0/l +7+X/OE71vz0YPbdl+n0t4l/7TvW3PbyfK2javfQTX9GC6l97mGmuPT+v9Cd/ +cB3Vn/bQF3pr6739tfztD6n+s4eJf5YFPQxv5p+WpPrLHmTeG/YHs9r4k6dR +/WMPef4GpqundvJ3HaH6wx6ObLS2i13Vw/eroArMHmzYXmMPXejnPzKg8trD +hLObv6T/GeLfDqHy2UNtWRV/UaoEwblGLUB2MNc4fqR5phRR8o8qYDtwxz63 +/TRkiEpXKo8dRF/y9/n5XZZYsofKYwdbyo5UnX4sTyx+Tw1oO1AVKAbFXlMk +vk2k8thBS09+0d7LysTnKCqPHSzovjoRZasSU0uoCcUOznHfrp5Qok6wTag8 +dpD7W2fWrH4NIm0blccOoLR2RZa2FhH/hcpjB5qf/aJSOQyi2o3KYwdlCkGb +jcPGEPnnqDx28Gn+yEbOmbHEfz520P5euKK+XJt4F0b52EJohHGAtbYOofuW +ymMLOpbnXaSXjCe+cqkJ2RbWKD5QX5ejS0y4TvnYwj2Vtb8ilfSJSl1qh2gL +PKdn1xVWGRCqh6kJlzzedm+Vc/kEIl+aKkBbEEUZH9tibETUxlI7RluIdGeH +m34zIg53UwVrCx6n9NDZFGMiawO1A7WF8l1lh74snkhM7aB2kLYgJzHz8x8z +E2JxFPXCyBYK1NLSHraZEC191Ase8nq30e9AmETs2UQVsA2srE0pHn/clMio +pwaoDWQ/tI4KWGNGzPSiCt4GKixWNcj6mhP7Uu+SeWxAx3m+KZNlQXhXUxOE +DbC/Dlh8NLEkzugcJPPYwPoJ3p1t46yITQLqic0G9g/57N2rZU18m0c9cdkA +bJKsPsGwId6FUjtYGyhLCpUx0LMlfJdSeWxgWLSpRd/Sjgj0pfLYgO0xXtoJ +d3vinx21Q7eBM6jyoNjGYdTHBs7vWnWr97EDcbOAGm/W4Hz8E7NxJpOoi6Ym +eGu42zFeV6eeSdzSpyZka3C46BK2a5cjMXyX2pFZw9MUS21LIyfiM496IrEG +v9ouS5WnToRHXjyZxxqKt529aL3MmXAzod54WAMRMm7bXhUXIm/HAjIP+fnJ +iMeGeS5EwZspZB5r8Nc5u7gzlEUEaTiReazhWd2FMFltNrFdNIHMYw1estvf ++b9iE/ZhimQea3iwzjmtaqcrsSK2k6wfK+BYPXufznMj9t/9QeaxgoSFG1PP +DrgRdUQJmccKbrGOOT/EHGKPUR6Zxwq239c/PbyPSyyeTb2xsQK7L4zi8Lk8 +YvP3JDKPFaRnxBQOWbkT7/O3knms4PGYqYfypPnEyr8ryTxWcM4qfuLpX3yC +v2EumccK5tXa7blQSBD+3p5kHitouTTxc9gcAXEplspjBTvNQ+dovhYQLsPU +DtKK3L9+dfOdLCQkPlK/11nBavP9u40KhKM+VqCYscYpXiAifOKo3+MswXRD +4rRtT0VEuT81wVuC54kvzxU8xUTKljdkHkswUQq+al4iJjK7qTc2llD7zrDt +c4AH0VSUTeaxhLPNjDTDHx7EuqaLZB5LMAji3++N8CQcQ5PJPJZwUveCw7Ih +T8KFGU/msYQqW5bWsiOTiQ3+MWQeS9A5Lh3UazqFaH2xksxjCSxveQVDNIW4 +eXQBmccSjOcJ9T8HTiWu3KZ2TJYg9SDnpFn3VOKnsZjMYwnZKwNj5E9OIx4V +u5AFbwFODxYkKrt5EYf3mJEFbQGH/9acKvjhRXqMJQvWArIUO9Nt9k8n7LlS +5AC2gBiVvdenuc4gBlz+knkswKj7fNb4xhnEc89PZB4LOFjEvZ1ywZtICn9C +5rGAy9sW3nwf6EPMyUgn81jADj2ZK/ljfQndjngyjwVw0uxT5n7yJSrmLCfz +WMBX2XVTArxnEt131MzaWRYweK3tvXfwTOJ/n5JsJA== + "]]}, { + Hue[0.1421359549995791, 0.6, 0.6], + Directive[ + PointSize[0.009166666666666668], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]], + Line[CompressedData[" +1:eJwt2Xk4VN8bAHBEv6gQyVJklyjG7Ns9s1gTSirtNbRJixa0aSdaVNKiqKjI +t4WSVBxvWUpEoagQss5IK+353bnxRz3nGfec857P+77nzsNCttZ/qZqKioob ++Y/y/wHqRwqnt0StTOmS4xDdjTNV/0hBsDrjVptcjq+/vdhc9kMKz/Y+HD/r +vRw/WX3swpx+Kfg/qLj2+YMcF94TnMr6LIVSy0cL7n2W4wOlacWVvVKwu5Lt +dK1PjmlHH9nmyKWwJeCgVfl3Ob5hkoEXd0jhvvVs7ujfcjw0yO1gbYsU3hvr +he0fkGNmyLl4nUYpaDMKntgNUWChc+7jUfVSMNsQ6P55qAKPux3LflNNjuve +vevUUuCX340bVj2Vgs7iRWnDdBR42a9luUWPyPlGlu8N0FfgV4oHWuoPpXBl +zrxJyYYK7PJjq6lvvhQm5btKcsYq8CarxN4LuVLYzIwpOj1egc+HjIwayJLC +wRLLbB8rBc6pbCtf9p8UQkINhz+zVeAsv7H1dZfI/U1c+tx8ogInvs9K9T8v +he1/h6uLJinwkoxLDnVJUsjuHp42yVmBx+z8sX5pIjlWBF/vdiHn23g18k+8 +FDapG9puZCowPxoLzsVJYSjDUuspW4Gv5DgVTtknhflboud+5SqwivJnpxS2 +1kkN5XwFFq1wGsBbpCDzniu6LlTg5e8L8mM2SUHvZdkLEVLgyPj/OHPXSSEu +4ljdBZECr/f9vp61SgrlTjluz8UKPGPixVXjlkmh9u9k8yqJApta3bAcsUQK +l9rUlp+RKnAVx/iUxnwpEC1OJixXBQ5Z1Vo+bLYUzn+9zT1Hjt/f08IG/lJ4 +bJZY8pIcz7U7tsbRRwr5i54WNJDj61mRjVM9pRB+Z6FlNjmWz8JaEVIp/LTx ++jKDHOuaBPVnElJw+++gcwm53u7bfEUrVwoubY+d1cnx1bZxDGOmFNJWJ0/R +Jfe3P33ocx9nKRzz0IrqJuMZ+/f7g50OUhiyXqc8nox3cdeXoTdtpfC55ypt +CKHAC5Z9O9diIYXgvNZsqUCBR0YOOaRjKoUZtVne03nkeZgaVfKNpFAiMhxw +4CjwgVnMoGX6Usj5Y1BRQ3rMsZo3NV5bCjbDr930pCtww57Y2FxNKYxZ2XAz +jvQcHQkmDepSiDG8WHGa9FalgMj8GaOuEk7mw4WxnlzLXxKQL/09dbydAn97 +cqpU0i+BRo1DtxLJfFLT/py+5JMEfPtv01+R+fagbUZjVI8EROyIp91kPjL9 +8LKkTgncfPxs5yMyXxf60FxzWiVwMfOhz3oynwVvr26qaJSAUeNUhlxbgSvV +ab9a6yWgtXgtw4msBwNcUPutRgJR9Im+Yg0FHjV8htrwKgmsm719l7kKuZ7i +455xTyTQVr6isuKnHNsuPjnHsUQCdUd6GO5kvYpWuO/hgQS8Lw+7fZCs79R1 +Wb887kvg8+1xhce75fhte0zBzFwJ7Fq5v8j/nRx/f1TxOChbAv3g/bC0QY67 +x+wwXX9VAtPyl93/+EKO86pT7u9Ml8CJea+uP6uU46BfDmnxqRKAlLSzyx7J +cccR29qUZAk821ey92ahHHsmHPa9fkoCZbpoec4dOd6tFqyHEyRwBem6ht6Q +46Smy+MrD0tgrR537OvLZL+xmx3eFCuBcbF3e/4ky/Hsxo1jPuyVQHba0by6 +4/LB+pGAo+xB1PID5Hzx311GbZVAfLEnurZLjlsOLLxhGS6B+id2PzMi5Nik +j7aJESYBzU0Lb8xdLcdO5ev3uodKwLyoZ+FDmRybaVs0Bi6XwPjb1cOaZ5Px +Fgh2rJJJQN1b99qtqXJ85HVJSNQCCTzfe8lbKJbjUcH5544GSiBadqxtG1OO +18w1N7s0g5yv7WXEens5vlTwqT3PVwLnNTdomJnK8Z1Dzt8qvMj1a5Yd2qEr +x5efNExvcZXAHNFNnZND5Hjtxv6+PiSBI9NnHgzu78Y81y15WnwJMD+ZjXvd +1Y0nfQleM54lgQrNprru193Yc1euIYMmgVlnjhUmVHTjg71rcjwdJVBzSVBT +V9CNv/MOuy6wk4CbfYNe7vVufGDZ6MdhluR524RFTT5HPh+miqJNJTCQ9MtA +HN+NJ8+beSXJiMyP2K2v3keR61vr/u+GvgT2f/z4mLGmG6+toAUWaUvg7rN5 +bQYLunHFjHtn6zQl0GSf73DUuxv737tSq1CXQN+vUecuc7v/+ahIQMVjATHL +rhu/sC4wG/1LDH+1UjTPj+7GNRNanCf0i+GDR63KXtVu/HN4KEvwSQwv/gxY +qfV2Ya/KBU7TesRw1dFig8nrLgxrc8cGd4ohopbdW1HShRd/3PQrolUMrD5p +onF2F7addrbyQKMYug67rVA524XHxNsnnqsXw4ELguW7orvw5GumfrdqxGA9 +yf7Y2XVdeG1m5O/SSjFk0YZ3T5/bheuiecmvy8Qw+UbrqgvSLrxCEkTrLRbD ++Us3TA44dmHzxs95qiAGdYP1fdoGXTgmYQrf4L4Yxlh1phn/6cQWqeWFE3LF +ENNX/vRkWyfuHRbuLsgWw6KD5htiyzvxh0deVX5XxXCysy2hN7sTW711nxuU +LgbG/4ydH53sxHG+qzvDU8VAU+R76G/vxLZjCsLjksVwPOHZ6+olnbiPyRqW +ckoMs1QCujXcO3H/tfoz2QliiKJ5bLhq34kdoi7SSg6LYZhdZmTpiE6ccPl0 +WX2sGPqat/2Y8aEDO9vlBfXsFYProsK+gOcdg/Ujhu8XwlaX3ezAarSwFP2t +YtC+krA4O6EDc+4NR3bhZDwbbapGbOzAqWeqWnhhYpCp2919M6MDEy/yo31D +xXAh8JSZGb0D6y6vmSRbLgZJ2OaBmlEdWH+6ft0mmRjcfZ/M+/OhHU9J2LY7 +doEYrn2Ioyc9bce5k3SckwPFEDnzfnRmZjv2Ny9/mzVDDJd2zJs5OaYdW6/K +OlrsKwbmmlXnbILasb12oVu9lxgmWCiCjxDtWKb57ZfClYz/1OtLa4zbccX8 +wJwBROZDLVcGX9qwVVvKan2+GM6EeQ5d9bQNm22NtrVjkecx0v3vjMtt+L6F +zlsejTyPKy5Ttka14d91nJO+jmKIk2rLm2e24ZbkIX4yOzE8aqhv3OvYhldu +WDs03JI8r43HbJarteHEwG0FsaZiMBvBfxBT9w4H+UzcmGwkBm5qdVbHf+/w +y+mbJ2bri2EKe87XPTveYcXSlc3F2mLwL688sMj/Hb4Y+zOxXlMMvgvpEZut +32HVAkfvHnUxiD9G5z7vax2sHzLeXWVeK0pb8UX/jTn6v0SgPuqXs/BEK5bn +xK6w6xdB/bmxodOWtuIXtqJx/E8iOD/J4dcFeiuWZZys8u0RwZJ79k001Vac +wD2yW9YpAj13QwOVyha84rU9M7xVBPjZl3MjklpwU1xwZ2yjCObMLYyavbQF +/5wiOp1cL4Le1s3ZzU4t+K5JwZTsGhFEhlhxMn40Y5Ofr38VV4rg28f7etcf +NmPz7tNX68tEEBouFX+Oa8ZlnT/m9xSL4PXPu0Ub/ZuxQf/PESogAl7U+CSm +cTN2yq7N178vgmlR67vG47dYkotD7XJFkPT91BDs8RZ7a9wdx88WgdOqm/vc +qpqwT0pRhe9VEdBe4jW5AU1k/2vaJksXwR4uxrr1jZh/XXNSeKoIxIlZmwLm +NGJrG7fG2GQRTO1OTNhV34CHdRw5lHxKBPeYa4xOzWzA7z72CLMTRBC9hat+ +6tkbnOs2p7f4sAhu3Pk2a5fXG7yr7UVKfawIGO8zdAPgNXZ7KvPr2SuCMWN9 +aLrM14P1I4IAcVve7fRX+Na2a1n6W0UgX7Qm3dXoFV4kXbXELlwEneGK3/nR +9VgtgKvHDxMBN3reXbMvdfjcdcMi31ARfDyEG1YuqMMuM4ZulC0XwfdDo5en +lLzEhWINm3CZCFZGLwjMd3iJXbeMfhm7QASOEaeziuJfYPhNj0kOFIH/4sdr +cz7VYkZZECd7hghqxfLEw9NrcerbtO5iXxHkjB2w9L9Rg4eKvibVe4ngw/uh +hgNaNVgmD5ja4yqC/Xmq6xODq3FeU8mfASSC7Vs/0A3yn2PfY8Ib+nwRFI7O +7TQc9RyHbbm52I4lgvkyvhE76Bk2P2mtx6eJYO7jv3HtwVV4XldCka+jCPIZ +6m8T/zzFFmtUNsnsRLBbM8Zxx5EKvGFCiG24pQi0PGI2XDAtx/6Gz+tiTUXQ +36Oe8/tiGc7nMWOTjURw4NfA+yO2j/HNYyd42foieLA+0mJhailmjO9TFGuT ++/Nf4xtsVILFzdOS6zVFUJHUsjFtfxF+8+KKb4+6CLK9q4+P/fJgsH5EYLtU +dL1iNuDggssyu34E8ytn7169ugC/fedR4tuD4ESa/Zlb4+/hdRve2YW3Ivjo +1X95VWkuHhu6OS65HsHcBwWXEpfcwk1PNd8XVyIYNlrFKaj1Bs49ddyvpxjB +ZY8t36PkGTijwvim/n0ER0zl6VFvLuAbK0+P5mcjMHI4t6U4JBE/W6sfIUtH +sHj3zBKfB1ux5tuYV7HJCFROWzvPboki5t7p52cnIDi4fJuQHX+CePh9EZl/ +CMxcdodNeJJKSNKKyHxDkHF42sLnQZmEzh/rILtwBMPFFr+jR2QT86fGlPiG +kuuncbonfsshHI7K7cJlCM6vWRNe+ymP2FbuG5cciECQ+jBtz+98wvvXrZ5i +XwS655I4Zw8AkWJu4tfjisDTImjtj/MPiTD+rmx9PoLOOl74HFxMPPbu1ufT +EFx5aOGT/66USJnuHy6zQ1DbYvjVYlQZ0T81vz7WFIEl03RVnHs5USm042fr +I3iVT7vZt+cpMcE6gfRCcD1yZllQWRWhRvkg2MxwDQwZ/pxY/Hw16UNApns7 +3ZpVTQhONRT79hAw6suhiLfBNcTZgKmkDwFnuYTV2ZO1xLahBbHJ9QQwTfpZ +cytfEE3XJvcUVxIwNPH2TWPNOgKmXPDtKSag/cq2E6896gnrxtHZ+vcJ6Aj0 +bj0b94rQWhqrz88mQDPV4sTi56+Jda1/N8nSCZi2byDbZlwDMXvmpvrYZAKq +1NqZPSGNxIOCHl52AgGuJtUWOQVNxJWxS5PrYwlQX/buHqHVTIxZ2zQwsIOA +lgMtRhfvNBP0CYEyu3ACrpvMvb16eQtBu/O82DeUgBHXi0wGjFsJnXHepA+5 +vruZV2BVK/F0VnFsciAB6a0rRZtj3hFrlgtJHwJa91xWkUnaiB6fXN8eVwLu +2dfG6qm0E35aTqQPAYzaz2/ioJ04ejad9CHD3qP27cmeDuK2ujnpQ4Aqe8ib +aq9OIldyivQhIODD15hUvS4iaZYu6UOOr9b94TZ1EYtF+0kfAl6t/k9w+mo3 +8a9+CNjLWOcK2+VEdGIE6SOEoAEbgxvTFcQHlQ+kjxBKKyuuL53QQ7Aky0gf +IbSmBo9qU31PLJlDtt96IRzZ+l4wsek9EeIeQPoIoSFwOY1T0EsEaJaTPuTz +vOrekec+EOapYtJHCBm6J++9EH8kynXzSB8h8KOFsv23PxKBMyeHy9KFYBY1 +vzdl4ifi8dqLpI8Q/L9/WWh84RMxZrEJWT/k/F+H5Hwz+ky42x4hfYRwecPB +99xjn4mAhxpk/QihcuOh4c0jvhBfpm4lfYTgN7a0eHLsF6Ks6SPpI4SFcX1V +If/7SjRGkPHIhPD2wdhJx2O+EhOMGkgfIXx4wGnI1OwjrhdOJ32EEBE3tfH6 +oT5i9ZpHpI8Qto+d7Xxev59YYS0kfYSgsSnwRdSZfuJsy03SRwgjT06rmGLz +jRh+eQLpI4SEXchAPfsbkRNGlrupEM4wbLIyie/EcVeyfegLwTxLNZmo/E7c +NCPbkaYQXL7Wvilc9IP49/1UCJaq50Inf/lBHOsi222/ABgvF/nF7f9JLKhX +kD4CyN9guLdm/C9CVkVeR60CKHpVoqV19xdx4Wkd6SOAWcNWvZsU8JsYW+ND ++gggYGCoNvr0m6h6W0T6CKABn44THvlD5H/hkj4C6HG3mmNP+0u8084ifQSw +8WTaZrXav4QrzZb0EcDWLJOex5EDROvcs6SPAH55ugZiHRV054Ae6SMA9ZTw +d9rBKqi0iMy3WAF4zL5oOOuuCtIdMkDWjwCebHz6NUFHFc1xI+MJF0D4k+0a +35apoqBoMp5QATg5imuvFaoiWikZj0wAA6cNl+QZq6EidXK5QAFU66teHbNJ +DY2WkNv3FcC9039yHj9XQw5R5HG4CuCWw8htlU5DkNpd8nrhCwDKnFQnxA9B +Zz+T8dAEULdhqeuLD0PQz4nk9HYC6Le/7vZyujoylpHbNRWAS4+mhsNtdfT7 +JBm+vgAi7kXurjHWQBcqyOPUFEDF8Z8FVTs00L/6EcDmrfF3xndqoIku5HT9 +fOhdzV5b5DcUjQkit9fDh3Whn9vu3R2KSo+R4bbyYUgEGA21+R/iPiDjqedD ++qELWpeO/g+F9pLxVPIhMCvx3smB/6EgE/L6KuaD8duzE5rWDEOmbuR27vOh +y/hOQOTbYejUGjK8bD48XtxGLJuuiepPkPGk8wFuWXemF2uiVwVkPMl8uKMX +6SPkaqGz78hfT+DD0+1NYbY3tJDVMDLfYvnQ+nV2QJDtcBTioHzf4cOYyLav +X1KGI2dfMp5wPpRmiqcYGI9AjmFkPKF8WOk8yVs9cQRadJz8WMYHFc30b6A3 +Ej26o/ThwwHGDT/vYyPR8jdKHz5o3XKbkaavjYQDSh8+bN8bolZ2Qht5WZHx +8PnQlmG6IH+sDjrgQQ5pfEDmi4K2p+ogjVClDx+8Np3UijbQRbeU5W5Knu8e +d27OXF2UdFvpw4eh+fnCsvO6KPe10ocPqaY/DUs6ddG/+uFDe8bfR+lOo9AB +G6UPD8IXPPEJixyFpngrfXiwg7/gisXDUUgcpvThwYDkzuu8EXpo9UmlDw++ +b6hvYQXqoWcFSh8erKoEfOaiHgppIx8v5sEc/3VhnZ/0EG+40ocHDwY6fhiL +9JHIRenDg9SX1oH0eH0UNUfpw4O/L+0P0t/qo487lT48qFXpTzRxHo3OZih9 +eGAdELupa9dotPUZuXwsD74+ezcxuXY0Ov5dWT88YERo5HImGCBQtv9wHkSY +enc3bzNA7Z5KHx5MTBp18n61ARpYp/ThwdL3gYWP7ccg3dNKHx6MNrSQDds9 +Bhk/UPrwQGQYsmPLmzHIqFvpw4P293TD8SxDpD1Kebw8GHomyr7/qCH6wVH6 +8OC82ZTcgV5D1LBY6cOD3MgTBXwfI3RbWe6mPPC8EoQyrxqhfcr2oc+DGVnZ +fO+RxshHeZyaPGg4tPOm2VrjQR8eWEqepVlXG6Pbyun6uZBecV5nAcsELfFT ++nDh+KTPfY/OmCC1CKUPF7SXFs9aqjYWJaUoJ+TC7/WGLsyQsWhCqdKHC8tn +K2LYNWPRtfdKHy7M0BMFhgrHIXsDpQ8XbqYZpNVkjEMpAqUPF6KHh65YbWCK +1IOVPlzo9pJmcPeYoqUHlD5cyFx4Rsb5bIru31T6cOGv18aTK2VmaJgy32K5 +UDy80v1pjRnyUQa0k/w8LWNdkPt4dEDZ/sO5kLH6jfPse+PRU2U8oVy435Ly +vNvQHOkq45Fx4UF1Z1DoDHMUoIwnkAuKWE+/W/Hm6Iyy/H25YPW/Bwm4why1 +Ko/DlQuxU6bTDmtZoEnK64PPBdWAH3aWXhYoUjmkceGU1d2ILfstUIlyejsu +TLt7xPzkYwukryx3Uy5YGuy0jNS0RMHK8PW5oMuO2W7qbYlyKB8umI+/TIs5 +ZDnY37iw/mkDcfuZJZpJ+XDggdjhUvpoK5Sp3F4PByZsOxq8cI4VUlOG28qB +5G0621+lWKH5yuOr54BQeqnXqN0K5Sk5Kjnwrcr/7jhHa2SgfLyYAxWWRo1t +G6zReuV27nOgiN83JyzfGtUo23c2B6pN5E4PNWwQUxlPOgd+FvYvrPOzQaeU +x5/MAU+HsZ1ZSTborzLfEjiQMX/2Y98OGxSsXD6WA04B/6llu9iicuWfS3Zw +oGyU4Ym6HbaIoYwnnNzPaP/2uqe2KFkZTygH7Bv1ZzwaZ4eGKj+WcSAwZP7b +S6F2aLVyuUAO7Mt3iNtQYIdeKLfvy4G7NbtmOOtMQELKhwOvbyzkNyyZgNKo +9sSBkdMfiiNuT0BalA8H+HeuLlPVskdhlA8HlrWaZm5ZZI+Ut3WsKQeSqg1G +vLttjwjKhwOPY44f5I2ciNIoHw58UE1y2LV04qAPB+aJbbtz8US0jPJhQ7wb +t+SNkQOqoHzYkK9dU/hhgwNyonzY0H32S/3nKgeUSPmwQfdjkm67oyP6Tvmw +gRhWtqw0zhEtoHzYsL59+5sT3Y6okPJhQ0rM3TWzvCYhqn1ns+FJ71ZzjcxJ +KJryYcNfk5KPqcMnoy7Khw3WIxLfOq2ZjKYqfz2BDf4PFT3/PZ+MrlI+bNgu +LDMyZDkhHer7Nhsyt08KCjvjhNZRPmxYPL9hS7uKM6qhfNjgdUzjz2mGM6JT +Pmw4uViP83KFMzpB+bDB95GaY1KyM/pG+bAhuPRlfXu1M5pD+bChacFh4u4w +GrpP+bDhziH7BaMRDZlRPmz4PjOD8W0TDe2kfNhwIVerZMk1GmqlfNiQcWOa +dkA7DblSPmwYLd6iW2nqgi5TPmzoCIkpr5rlMujDBvGkSDTniAuiputnQUPM +1NCQJy6olPJhQd0Wdf8hGnRkS/mwgDP0/EcrER3FUT4s6LMf71mxlY56KR8W +mHTsCvx9h46ox4tZkMp7bJHzlY6odnufBUftPqd9oTEQ1R6yWdB8daDp3loG +iqR8WHDkycdqzesMRLWvZBZc3lmyo7mHgYSUDwtsqra3E45MdJ7yYYFarrG6 +TSgTUd/ndrJAwjz95thVJgqmfFhQFLE5KO49Ez2ifFiwKYOdMNKJhRwoHxaI +HtWEjAtjoUOUDwtotT7y3Fss9JHyYYFb1aVRjf0sNIPyYUF03pvmwzw2yqV8 +WNAe/2F2RRQbGVM+LJDNbAlPLGKjrdSBsmC4ZrZQPoyD3lI+5PlmLrz6xJeD +RJQPCyp48oesRA66SPmwoCVvxq7JDZxBHxZ42pzpzLbioiDKhwmZO6APVnER +tb0eJrAeF/03L4eLqHBbmdDy96Lm7j9ctJ/yYUKWVbAOw4OHKI5KJpxnqRaE +HeUN+jAhj71Nj9/AG/RhQr/tC50jdnykR/kwYZ76iNvrNvDRBsqHCc1V5mqN +hXz0kvJhQlys/rfaEQLEoXyYEEBrSwicK0BJlA8T3B8dq1+eIUB/qP7GhOne +40vUvgkQdT2Hk8+De4SFuxA9pHyY0GBfOiI/UYhsKB8m8GOS91W3CxG1XCC5 +3/qKlmAWgeTUATBhqVmAxYYYAvlQPkwwCKS7/qknEHW8fHK/+0KmDHFA//KN +xoSa9B/0fdsR2kT5MKGpoFllzzOEXlE+TPjzLj7w7ygRoq5ffSYYBc2z/MEX +Ieo61yTjaahupC0ToX9/32ZAjF9/XMYR0aAPA57kl9gvuC/6l289DDCxFt/z +6xAh6rptZcD2fSsEO0eJB+uHAb3N/KxegXiwfhiwnHXf4MwKMZpG+TDg876O +0H3HxSiH8mHAgaqC29dAjAwpHwY46Is/6r8Xoy2UDwPqp60bl2csQQ3UgTHg +1H5vXpK75F+/TmDAsnvVXvc2SFAq5cMAQYeGt9EFCRpK1Q8Dxo9oF+ZUStAK +yoccm57/uee3BJVTPgwgtJbP2T5R+q9fyxiwpYY793ygFMVTPgx4FWn0pyda +ir5QPgyY+VNNEnRbimZSPgz4PvvHhCFtUnSX8mFAztFf2RV6rmgs5UPuN12z +sVDsinZQPgw4cdoqs2Gd62D9MODuci9jq/OuSEz5MODvqK0TE6pcB/sbAxae +ymt0HHAdrB8GqP1SpX+c7DbY3+hwhTt7YuNCN0S9vvTQISQgr+jLYbfB+qHD +NG+bAXqh22D90MHfLKUh+YMbUlA+dNj21HI+zdz9X74V0wEH3treO80dXad8 +6GAHfuIXu9wH64cO/w35frn9pvtg/dBhltXV6+Pb3FEt5UMHk/GhgXsMPBCb +8qHD/76xL+p6eKBTlA8dtP7TOfYo0gP9pOqHDhz+F4uMTA80l9owHfzetNul +NnggTPnQQbdQHnFJ2xNZUD502N2hqndT5Il2Uz50uDrdof/Rek/UTvnQYb/K +cuvOi55oCuVDPv8l56xOnSe6RvnQYYq9wSKxphfSoXzoIEmLWbWN74U2UgdK +h6bFIx7Caq/B+qGDoyxNpn3ea/D9gA4u6VN9llZ7/cs3TTrInYbtLlGfMuhD +h42/X6g4sacMvh+4QOyI3LILK6f8y7ceF/BZnNFgenYKolE+LlD+7So3rXIK +OkX5uMDf6qJmmqo3+kv5uMDLTz3Py+jeaCnl4wJBARNGrlrmjZ5SPi6Q+XPT +MYPT3siF8nGBc20vlpSVe6MzlI8LiPQ8t0b/9UbqVIG6wPE9FU1TaVNRCOXj +Apc4QQfHBU9F1ZSPC8yljdjbd2IqElD14wJFqx+V1JVNRRcpHxdoYc5NvfF7 +KtKi3q9dIP15bMhKJx+0hvJxASvxLDMNmQ+qoXxcwGNvYcHu4z6IQSWoC5if +KfFsLfVBCZSPC1zet6LQ6ocP+kL5uECdNMPCw8EX+VE+LnD/xd61Uxf4okzK +h5yP/zeDHu+LNKj3axfYuXF05W/wRfMpHxcI2/WoKf2zL7pF+biArszwDcPa +b9DHBbaPUS9Km+mHZlA+NIhIOXTia7Qfukj50MDi562Zdnl+6KuyobbSYL19 +hIqg2w9JKR8acE+s8jYeOQ3FUz40OKUacnCfzTTUQBUUDUpfsopahdOQDeVD +gwqD6g/Os6YhweFRmyfk0uD3lU/VPrJp6P/H7rB7 + "]]}}}, {{}, {}}}, {{}, {{{ + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], + GeometricTransformation[ + Inset[ + Style[ + Graphics[{ + EdgeForm[], + Disk[{0, 0}]}], + GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], {0., 0.}, Automatic, + Offset[10]], {{{-5.3257, 0.}}, {{-5.3257, 0.}}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], + GeometricTransformation[ + Inset[ + Style[ + Graphics[{ + EdgeForm[], + Polygon[{{-1, -1}, {1, -1}, {1, 1}, {-1, 1}}]}], + GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], {0., 0.}, Automatic, + Offset[10]], {{{-15.9, 0.}}, {{-15.9, 0.}}}]}, { + Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]], + GeometricTransformation[ + Inset[ + Style[ + Graphics[{ + EdgeForm[], + Polygon[{{0, 1}, {1, 0}, {0, -1}, {-1, 0}}]}], + GraphicsBoxOptions -> {DefaultBaseStyle -> Directive[ + PointSize[0.012833333333333334`], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]]}], {0., 0.}, Automatic, + Offset[10]], {{{-30.9, 0.}}, {{-30.9, 0.}}}]}}}, {{}, {}}}}, { + DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio -> + GoldenRatio^(-1), Axes -> {False, False}, AxesLabel -> {None, None}, + AxesOrigin -> {-2.2291666666666665`, 0}, AxesStyle -> Thickness[Large], + BaseStyle -> 16, DisplayFunction :> Identity, + Frame -> {{True, True}, {True, True}}, FrameLabel -> {{ + Graphics[{ + Thickness[0.010628122010840685`], + Style[{ + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJ1IGYC4or7P24Zd0s5LH/hofe/0NAh5O3ljzMYZeD8 +A937mkyaZRy2mP84lFJl5NCqwK565ouMg/S8OM3TAsYO24OtIv63yzqoPmme +d7bKGK7/84aA7FnbjR12gOSPSzrEKDh+TL5j7HD2DBDkiMP5D1zjHWdNFIHz +t3ptsJizk9+Bx021lMnL2GEmGHDA7bcvcaw9PYfRwRgENhs6sOr/4rrU89Me +bB+7AZy/1aHp0fEdOnD+m+Ktor9XazrIbBSbz6TA5AByxhkeDQfVTyovZ3ny +wPlg/00RhPPB/lko4nB8145etg0aDv9BQF7C4XmW9rfpsloO8rsW7Ev1k3aY +PoG/yixbG6LvjJQDC2eXfDKfjoP7mqPLGW5IOkxpb426vEfbQaRyUslZF1EH +HUX5LzlmWg6zQd67KeQAcx8DCCwQcEB1Lxec3xfR7c9YwObw51vpgzkfteB8 +kR6vVywlunD+X5B8oQEk/h5zOdT/tio4J2Hk0A+SnyAADT8jB2GQe54IOuyv +lbVI/2IEjR9hh9vSNYlGosYQ96aIwvlBoPBwlIDzYekHHP7HjeD8rztvdf1N +RfBh6QkAoBQWdw== + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{11.075, + 17.718799999999998`}, {9.20469, 17.718799999999998`}, { + 8.249999999999998, 16.2328}, {8.249999999999998, + 13.312499999999998`}, {8.249999999999998, + 11.898400000000002`}, {8.503129999999999, 10.6797}, {8.92656, + 10.087499999999999`}, {9.348440000000002, 9.496879999999999}, { + 10.024999999999999`, 9.157809999999998}, {10.773400000000002`, + 9.157809999999998}, {12.5969, 9.157809999999998}, { + 13.514099999999997`, 10.7281}, {13.514099999999997`, + 13.818800000000003`}, {13.514099999999997`, + 16.462500000000002`}, {12.7297, 17.718799999999998`}, {11.075, + 17.718799999999998`}}, {{10.857799999999997`, + 17.295299999999997`}, {12.0297, 17.295299999999997`}, { + 12.499999999999998`, 16.112499999999997`}, { + 12.499999999999998`, 13.215600000000002`}, { + 12.499999999999998`, 10.643799999999999`}, {12.0406, + 9.581249999999999}, {10.9297, 9.581249999999999}, {9.75938, + 9.581249999999999}, {9.264059999999999, 10.799999999999999`}, { + 9.264059999999999, 13.746899999999997`}, {9.264059999999999, + 16.2938}, {9.71094, 17.295299999999997`}, {10.857799999999997`, + 17.295299999999997`}}}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {0, 1, 0}}}, {{{28.67809999999999, 16.031299999999998`}, { + 28.9609, 16.031299999999998`}, {29.260900000000007`, + 16.031299999999998`}, {29.260900000000007`, + 16.364099999999997`}, {29.260900000000007`, + 16.698400000000003`}, {28.9609, 16.698400000000003`}, { + 28.67809999999999, 16.698400000000003`}, {19.665599999999998`, + 16.698400000000003`}, {19.382800000000003`, + 16.698400000000003`}, {19.082800000000002`, + 16.698400000000003`}, {19.082800000000002`, + 16.364099999999997`}, {19.082800000000002`, + 16.031299999999998`}, {19.382800000000003`, + 16.031299999999998`}, {19.665599999999998`, + 16.031299999999998`}, {28.67809999999999, + 16.031299999999998`}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, { + 0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGINIGYCYuFPjufT1jo6vMjS/jY91twBxl9yfx/fnM9m +Dhfz49nPaTo7MICBOQb/d0zu0X9FCH778vBTRntw81kWT7JidHWFm1/326rg +nIOrg8Zb3n0GnuZw/ooXHnr/CxF81SfN886uQvD7gktUpt9H8Pn8109J5bCA +m78cpD/RwuEPyH1RLg7PQf7ztYD476+zw0wQ8ISqb3VyUAfZb2nh8CRx4TWT +784OW8x/HErxsnaY8o0tfsYeF4enIP1vbSD6fkL5Z23h/JKtor9P/7OD87u9 +XrGYZDrA7QeH208HB1fVUqZZEc5wvu6EBT8MjznB+eJTr3BmJDk5gLz3/4KD +QzHYXEeHbM6fC9KzHSDhecfRwaYyYoXpWjuIe8Wd4Hyw/YZODjyg8MiwdwAF +s3GQE4TWcoCYM9sJ4u9YBwf7pkfHZyg7w/lvgMEw8xIa38nF4cRhp7WZ9+zh +/P21shbpLXZwPjg+g20h+t46O6SmAYGaDcR97M4O4eLbLzLYWTmgpzcA8usO +Gg== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJ1IGYCYr0JC34Yxnk4lGwV/X3azsaBZfEkK8ZeBP+m +dE2i0VwPh3qWo/2G7rYO2Zw/F6Sv9nB4nqX9bfpdWwd5x4/JZ/Z6OHzYEJA9 +y90Orn9/raxFeosdRN7Vw0HjLe8+g5V2DhJTr3Bm/HKH89d0385gmI/g8/qv +n5LK4e5wVeiT43kxO4c0EJjmBrd/no3OlVlqbg7/QaDexqHH6xWLyU1XiH1X +rOB8dZB5mpZw/qG25eGnFplD/KXn5mBiDASXzRwSD1/WTr2I4O+81fU31d4d +zg8pUZn+f4G7g4HWSuELKuYOdb+tCs4JeDg4ND06PuO2OcQ9ZR4O4iB/NVlA +3Jvm4eB3cWLMv8sWDsc1rSaddvdwmD6Bv8pstYWDCNBbaVvdHVJi77gxvzB3 +YACBDHe4+8DmK7ijunedG5xfGbHC9Gyxm4PXCXbb2a4WcP51UHi1WcL5xw87 +rc20s3b4E5N79N8uNwcfkPqnNhDz5Nyh4WfrkADyv6c7JJwO2kLip8rdYekL +D73/D6HyOxF8VlD8inrA+bD0sxcU/lMQ/AMg9xoh+LD0BABsyxAI + "]], + + FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, { + 1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4k8bArJnpXs6mBgDwWYrh9XdtzMYyhH89DQg +sPNyuC70yfF8mrXDcU2rSaftvRxmzASCTGuHhMOXtVMdEfw/MblH/zkh+O3L +w08Z+SD4e251/U3193KIEN9+kcEPwV9yfx/fHGYEv+63VcE5DVM4PyX2jhtz +hwncPV93giRMHFSeNM87+8rT4QwIxJg47K+VtUif4gkxLxjBvwFy/zdjB4mp +VzgzmrwcGMDABIOfw/lzQfpkBB9s/3IEH+zfkwh+OMgf/7wg9v8xdnBXLWWa +JeDtwO0GZPwydphvo3NllhuCD1bf5g13D4wPc6/PCXbb2abecP+4gMx7gPBv +j9crFpOLiPCA8WHhBeP/+Vb6YE6gjYN906PjM3Z7OUjMi9M8nWDjsAYUv+FQ +/T+g8ffS02H6BP4qs9nWUHs9HXj8109JtbB2QE8fAIRc61Y= + "]]}, + Thickness[0.006780741842916356]], + Style[{ + + JoinedCurve[{{{0, 2, 0}}}, {{{35.142199999999995`, + 16.171099999999996`}, {56.5531, 16.171099999999996`}}}, + CurveClosed -> {0}], + + FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxdk21Ik1EUx5+t5gtpaS/q9NGmbtNAxbdyiLpjcZ/nYQhGVu5DsLTWEtMl +zsDQEC3DpAjfmit0lTADdQZJKmQSiZYaCGK4PlRqVGCEZmaart09ekcdOB9+ +3Mu59/z/54Tm6o9pt1EUJXBkmiOFjpz3HohtViHo2B21U1cYBhN6jfubGhef +w9GFIGPEPfXuQSmM4XiJ4EnSyouzKhlsf1iXLEAMBFu+cDEaORh69q2Ndrl4 +9VTB0EY8++95Cwsj/b033bqlhLM9/a4nWMMIO9/JkPAsZ4HtGLJQRhqib5tX +4poYwmr/pxNUtYsXu4/mm/QMyBalX02PaLAFleXEn2DA2OyIPhpaUqImTYcY +iMDnr2iIwfVCGLj8fsWWkC+GhmU3jTFq89xTzOtRyoAV6xESCF6Z1gatmYH9 +/eYBbWEg9NlurGvfulgxNVSQWMESbne0bf/Iwi11babAx59wX1ay2s76El4a +WOjRNYlAkr5wZkzLQutIfVu+fFXJyEqEpnaG8B+sp8rFS7jfXwguNJ4uUvxY +Vzr97EcQif9fIyR+/sT1T4pgLuf+VKIeQZvNMht3xAOc9TkE9GO/VqFkF3/f +F/F6TXvDYHmwQpeCAGOz2G3TFwRV/uWivGoBHDdI79jVCAIq6YbYrGXl1nwo +cqPTRIMLyi19UzsfKBOLvyuddfJcXG3Jfh3vxRJ26jm81f8az0kceb8e+1PG +wUWLoXsjcwfM4n5aOUjAUexD+APSpJuK9hDuxP5d8ePn+RLH+3tADNN4PqI5 +sON4HggBjZOe51dZ2FtaZxifCwKonBk2jrLQi/3S0cSfe/g/v2lePw8OnunL +vjWXSECF9wRxED41k0XNhxKWYh4LJ0zhMMuho/bdecrKwgwe5IpI/j/jDGHZ +XFXL+GEXO/X4jOCqt2MQP0Xw9a4hsl//7/NfFHu04g== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJFIGYC4v8g8DnAITn2jhszh4FD7bptSfWyQXD+/lpZ +i3QdBH/Dw5dTNzlg8m0rI1aYxiL4h9uWh5/ahNAP48PMh/Fh9qPzz4BAjCmc +z+u/fkrqDARf4y3vPoOXpg6cPxekb76H4At/cjyfdhKTD9MP48PMh/Fh9ss7 +fkw+Y+uP6h55BH/Hra6/qd/9MPgw/8P4sPCB6YfxYebD+DD70fkb9PIWM+5R +g/MNtFYKX3BB8CWmXuHMWKQK9z+MDwsfdD5MP4wPMx89/gFlCQi+ + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJ1IGYC4g0PX07dxBHqULJV9PdpOxsHmdePzKQUEPyO +5eGnjDRCHepZjvYbuts6BMiJZfnqhzo8z9L+Nv2urYOm1aTT9RahDh82BGTP +creD699fK2uR3mIHkf8T4qDxlnefwUo7B9UnzfPOXkPwC+LZz0muRPAVHD8m +n4kNcbgq9MnxvJidwxkQUAmB2/9i+3rm52+CHf6DQL2Nw4N9fHOMjwVD7Lti +Beerg8zTtITzD7UBPbLI3CGkRGX6/w/BDibGQHDZzMGzulnfxykEzv/GFj/D +pxLBP3JZO1VyVYiDgdZK4Qsq5g4R4tsvMjwKcXBoenR8xm1ziHtEQh3Ep17h +zGiygLiXJ9TB7+LEmH+XLRxq121Lqv8b4jB9An+V2WoLhyWTrBh9t4Q4pMTe +cWN+Ye4wEwR6Q+DuA5ufFYLqXgME/+rRXJMG4RAHrxPstrNdLeD866DwarOE +848fdlqbaWftIOER8EfCPMTBB6T+qQ3EvIwQaPjZOniB/F8X4tDj9YrF5KAt +JH6mhTgsfeGh9/8hVH4bgg+O3ycIPiz97AWF/xQE/wDIvUYIPiw9AQBdaBll + + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, { + 0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGINIGYC4k8bArJnxYc6bDH/cSilysQBxudyUy1l0jJx +kHn9yEzqQ6iDiTEIYPKfiMiefModBufH5h79t0kdN/8MCOwJg5sfICeW5bs7 +zEH1SfO8s1kI/kwQ6ETwb0nXJBptRfBtKyNWmN5F8Dfq5S1m/IMwnwEEHEwh +dEqYg8y8OM3TBqYOB2plLdIdwhxeZGl/m65r6lC7bltS/cZQhx6vVywmiqYO +Ry5rp0rahTn4nGC3nV1q7hBSojL9f0eYg9/FiTH/Nls4tC0PP2W0IMwhQnz7 +RYY4Szj/y85bXX9dreB8jbe8+wxWWsPt19daKXyhxcZBwfFj8hlGBP/BPr45 +xqdC4fwlk6wYfZeEOlwV+uR43s3GoSnQc25DXahDDEjjGmuHH2zxM3wKQx1S +Yu+4MXNYQcK3HcEHmz8x1CE9DQimWUHMnxfqMAMUnp7WEHfvCnW4DjJ/mrXD +1paaC5vfIvhg9xuEwfmcPxekb44Kc/gPAu+t4Hyw/15awvndoPBjtITYZxUG +iQcZC4cJC34YPnsUConPlWYO6OkNABjzCWk= + "]], + + JoinedCurve[{{{0, 2, 0}}}, {{{78.4531, 16.171099999999996`}, { + 91.89409999999998, 16.171099999999996`}}}, CurveClosed -> {0}], + + + FilledCurve[{{{1, 4, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, { + 0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJrIGYC4kjx7RcZzoU4ZOR/aD15RdWhx+sVi0lgqIMo +iLFF1eHBPr45xl2hDq+Kt4r+Xq3q0LY8/JQRSxic/40tfoYPZxhcf4CcWJYv +e5iDx/5aWYt0NTi/4bdVwbkVCH7ALemaRCF1ON/34sSYf80Ifguv//opR9Xh +5ifH3nFjjtCA2/8oAujwBg2HJyKyJ59uD3X4DwLxGnD3wtSbGANBMIIPNl8a +wW8K9Jzb8C4EVf+iELj54PCYGwJXD5afFwL3H9j8+SEOZjZ7g6YxqsL5Z88A +wR9lOH/2TCDwVHSQef3ITGpOiIPrmqPLGSpkHAri2c9JzgxxqLj/45bxakkH +kU+O59PWhjiof1J5OctTEmL/3RCH1DQgcJNx2PDw5dRNP0IcakDqtWUd3vDu +M5ipFQrng8OnB8EH6z8Z6uAOsu+GBJz/ui232+i3IJz/Zd/HrenXWCHu6wh1 +mH9i8pJstd/24PCXRPA9q5v1fR6FwPlXj+aaNKwHuudF069pO//bg81bGOLw +ovZx9nkdZgeQs9OKQhxmgPw/k9cBFKwMUSEO/k88L5le5ob4tzDEIQDEn8zi +AFZWC42PegZI/HaHOIg1yUwxuPzVfskkK0bfFVD5/x/tQ0pUpv+/EOJgu3aR +vUnxe/sz4HBH8F9sX8/83CEUzge7rzMUYo/kd3tw+B8MhYTvMkYHMY+APxL/ +Qx2W3Fr+2LCZwyEm9+i/TfJhDq0K7KpnpgjA+Rrg+BGF82Hx+QMUXmdDHfhj +A+4bHVeApN9IBF/TatLpeg0EH+w/5lCH0sPbXGfGKjiA3X8kxIEBBBLkHNDz +JwDv9J2A + "]]}, + JoinForm[{"Miter", 10.}], + Thickness[0.006780741842916356]]}, { + ImageSize -> {94.08659526774595, 34.861070983810706`}, + BaselinePosition -> Scaled[0.3495664698586527], + ImageSize -> {95., 35.}, PlotRange -> {{0., 94.09}, {0., 34.86}}, + AspectRatio -> Automatic}], None}, { + Graphics[{ + Thickness[0.01869508319312021], + Style[{ + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGI1IAaxQYAJSjNCxZjR2DA5dDXI4rjYpKrHpZcY95DK +ppabKTGTVHfiEgcA+NYCcw== + "], CompressedData[" +1:eJxllHtIU2EYxueFvICXbbrZPGubbuo03ZmKmkW+VpalobTAlTcop5VF/qGm +qVFKEmipYXgLK4osmmllKSZmLbG8JoJWSopGWGngBbOs1r7zzU+oFz4Ov3N5 +3svzciSHTu7TmLFYLBPDiTAcU8OpQnHACpxrE+Q9oIRYmZrq32IPeSvBaf1B +Snhe1J7vr2ODwvMu942/Ehbb5x6nZHIgarAs7g93jd0/FtT2ddOE66bDffRl +NJwXW8h6/TlQokqXVtjRWG+KDVdK7U4HeCkgjslnDXoUiRIYsRnlaQIssc4S +Bf5+hliwwDxMQUh6aF7PmCnWLaegF0XkSkgH0j28yj9DZgpPFPnWCHA/uab4 +vlaA9TMtMfcKgHrAu2Y6YU14Om8qdWDGhvD+2aG5SokjrOq1qILV+i4eYWZ+ +P3iwmp/pZ4xL6uNmX07vk3IwN1EwEZYYWl3Ghl3azjpWkJAw813uBsLF6qIo +E3sRqFD+G2yIZq4iQOPwG2JDzvjye79YMa5jMx+8JaLF48MKwppkQ3xS4D6K ++UAj/3bQxr74oOY3D7Iu0SBuvd6u+caH17pt9Ufv0yBCbOtE/KznbLRN2eqE +/dEb/eUJwCaqoVzjpMR1xzlDmrZo9IhYif3iCgmf0j0Jq9orITwqF2r1Ohf4 +tZQxcfUcTZjZtzs+hCPRft30gho0391ieBS4/CLpmNy4F+sJe8xLP1fL+YRX +/RCgfbaX4/rPiPD1gwtko7k9FYNdfPS4b4wEMlB9Qlfi51nzzhJloIz4nxQ/ +ttMsa41/o7oH15jJ926NK9FeR7jhubQJIJnxwY3ov2ptubgu2v0/ZuamoqAJ +9WHtBg5ob25RQKE+GmWQhHTchNjHl1L8/pAIwtAevRVC+LM8YVCdB96Le2Jo +hvzJrmUP3GeFBHLmG6NTD8rBdXhSxWpzgQaZwWBvT3As3vPFvFwKy7NfOzYV +eOG5lcowb/cmzOTzUxBeMMhVf6fxHl9wBSTX16o07okIdIV1Md0PlRCOnmfx +YIQzHzpw2/g/KXAkzPiS4EAYz82KfP/v/+kvoGcbfg== + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJpIGYCYp8T7LazRU0deiO6/Rk/8DgUrum+nfHB2IEB +BBREHG4IfXI832bscAYEdMQhtIyxQ2oaEDyTcfi8ISB71nEjiPgeBYfiraK/ +T88zcuCPDbhvpK4M51+4GvZG/7YqnH/qsNPazDoNuP7/ILBfy0Ffa6XwBRFj +B5l5cZqnL+g4lIDU1xk7ZOR/aD1Zou8Qo+D4MfmNscNMEKg0cIC53xgELhs6 +8Pmvn5J6wsTBvjJihamtkUO31ysWE0Vjh4Nty8NPHTJw2GL+41BKlZFDCy9Q +4VF9h/7gEpXp9w0dan9bFZxboePwZeetrr+lhg7u+2tlLdq1HKRB7nAwdGgG +qXfVgPNh/oHx72jKrvlfrORwHRReywwdYlQjZM7VyDlwu6mWMmUZORzs3tdk +cljCgQfkvh9GDiFvL3+c0SgCdY+xQzooPNmE4O5ffmv5Y0NnLgf0+AEA0Jq9 +Pg== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQ/R8E9ls5PHCNd5zFqOBg3/To+IzVVg5v2nK7jWZL +OfhcnBjzb7O1wxkwwOTX/7YqOPcCwbepjFhh+hfBP9K2PPxUko1DjGqEzLk9 +Ug5fd97q+itqCzcfxhepnFRytkXGoYHlaL9huQ2Ev0TGwecEu+1sURuHVgV2 +1TNboHxWGwf3NUeXM1jIwvnOE5qF0rQU4PwLV8Pe6P9WhfPB/pyv5bDF/Meh +lChrhyeJC6+Z+Os4iE+9wpnRZAnnL76/j2/OZQs4X3penOZpAwuIOV+1HdJA +YJq5Q82nDQHZVtoOpw47rc3cZwaRN9WC8w20VgpfUNFw4PVfPyVVw9zhVfFW +0d+v1R1sQeETa+4wZ5Hyzj/PNRwOgcJnk7lDOthgLYdpE/irzG6bw90Lsc8C +zr8hXZNoJGoF5y8BuXezlUPgLaBEkaYDLD5ZOLvkk/vUIPbpWsLDA6ye2dzh +xK4dvWwGqg4b9fIWM8qYQeJ/ozKcX354m+vMtwpwfirIHc9koO4zc1D/pPJy +FqeUQ7SC48dkGQs43xsUDqkIvuqT5nlnV1k4zJgJBJZSDo2g+D1u4VBx/8ct +424pB/T0BwBWAyzX + "], {{26.749999999999996`, + 8.670309999999999}, {26.28909999999999, 8.018749999999999}, { + 25.287499999999998`, 7.4156299999999975`}, { + 24.667199999999998`, 7.4156299999999975`}, { + 24.031299999999998`, 7.4156299999999975`}, { + 23.474999999999998`, 8.003129999999999}, {23.474999999999998`, + 8.687499999999998}, {23.474999999999998`, 9.274999999999999}, { + 23.793800000000005`, 9.831249999999999}, {24.270299999999995`, + 10.132799999999998`}, {24.667199999999998`, 10.3719}, {25.5422, + 10.593800000000002`}, {26.749999999999996`, + 10.768799999999999`}, {26.749999999999996`, + 8.670309999999999}}}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{ + 31.570299999999992`, 8.464060000000002}, {31.093799999999987`, + 8.464060000000002}, {30.665599999999998`, 8.018749999999999}, { + 30.665599999999998`, 7.5421900000000015`}, {30.665599999999998`, + 7.065629999999998}, {31.093799999999987`, 6.62031}, { + 31.554699999999997`, 6.62031}, {32.064099999999996`, 6.62031}, { + 32.507799999999996`, 7.050000000000001}, {32.507799999999996`, + 7.5421900000000015`}, {32.507799999999996`, + 8.018749999999999}, {32.064099999999996`, 8.464060000000002}, { + 31.570299999999992`, 8.464060000000002}}}], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIAaxQYAJSjNCxZiR+AxobFxqkMWJYZNqPrXcQIl6 +YtwAANeLAk0= + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJrIGYC4rbl4aeMzrg4sHB2ySfr6ThczI9nP7fTxeFJ +4sJrJv46DsteeOj9D3Rx8Lk4MebfYm0Hi2tHc01eODsE3JKuSTTSdjhQK2uR +XuPsYG6zN2gaI4L/PEv723RZLYcTmlaTTh9H8ENKVKb/l3CB83u8XrGYKLo4 +6GutFL7wRBPOnzGBv8rstDqcfwYE5ijB+TNB4KUiRJzFxSE1DQjYFB0ixLdf +ZLjm7FB9/8ctY28FB5bFk6wY5zo7yO9asC/1nJxDZcQK07PRzg7qn1Reznop +6zD5G1v8DB4EX/iT4/m0o05w/n6Qf3qcHGJUI2TOzZFzqADpz3ZyMDEGgsvy +Djtvdf1N9XeC2Jet4BAM8p+Dk4P7mqPLGTIU4fzyw9tcZ55VgvNh4V28VfT3 +aT0neHiv6b6dwXDcER7eN0HBHOsID+/Ew5e1Uz86wMMbxoeFJ9g/No5wPjg8 ++hB83QkLfhhOc4SHN4wPC28Y/46m7Jr/xUpwvvOEZqE0KwUH8alXODMWOULC +o0YO7l5w+D+TgYTvZ0eH9UI6fOn/pOD+BYcnp5QDKyg+tiL4rqqlTLMEnOH8 +FaD0lugMidc3UpD0MsPZQaRyUsnZFhl4/MPcA+PD4gccjvLA9ANOILLw9Pam +LbfbaLYUJLwWQtPTGSmHHM6fC9IXI/hg+w8i+CBvpd3DzVd70jzvbJYr3HwY +H+ZecPoQd3VoVWBXPbNFxuHBPr45xpdcHL7s+7g1/ZqMAyz/gdOLhSycLwzS +v0TBAT1/AgA/tpjX + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {{{ + 45.1703, 8.464060000000002}, {44.69379999999999, + 8.464060000000002}, {44.265600000000006`, 8.018749999999999}, { + 44.265600000000006`, 7.5421900000000015`}, {44.265600000000006`, + 7.065629999999998}, {44.69379999999999, 6.62031}, {45.1547, + 6.62031}, {45.6641, 6.62031}, {46.1078, 7.050000000000001}, { + 46.1078, 7.5421900000000015`}, {46.1078, 8.018749999999999}, { + 45.6641, 8.464060000000002}, {45.1703, 8.464060000000002}}}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJpIGYC4sTDl7VTGT0clt9a/tjQmctB3vFj8pleD4eD +3fuaTJwFHep+WxWcO+HhEKMaIXMuRtjhuKbVpNPsng4zQaBSzKEiYoXp2WZP +B5HKSSVnl8g4sCyeZMV41NOh28ZzVxqTEpxvZAwEl1Xh/GZe//VTXDUc3vDu +M5i5ytPBfX+trEW7loP3CXbb2aWeDrUge1foOICUpWp4OjzN0v42fa++AytI +/1UPh+Ktor9P7zNwgLnfvhLoEFsjB9UnzfPO3nJ3MAbbZ+jwJHHhNZN8D6i5 +Bg66Exb8MFzm4XAGBHL0HYJLVKb/v+HhIDMvTvP0BR2Ivxg9Hf6DwH4thwjx +7RcZxDwdTh12WptZpwHnX7ga9kb/tiqczx8bcN9IXRmuH2z+HgWH1d23Mxiu +ezikpgHBMxmH5S889P4vhNqvI+5wU7om0SjXw4EBBBRE4O7vjej2Z/zA44Ae +PwAWsLfc + "]]}, + Thickness[0.01869508319312021]]}, { + ImageSize -> {53.494963885429634`, 21.12078704856787}, + BaselinePosition -> Scaled[0.31887090512778543`], + ImageSize -> {54., 22.}, PlotRange -> {{0., 53.49}, {0., 21.12}}, + AspectRatio -> Automatic}], None}}, FrameStyle -> Directive[ + GrayLevel[0], + Thickness[Large]], + FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines -> {Automatic, Automatic}, GridLinesStyle -> Directive[ + GrayLevel[0.5, 0.4]], ImageSize -> 500, + LabelStyle -> {FontFamily -> "Times"}, + Method -> { + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, PlotRange -> {All, {-0.00135, 0.001}}, + PlotRangeClipping -> True, PlotRangePadding -> {{ + Scaled[0.02], + Scaled[0.02]}, {0, 0}}, Ticks -> {Automatic, Automatic}}], + Placed[ + Unevaluated[ + PointLegend[{ + Directive[ + PointSize[0.009166666666666668], + RGBColor[0.9, 0.36, 0.054], + CapForm["Butt"], + AbsoluteThickness[1.6]], + Directive[ + PointSize[0.009166666666666668], + RGBColor[0.365248, 0.427802, 0.758297], + CapForm["Butt"], + AbsoluteThickness[1.6]], + Directive[ + PointSize[0.009166666666666668], + RGBColor[0.945109, 0.593901, 0.], + CapForm["Butt"], + AbsoluteThickness[1.6]]}, { + Graphics[{ + Thickness[0.00893415527561869], + Style[{ + + FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGI7IGYC4jMg4PPDngEEAowdIPx/cP7B7n1NJo8ZHOwr +I1aY/jV2MAaBz4wOX3fe6vqbauKg/knl5SxODocniQuvmZw3gejn4YXzq+// +uGW8WhDOnzUTCCxFHByaHh2foY3g1/+2KjiXYQznS8+L0zzdYOTwHwTiBR0i +xbdfZNhn6JCeBgTPuOF8mY1i85kUEPyS5SUb/vFzOXR7vWIxOWgIcc8ZDof9 +tbIW6UcMHexKHGtPx7A7fN4QkD3ruKGDCdhDbA5L7u/jm6MMNe8BG0S/IFR/ +D5eD9wl229muUPkEHofb0jWJRqGGDjGqETLn/vDB+eBwaxCG8x+4xjvOuijq +0AMyb6MBnH98145eNgN9OH8GyN87dSD+vS/kcP5q2Bt9aW2HJbeWPzY8zAPn ++z/xvGQazAHnQ/zD4pASe8eNuULb4TrvbbHUMkaHFl7/9VNUdeDxuV71SfO8 +tToOLeK1rJnHftuD9VvrOjz2e5nwV/6HfS0o/Dv0oOH7yX7qBP4qM289h5yp +CYUWn7/Z+98CeuiSDtR/P+xFQB76ou0w/8TkJdnLftofP+y0NnOfFjx9gOPb +Xwsevs+ztL9Nl9WC2s8J54P9u18AzgeHh6GoA9h8E21Iergp7gCzPxoU3jWS +DkdB4XdB16E/otufMUAKGm56cD44/hgN4Hxw/E01cHBbc3Q5Q4SkQyPL0X5D +cUOHN2253UazxSHpI8XQIQ0MxByiFRw/Js8xdNAApW9PUQd9rZXCF7YYwuMH +nD4vGDpEgdyzR8yhYE337YwJRg59IPsMJBxOg8JDzhjONwDpv4Lgg+PrhQkk +/cwRcTgFUj/PFBq+fHA+WP0Hdjj/y76PW9OnMUPSa7KpQyo4vv7ao+Q/pPwM +AGkkpqI= + "]], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl +k2omMe5HZgMAEs4CVw== + "], CompressedData[" +1:eJxdk31IU1EYxjeVQioKLaw528bcx51su1enDlF6KhKlxBShUZaZn31YQkqY +E0nT0JVpaFiKlEUWmZpoipSGJopfZYaFSV8YSegfmohgZTv36hn0wvnjx33u +Oc953vcoTpyLTnIWiURi+9plX072dYtUkRKeNceYQXA4HhOtuROuQs5yUPqI +mcMQqY1qGHWP3N+YOCTzpUbkaFnsX3cHa6bya4YHWMp102GGlTIWlzdFNpbv +W9OzKL9ScHhMqkZF6eaLAT5G2ILDO5K7lVghFadAWH1vncisxELnXGvKohQi +UqwSW7NuZAy/kmJvab5b8k8FCuTrVUPlUsFftRwvbZ15pgQphglb5ZgpTLP5 +VklQRPZ/qxB09RLhHJkSsSqLdOS5BM2Gs/fEUm/h+5AELq7FsoQGB7cj71uf +WUWZJTl4q+n/LYFL3YmnNHR/Ps8dDD0/asLTGu/LUH/+wS+ibyo01H+Tyh5c +hFq4330pnhI/v1VI5GP0osyfZ91J+arFFineIkMEydVZjZjZsbnKSzKab/bn +pQm/I3IkHJ0MdW7XQq+QLZwZN1Lu79nz5OQnI9rI/T5okV5v+5gKFgHEn5iB +xaNtVFTCIo7MgysDj4p3rqm17Kp/hvY7e77p4OkgRsh1hYWMND5OB9L2pO0c +Aon+q07YX86hhfi3+lC2kv87DJS7crzMKd4sQrIsD/3TWMr8HH3XO9il9zp3 +QQcvftD0qCTz9FgDkx8pH8q8rVwdZT6fSQa+RDamQV9H+7V1TVrk83OqFfRd +2tV3oEEj6c8sI+T3TC3oS3XCnJSo6X3W+ED/+pCqCqPjO5mPYg4ppJ+hOsp8 +7pUGyr/sMdz+wWJDqCrTqZjFVPzdcVMXh5nzrduW9+vRU1h3aKCZQy55l9Na +vHeb3/36AYc/i5lfqqNUyLDLBhs4Yd5rlVT///v+B7q0ssM= + "]], + + FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGCwBmIQ3RtcojLd3s5hs/mPQylZmg4+J9htZy+1c0iJvePG +vEPL4YZ0TaLRVDuHGTOBQFLbYcn9fXxzgm0ctjs0PTr+Q8vhDAjssXZYr/qk +ed5bbYctIHO0rB2eJC68ZuKv42BiDATJVnD+fxBYbwnnF6zpvp3xwMJhSntr +1OU72g4ga2ZaWsDtA7sn1BxCi2o59IHce9/MITUNCNo04HxdRfkvOdPU4PwN +enmLGW1UHEDOOjvLHOLOOUoOySB/nbBwUL72KJghRsnhhtAnx/Nt5g7V93/c +Ms5WcIgQ336RIc7c4UD3viaTx/IQ93iaO/REdPszCiD4b9pyu42k5eB8sD+D +ZRwOti0PPzXJ3EF+14J9qX7SDl933ur6G2rhUAM2X8rB7+LEmH+fzRwUQPJ5 +4g7TJvBXme02g7jvjZiDxNQrnBlNZg4PXOMdZ00UgfPB9swUgvNlNorNZ1rA +6RCj4Pgx+Y25g32JY+3pOYwOPV6vWEw+WsL5HzYEZM8Kt4Hz7YHRNsPaDuLe +zbxwPtg/s8XgfLD79aQdePzXT0mtsHWIUY2QORcjB5GPtoHzwfF3wRLOB/vj +jwWcD/bfbAtIvMvLw/mw8Ibx9+TXvJ15VcFhIyje9lg4rBXS4UvXU3TwBsW7 +qiUkPB4qOkSC4sfO0sF5QrNQGpeSwxdQ+LpC+VJKDqBkkRZm6VAJMt9aCZLO +6i0djMFAyeEzKDymW0Ls11aCpnMEv57laL9huhWcX7JV9PdpO2uI+44qQdLh +U2uIezYqQ9OVjcOpw05rM/epQOL7q42DLyiemdXgfEh4q8P5XuB0reHA46Za +yvTKxkFu+QsPvf0aDhpvefcZnLSB50f0/AkAMzmeWg== + "], {{ + 25.814099999999996`, 13.6141}, {26.89529999999999, 13.6141}, { + 27.626599999999993`, 12.7234}, {27.626599999999993`, 11.3734}, { + 27.626599999999993`, 10.339100000000002`}, {26.959400000000002`, + 9.625}, {25.989099999999993`, 9.625}, {24.924999999999997`, + 9.625}, {24.2094, 10.4516}, {24.2094, 11.674999999999999`}, { + 24.2094, 12.898400000000002`}, {24.796899999999997`, 13.6141}, { + 25.814099999999996`, 13.6141}}, {{26.5609, 6.478129999999999}, { + 28.357799999999994`, 6.478129999999999}, {28.978099999999998`, + 6.1125}, {28.978099999999998`, 5.07813}, {28.978099999999998`, + 3.7125000000000004`}, {27.7219, 2.6953099999999997`}, { + 26.053099999999997`, 2.6953099999999997`}, {24.670299999999994`, + 2.6953099999999997`}, {23.7172, 3.5046899999999996`}, {23.7172, + 4.6812499999999995`}, {23.7172, 5.3968799999999995`}, { + 24.129699999999996`, 6.0484399999999985`}, {24.7656, 6.31875}, { + 25.020299999999995`, 6.445309999999999}, {25.4656, + 6.478129999999999}, {26.5609, 6.478129999999999}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, + 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGIdIGYCYt+LE2P+Ods7PM/S/jZdVsthi/mPQym3EPz5 +NjpXZtk5wPnFW0V/n3ZzcNDXWil84YkmnD9jAn+V2Wl1OF+4clLJ2SUKcP6O +YKuI/+6yDu6qpUyzHBwcvuz7uDX9moxDA8vRfsPv9g6tCuyqZ7bIOGzRy1vM +aGPvIALS34Lgv2nL7TaaLeXA479+SqqBg0OMaoTMuT1SDjelaxKNUh0czoCB +lIP5taO5JjMQ/PrfVgXnDuDm/47JPfpvlyPcfBgfZn+P1ysWk0BHuPvkHT8m +n/nq4JCaBgTPZBxmgsBHqH/EZOF8mP9h/E0gf8iowfngcGfWgNjn5Ohw/mrY +G/3Z0PBchuBXRKwwPfsYwU8H2cvn5JAQEqS+QFPTYU337QwGfScHA1B8qGg4 +XMyPZz8XieBvANmb4+Tgc4LddvZXbQdvEB3q5MDC2SWfrKfjEFyiMv2/gZPD +k8SF10z8dRz218papPMg+Dtvdf1NPe8I54Pt73OEhp+2g33To+Mzkh0dzG32 +Bk1j1Ib7b84i5Z1/nmvA+TD7wObdd4Cb93lDQPascgcHH1B4LNaGhC+vg0PA +LVDEajvA0ifMfPT0CgBoEj14 + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgAmJeKK32pHne2VUuDk8SF14z8ddxuJwfz36u0RnO318r +a5G+xcmh9rdVwTkOTTj/TfFW0d/eKnB+wNvLH2cslHdIOHxZOzXT2WFnsFXE +/3ZJhxOaVpNO57vA+T1er1hMVrrC+XUgczvcHJwnNAulaSnA+WD736vA+TNm +AoGlpgOImnnQFe4+dPfrTljww7DNxUF86hXODCdth0SQexxd4XyHpkfHZ5x2 +dcjM/9B6UkQDzn/gGu8466AynA92j5SCw0a9vMWMKa4O/0FgvjTEnv0ucD7Y +f9+d4Xyw+wqdHUoPb3OdeVcBzn8UIb79YoIqnP/3W+mDOYaaDibGQHDZGe4+ +dPcDAL4pwwE= + "]], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIAaxQYAJSjNCxZiR+AxobFxqkMWJYZNqPrXcQIl6 +YtwAANeLAk0= + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJrIGYC4vbl4aeMzng5sHB2ySfr6ThcyI9nP7fTy+FJ +4sJrJv46DstfeOj9D/Ry8Lk4MebfYm0H82tHc01eeDoE3JKuSTTSdthfK2uR +XuPpYG6zN2gaI4L/PEv723RZLYfjmlaTTh9H8ENKVKb/l/CC83u8XrGYKHo5 +6GutFL7wRBPOnzGBv8rstDqcfwYE5ijB+TNB4KUiRJzFyyE1DQjYFB0ixLdf +ZLjm6VB9/8ctY28FB5bFk6wY53o6yO9asC/1nJxDZcQK07PRng7qn1Reznop +6zD5G1v8DB4EX+iT4/m0ox5wPtg/PR4OMaoRMufmyDlUgPRneziYGAPBZXmH +nbe6/qb6e0Dsy1ZwCAb5z8HDwX3N0eUMGYpwfvnhba4zzyrB+bDwLt4q+vu0 +ngc8vNd0385gOO4OD++boGCOdYeHd+Lhy9qpH93g4Q3jw8JzCsg/Nu5wPjg8 ++hB83QkLfhhOc4eHN4wPC28Y/46m7Jr/xUpwvvOEZqE0KwUHialXODMWuUPC +o0YO7l5w+D+TgYTvZ3eH9UI6fOn/pOD+BYcnp5QDKyg+tiL4rqqlTLMEPOF8 +cHpL9ITE6xuo/hmeDiKVk0rOtsjA4x/mHhgfFj/gcJQHph9wApGFp7c3bbnd +RrOlHBJA4bUQmp7OSDnkcP5ckL4YwQfbfxDBTwf56x5uvsqT5nlns7zh5sP4 +MPfuAKUPcW+HVgV21TNbZBzu7+ObY3zJy+HLvo9b06/JOMDyHzi9WMjC+cIg +/UsUHNDzJwDBuJoy + "]], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIIaxWZDYzFDMAOUzoLFxqUEWJ8YcYswk1V5i9NLa +jwDSKwJB + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJzIGYC4oqIFaZnb/s5vGnL7TaaLeVwVNNq0ulwf4cz +YCDlcCE/nv1cJIK/v1bWIr0GwQ8pUZn+fwZu/hvefQYzhQLg5sP4IpWTSs62 +yEDMv+jv0KrArnpmiwxEX4+/w5d9H7emX5NxmGujc2VWm7+D+5qjyxksZOF8 +YZD+JQpwvgfIYcfV4Hz55S889Oq1HEq2iv4+Lebv8CRx4TUTfx0HlSfN884a ++cH5XzYEZM967gvng+3f4+ugqyj/JUdMx+HuPr45xpN8HX68fX3Aslnb4QNI +/Xcfh83mPw6lZGnC+SycXfLJejoON6RrEo2e+sDNE/nkeD6t1sfB5+LEmH+L +tR3smx4dnyHs4xBwC6RQ2+E4KLyXezuY2+wNmsaI4D/P0v42XVbLwcQYCD4j ++HtB4e/iA+dP+cYWP8PHx0Ffa6XwhSeacP6MCfxVZqfV4XxYeMH4O4KtIv67 +Q8PTzQce3gmHL2unMvrA40Pe8WPymaXe8PiC8WHxaX7taK6JgY9DjGqEzLk9 +Ug5rum9nMKT7wON/KTAa/i9E8FkWT7JivIvgb9DLW8wo4gvXn5oGBPN84ebD ++DD7VUHx5+QLd5/PCXbb2X8R7ofFB8x/MD7M/zC+GSi8E9Xh/OO7dvSyXdCA ++K/W1+HEYae1mXFakPT5E8G/D0oPTX5wPiz/zFmkvPPPcQ04PyP/Q+vJEDUH +9PwFAL4FlSs= + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, { + 0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQLe4R8EficKDDFvMfh1K8tB0OX9ZOlewKdFir+qR5 +Hq+Ow0wQyA10eJK48JqJv45DhPj2iwxeCP5b3n0GM/UQ/Pv7+OYYiwU6nDjs +tDZTTsdhw8OXUzf9CXAQ6fF6xbJF28EYBBYHOBwHydtpOXQDhU0yAxwSQoLU +F3hqOnzeEJA9yznAISX2jhvzDzU43/fixJh/zipw/vtF6xXO7lB0ALs/PsDh +738gsJd3eLF9PfPzCQEOrQrsqme2yDhcPZpr0rA5wCFCNULm3B0pB385sSzf +xwEO6p9UXs7ilHIQ/uR4Pk01EM6Xd/yYfMYSwQc52yQw0KHm/o9bxt5SEP+F +BTpUgPjdUhD/HA90cJ7QLJRmpQAJv0OBDm/acruNZks5PBaRPfn0c6BDDMj+ +PVIO7cvDTxmxBDmcAQMph/21shbpAgi+ptWk0/USCD4oGs6qIfjSrx+ZSdkE +wc0D+8cZKr9GChI+4Qh+cInK9P85QXD3wPgilZNKzrbIQPxjFwQPL7B+6SCH +L/s+bk2/JgN3z45gq4j/7rJwvjBI/xIFVPfKGDnsvNX1N5U/yMG+MmKFqa2R +wxtQ+ngU6JAMjk9Dh/x49nOSBwMh9lw3hKSPgkCH60LAiFiG4OtrrRS+YGLo +sLWl5sLmlQg+KJr/70bwYekXbD4Hgg9Op30GDujpGwDb803L + + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQLe4R8EficKDDGRDIUXGA8ZWvPQpmiFFyyI9nPyd5 +MNDBeUKzUBqXkkNlxArTs5sDHcI5xdqN/RUddt7q+ps6PdAh4O3ljzMWyjvU +rNuWVJ8a6KD6SeXlrJWyDltbai5sNkXw25eHnzK6EwDnS79+ZCY1J8DBfc3R +5QwdinC+1Lw4zdMBqnD+nEXKO/8c13BY3X07g+FygIMMSP6ClsNb3n0GM/UC +4fxur1csJqEIvo3OlVnPagMd0tNAQMuhFuS+hYEOf96+PmC5WNNhwoIfhs+2 +BTr8/Vb6YI6hJtz/MPtg/FSQ9jYEHxZeAJv9kKs= + "]}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4uZAz7kN24Idum08d6V9UnSA8UPeXv44o1He +4erRXJOGzcEOM2aCgKxDgJxYlu/qYAf5XQv2pfJJO7QvDz9l9CDYYQ5I+qek +wxMR2ZNP2UMcdgZbRfxvl3Tg+LkgfbMZgg+W343gN4Hskwp1eNOW2230WxbO +d57QLJQmpQTn88cG3DcSV3YQ+eR4Pk0w1KET5N5Lyg6R4tsvMvwLccjM/9B6 +skTF4dOGgOxZj0McHkUAJRxUHUAUw6EQB4mpVzgzFqk6aFpNOl2fEeJwBgR0 +1BwK4tnPSYqGOLBwdsknr1NzAHvzZ7DD32+lD+YEqsP5cxYp7/xzXAPOP3HY +aW1mnJZDj9crFhPZEAdxkPlO2pDwiUbwd97q+ps6H03+cohDC6//+imqWnC+ +x/5aWYvlGnD+q+Ktor9fqztURKwwPfsewQe7+0OIg//FiTH/Dms6KDh+TD7z +McTBHaS/Xcvhxfb1zM+/hDj8ePv6gGWztsOa7tsZDPtDHHQV5b/kiOk4pIHA +rBCHJ4kLr5n46zhsePhy6qYCBJ8TFF+/guH8dJD6TVB+vxacb2IMBJvV4XxY +eILpE8EOKbF33JglVB2+gOLjO1Q+R8VBwiPgj4RwiMOMCfxVZtwqDiElKtP/ +e4Q4fFi0XuFsh7LDg318c4z7QhzCOcXajfmV4eml/PA215l7lSDhcz4EEv9C +CH4pSP6uApxfc//HLWNvOYcDwGBJnxMCSc8PpR3aQOk1BMG30bky6xkngg92 +z5VgSHqUloPzhSsnlZxdogDno+cXGB8AZep5vw== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4h9s8TN85oY6TJ/AX2XWrekA4xuDQLICnH/f +Nd5xlqCMw4QFPwyf7Qt1UP+k8nIWp5RDj9crFhPeMDjfTbWUaZYKgh9SojL9 +v02Yw5u23G6jaCkHCY+APxLOYQ5nwEDK4YmI7MmnxWEONfd/3DLWlnPg+Lkg +fXNamMPf/0BgLw+x3zfMIUY1QuZcjJxDpPj2iwx2YQ4VIPXccg6cIPVaCP6a +7tsZDMwIPti8T6EOvRHd/owB8nA+f2zAfSNzRTgf5v8X29czPy8Jg/OPXNZO +lawLcxCfeoUzw0kbrv7Pt9IHcwQRfI/9tbIW7jpw/pT21qjLc3QdFBw/Jp/5 +GupgarM3aNpBPQcbnSuznv0NdbgtXZNolGrgsLWl5sLmj6EOy1946P2faODw +DeTfm6EO+lorhS+EGDioPWmed3ZXqAMoOP7LGzgEyIll+c4OdWDh7JJPfqfv +4FXdrO8zL9Sh5tOGgOxfehD5+VD18Qj+i+Ktor+zdeH8gFsgB2g7MIBAQKiD +zwl229miWnD+ZvMfh1KyEOkBFh4AdaPuxA== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQDQYXwh0euMY7zmJUcJiw4Ifhs1PhDm/acruNZks5 +BJeoTP/PE+FwBgww+ff38c0xlkLw/eXEsnzlEfz1D19O3WQR4RCjGiFzbo+U +Q826bUn1qRFw82F8kcpJJWdbZBzkHT8mn7GF8pfIOAh9cjyfphrh0KrArnpm +i4yDMIivGOHgvubocgYLWTjfeUKzUJqWApx/4WrYG/3fqnD+fxCYr+Xwhnef +wcxv4Q5PEhdeM/HXcXBTLWWa1YDgv9i+nvl5CILftjz8lJFOuIPPCXbb2V+1 +HWaCAGu4Q82nDQHZVtoOIGrW+TCIvKkWnG+gtVL4goqGw5HL2qmSr8IcXhVv +Ff39Wt0hABQ+38Mc5ixS3vnnuYbDBlD48IQ7pKeBgJaD6pPmeWfFwuHuBdvn +iuB/Y4uf4bMUwQe790y4Q+At6ZrEIk0HWHyycHbJJ/epQezLDoeHB1j9gzCH +E7t29LIZqDqs6b6dwbA8DBL/G5Xh/PLD21xnvlWA81NBznsmA3HftTAH9U8q +L2dxSjlIeAT8kVAPh/PB8WWJ4HP+XJC+2SvcYQbIH5ZSDgqg+A0Md6i4/+OW +cbeUA3r6AwDoMygu + "], {{95.25, 8.670309999999999}, { + 94.78909999999999, 8.018749999999999}, {93.7875, + 7.4156299999999975`}, {93.1672, 7.4156299999999975`}, { + 92.53129999999999, 7.4156299999999975`}, {91.975, + 8.003129999999999}, {91.975, 8.687499999999998}, {91.975, + 9.274999999999999}, {92.29379999999999, 9.831249999999999}, { + 92.77030000000002, 10.132799999999998`}, {93.1672, 10.3719}, { + 94.04219999999998, 10.593800000000002`}, {95.25, + 10.768799999999999`}, {95.25, 8.670309999999999}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4sOXtVMlX0U4TJ/AX2XWrekA4xuDQLICnH/f +Nd5xlqCMw/5TC123cUc6qH9SeTmLU8rBuTvn+e9IBP+IwoaijEIEP0+o+cCp +zkiHN2253UbRUg4yUSnW9/sjHc6AgZRDgkCE5ZYDkQ4193/cMtaWc3gTuEOu +dXOkw9//QGAv76BuyLFGZlakQ4xqhMy5GDmHTseEpxe6Ih0qQOq55RyKMya+ +rSlH8LXbxW6e80fwi0Dy9pEOvRHd/owB8nA+f2zAfSNzRTgf5v8ae9O4XQeR ++CLr3B+einQQn3qFM8NJG67+z7fSB3MEEXyP/bWyFu46cP6U9taoy3N0HTaf +KNs33ynSwdRmb9C0g3oOy2YDQ8gr0uG2dE2iUaqBgxcPk3a7XaTD8hceev8n +GjisdX9YJaIW6aCvtVL4QoiBQxif7qa57JEOoOD4L2/gIP36kZnUiwgHFs4u ++eR3+g7iHgF/JF5HONR82hCQ/UsPIv8mAqI+HsF/UbxV9He2LpwfcAvkAG1I +PMyJcPA5wW47W1QLzt9s/uNQShYiPcDCAwBojvfP + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQ7f6wSmRdf7TD3/9AYC/vcF7p9s+6pmiHA937mkwe +yzscUdhQlOEY7eC65uhyhgpZB5funOe/NaMdUtOA4JmMQ8uBUwtd/0XB+Rl7 +SiZL7EHwy/fNl9JvjXJYI6TDl75PziFBIMJyS0aUQ/nhba4z3yo4+Jh3OiaE +Rjk4T2gWSvulCDHPL8phLUj9PSUH/ySgBp8oB11F+S8521QcXLZ9/nvlAYL/ +5e+Vipdq0XD+8tlAFwdFO7Bwdsknn1NxABn/dEa0w5xFyjv/qKs6BOyQa309 +M9phJhioOtSIrHN/OCva4dfb1wcsHyP4BlorhS+4qMH5Z0DgjaZDOJ/uprn+ +0Q5PEhdeM/HXcWAJAwrcjYLznywFOmAHgm9vGrfLsyfKQR9k3hNthy0nyvbN +T4pyMLfZGzRNUdthjUxUijV/lMMfkP2LNR0EmoEB8DbSYcYE/iqz1epw/pT2 +1qjLMSpwvvK1R8EMMUoO64syJr79E+kgXDmp5OwSBYcVHy/5JklAw/uenAMP +k3a7mGOUAyh6/9dLw+NjZ7BVxP92SYftwOCsuIjgHwc6T+o7gg/2t0y0g/on +lZezOKUcPEAGukU7yO9asC9VTxoSnonRDiFvL3+c8VDaYc775ce8y6MdWhXY +Vc9skXFgB3mwOtrhy76PW9PFZB3Q0xsA7agjQw== + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQveLjJd8kh2iHX29fH7B8rOrwJnCHXCt3tIORMRBc +VnXw752eJ/Q5ymGL+Y9DKadUHTx4mLTbzyH47g+rRNbNR/DL982X0m+Ngutv +OXBqoatflMOFq2Fv9H8j+DWfNgRkV6k73AdZEBTlcPoMEOhoOITz6W6aGx/l +8ChCfPtFBk2H9UUZE9+WRDmkp4GAlkOCQITllgVRDuJTr3BmOGk7bP/890rF +RQQf5l4YX/+uClsjb7TDdoemR8dvaDnotIvdPCcf7TClvTXq8h9Nhwlva+xN +zaIdju3a0cv2QcMhIsX6vr9ttIPvxYkx/5g1HNDDBwBQm4mn + "]}]}, + Thickness[0.00893415527561869]]}, { + ImageSize -> {111.93531257783312`, 22.58844333748443}, + BaselinePosition -> Scaled[0.29815266074630126`], + ImageSize -> {112., 23.}, PlotRange -> {{0., 111.93}, {0., 22.59}}, + AspectRatio -> Automatic}], + Graphics[{ + Thickness[0.007054176072234764], + Style[{ + + FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGI7IGYC4jMg4PPDngEEAowdIPx/cP7B7n1NJo8ZHOwr +I1aY/jV2MAaBz4wOX3fe6vqbauKg/knl5SxODocniQuvmZw3gejn4YXzq+// +uGW8WhDOnzUTCCxFHByaHh2foY3g1/+2KjiXYQznS8+L0zzdYOTwHwTiBR0i +xbdfZNhn6JCeBgTPuOF8mY1i85kUEPyS5SUb/vFzOXR7vWIxOWgIcc8ZDof9 +tbIW6UcMHexKHGtPx7A7fN4QkD3ruKGDCdhDbA5L7u/jm6MMNe8BG0S/IFR/ +D5eD9wl229muUPkEHofb0jWJRqGGDjGqETLn/vDB+eBwaxCG8x+4xjvOuijq +0AMyb6MBnH98145eNgN9OH8GyN87dSD+vS/kcP5q2Bt9aW2HJbeWPzY8zAPn ++z/xvGQazAHnQ/zD4pASe8eNuULb4TrvbbHUMkaHFl7/9VNUdeDxuV71SfO8 +tToOLeK1rJnHftuD9VvrOjz2e5nwV/6HfS0o/Dv0oOH7yX7qBP4qM289h5yp +CYUWn7/Z+98CeuiSDtR/P+xFQB76ou0w/8TkJdnLftofP+y0NnOfFjx9gOPb +Xwsevs+ztL9Nl9WC2s8J54P9u18AzgeHh6GoA9h8E21Iergp7gCzPxoU3jWS +DkdB4XdB16E/otufMUAKGm56cD44/hgN4Hxw/E01cHBbc3Q5Q4SkQyPL0X5D +cUOHN2253UazxSHpI8XQIQ0MxByiFRw/Js8xdNAApW9PUQd9rZXCF7YYwuMH +nD4vGDpEgdyzR8yhYE337YwJRg59IPsMJBxOg8JDzhjONwDpv4Lgg+PrhQkk +/cwRcTgFUj/PFBq+fHA+WP0Hdjj/y76PW9OnMUPSa7KpQyo4vv7ao+Q/pPwM +AGkkpqI= + "]], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl +k2omMe5HZgMAEs4CVw== + "], CompressedData[" +1:eJxdk31IU1EYxjeVQioKLaw528bcx51su1enDlF6KhKlxBShUZaZn31YQkqY +E0nT0JVpaFiKlEUWmZpoipSGJopfZYaFSV8YSegfmohgZTv36hn0wvnjx33u +Oc953vcoTpyLTnIWiURi+9plX072dYtUkRKeNceYQXA4HhOtuROuQs5yUPqI +mcMQqY1qGHWP3N+YOCTzpUbkaFnsX3cHa6bya4YHWMp102GGlTIWlzdFNpbv +W9OzKL9ScHhMqkZF6eaLAT5G2ILDO5K7lVghFadAWH1vncisxELnXGvKohQi +UqwSW7NuZAy/kmJvab5b8k8FCuTrVUPlUsFftRwvbZ15pgQphglb5ZgpTLP5 +VklQRPZ/qxB09RLhHJkSsSqLdOS5BM2Gs/fEUm/h+5AELq7FsoQGB7cj71uf +WUWZJTl4q+n/LYFL3YmnNHR/Ps8dDD0/asLTGu/LUH/+wS+ibyo01H+Tyh5c +hFq4330pnhI/v1VI5GP0osyfZ91J+arFFineIkMEydVZjZjZsbnKSzKab/bn +pQm/I3IkHJ0MdW7XQq+QLZwZN1Lu79nz5OQnI9rI/T5okV5v+5gKFgHEn5iB +xaNtVFTCIo7MgysDj4p3rqm17Kp/hvY7e77p4OkgRsh1hYWMND5OB9L2pO0c +Aon+q07YX86hhfi3+lC2kv87DJS7crzMKd4sQrIsD/3TWMr8HH3XO9il9zp3 +QQcvftD0qCTz9FgDkx8pH8q8rVwdZT6fSQa+RDamQV9H+7V1TVrk83OqFfRd +2tV3oEEj6c8sI+T3TC3oS3XCnJSo6X3W+ED/+pCqCqPjO5mPYg4ppJ+hOsp8 +7pUGyr/sMdz+wWJDqCrTqZjFVPzdcVMXh5nzrduW9+vRU1h3aKCZQy55l9Na +vHeb3/36AYc/i5lfqqNUyLDLBhs4Yd5rlVT///v+B7q0ssM= + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, { + 1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}, {{0, 2, 0}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, { + 0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBWIQbd/06PiMbGsHXv/1U1IljBy+77zV9VfU2kH9Le8+ +A0sjhxvSNYlGT60cboJoVyOH/DXdtzM2IPjh4tsvMugh+P3BJSrT51s6/AcD +Q4cvIPNcLR22mP84lDLL0IHLTbWUKcrCIQKkr8/Awe/ixJh/j80dPm8IyJ7F +buDwJHHhNZP15g4PQAoW6MH5cxYp7/zTrgPnB9wCWajtkAYC08wcfE6w2842 +1YLzf719fcCyWROu/g+IvxjBF66cVHJ2iQKcvyPYKuK/u6yDiTEQLDZ3+LLv +49b0azIOdb+tCs5JmDu0KrCrntki4/AiS/vb9FgzBxGQ/hYE/01bbrfRbCmH +A7WyFulfzB3OgAEm/9Rhp7WZcRZwPjiY9iP4y1946P03tHSIUY2QObdHyuE5 +yH35VnDzYXyY/eD4m20Jd1+31ysWE0FLuPvB8cJqCfcfjA/zP4wPCx99rZXC +F65Ywfl/vpU+mPPRysEfFN5B2nD1sPCH8VtACeipLpx/XeiT4/ljBpD4trJ0 +qAWFo4UhxH+KVnA+OL30I/j1IPqGlUO0guPHZBlDB5UnzfPOWlnDzYOl18eg +cLiP4MPSLwAYsEa/ + "], CompressedData[" +1:eJxTTMoPSmViYGCQAWIQfaRtefgpJjsHXUX5LzliOg4R4tsvMtyzdXiSuPCa +ib+Ow9QJ/FVm2rYOG/TyFjPO0XZYcn8f35xgG4ft5j8OpWhpO5gYA0GytYPE +vDjN0x+04Pz1qk+a5/FqOXC4qZYy/ULwz4DAHBtU/hobB5Eer1csVzTh/AtX +w97o71aH84UrJ5WcXaIA5+8Itor47y4LsXeBjcOXfR+3pl+TcUhNAwIxG4dW +BXbVM1tkHKaD3B9t7SAC0t+C4L9py+02mi3lsPSFh97/jzYQc89g8hNi77gx +R9jC+U+ztL9N34ubv7dW1iI9xB5uPowPs1/9Le8+g5l2cPeVbBX9fZrPDu5+ +WHzA/Afjw/yPHl8AwpXMQQ== + "], {{29.421899999999994`, + 17.618800000000004`}, {28.945299999999992`, + 17.618800000000004`}, {28.532799999999995`, + 17.206299999999995`}, {28.532799999999995`, + 16.729699999999998`}, {28.532799999999995`, 16.2688}, { + 28.945299999999992`, 15.854700000000001`}, {29.4063, + 15.854700000000001`}, {29.867199999999997`, + 15.854700000000001`}, {30.296899999999994`, 16.2688}, { + 30.296899999999994`, 16.729699999999998`}, {30.296899999999994`, + 17.173399999999997`}, {29.867199999999997`, + 17.618800000000004`}, {29.421899999999994`, + 17.618800000000004`}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, + 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGIdIGYC4gaWo/2G3+0dnmdpf5suq+VQvFX092k3Bzjf +/NrRXJMZCD6P//opqQscHPS1VgpfeKIJ58+YwF9ldlodzheunFRydokCnL8j +2Criv7usw/19fHOMZzk4fNn3cWv6NRmH29I1iUahDg6tCuyqZ7bIODxNXHjN +5L29gwhIfwuC/6Ytt9totpTD8hceev87HRxiVCNkzu2Rgrh3n4PDGTCQcriY +H89+7iOCLz71CmeGlCNO/pRvbPEzRJzg5sP4MPvVnzTPO7vKEe6+nbe6/qb6 +OzqkpgHBMxkHYxDwdoT4R0wWzof5H8bfpJe3mFFGDc73vTgx5h+zhsNkkH1z +HB3OXw17oz8bGp4MTnC+8CfH82m2CP5/EEh3ckgICVJfoKnp4K5ayjSrw8nB +ABQfKhoO2Zw/F6RvRvC9T7Dbzj7q5OADor9qOzwBhed6JwcWzi75ZD0dhze8 ++wxmdjlBxP11HCLEt19kSEPwg0tUpv/XQPDB9j+HhZ+2w01Q/O11dDC32Rs0 +jVEb7r85i5R3/nmuAefD7AObZ+EIN6/H6xWLyUUHBx9QeCzWhoRvuoNDwC2Q +wdoOsPQJMx89vQIAbxouwQ== + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4vk2OldmuTk7dNt47kr7pOgA44e8vfxxRqO8 +g7tqKdMsB2eHGTNBQNbB/NrRXBMDZwf5XQv2pfJJOyx/4aH3f6azwxyQ9E9J +h4TDl7VTXzo77Ay2ivjfLumwpvt2BoO7C5yfCJIPdIXzF4Ds43NzeNOW2230 +WxbOd57QLJQmpQTn88cG3DcSV3Y4UCtrkf7H1aET5N5Lyg4+J9htZ191dcjM +/9B6skTFoe63VcG5Ba4OjyLEt190UIXIx7o6SEy9wpmxSNXhDe8+g5mrXBzO +gICOmkNFxArTs8wuDiycXfLJ69Qg4mecHf5+K30wJ1Adzp+zSHnnn+MacP6J +w05rM+O0HDbq5S1mFHFxEAeZ76TtYAEKnwkIPo//+impEq6o8g2uDi28QAlV +LTjfYz/QY8s14PxXxVtFf79Wd+jxesVishPBNzEGgt2uDv4XJ8b8O6zpcFO6 +JtFor6uDO0h/u5ZDDufPBemHXR1+vH19wLJZ2+HLhoDsWeGuDrqK8l9yxHQc +0kCAz9XhSeLCayb+Og5/YnKP/tvlAueD4+u8M5yfDlJvB+X3a8H5YHdsVofz +YeEJFs92dkiJvePGLKHqUA+KjxNQ+RwVhxOaVpNO/wempwn8VWbcKg4OTY+O +z8h2cfiwaL3C2Q5lB1C0MXxzcQjnFGs35leGp5fyw9tcZ+5VgoRPBTT+hRD8 +UpD8XQU4v+b+j1vG3nKQeBdyhaTnh9IOK0DptdEFzhf55Hg+7a0znA92T7Mz +JD1Ky8H5wpWTSs4uUYDz0fMLjA8Afgd1CA== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4pASlen/Fdwdpk/grzLr1nSA8Y1BIFkBzr/v +Gu84S1DGoW15+CmjFHcH9U8qL2dxSjnU/bYqOMfgAed/2hCQPUsfwefxXz8l +NcHD4U1bbrdRtJTD5G9s8TNyPBzOgIGUg96EBT8Mz3k41Nz/cctYW86hMmKF +6dnNHg5//wOBvbxDMMj+Bg+HGNUImXMxcg7iU69wZiR5OFSA1HND1Vsj+Adq +ZS3S37jD+RUg+dPuDr0R3f6MAfJwPn9swH0jc0U4H+Z/82tHc00ueMD5b3j3 +Gcx85AGx10kbrv7Pt9IHcwQRfI/9QIvddeD8Ke2tUZfn6Dose+Gh9/+iu4Op +zd6gaQf1HB7s45tj/Mjd4bZ0TaJRqoHDxfx49nMn3R2Wg9RNNICE9wx3B32t +lcIXQgwcNurlLWaMcXcABcd/eQMHlsWTrBhl3R1YOLvkk9/pO/yKyT36T8nd +oQYU8L/0IPKqUPXxCP6L4q2iv7N14fyAWyAHaDukgUCbm4PPCXbb2aJacP5m +8x+HUrIQ6QEWHgDA+u7p + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQ3bo8/JRRjp/D3/9AYC/vcCE/nv1coJ/Dge59TSaP +5R2+bAjInnXe18F1zdHlDBWyDrW/rQrOLfB1SE0DgmcyDgmHL2uneiL4LIsn +WTEe9YHznyQuvGYS7uOwRkiHL32fnIPOhAU/DOV8HMoPb3Od+VbB4QPI/O/e +Ds4TmoXSfilCzHvp7bAWpP6eksMN6ZpEo6feDrqK8l9ytqlAzOXzhfPf8u4z +mDkLwb+7j2+O8SdfBxbOLvnkcyoOc210rsyq83OYs0h55x91VQcX1VKmWQ1+ +DjPBQBWiv8nP4dfb1wcsHyP4BlorhS+4qMH5Z0DgjabDBr28xYxvfCH+8tdx +ML92NNeEA8EH+3+vD5wv8MnxfFqqj4M+yLwn2g5LX3jo/Rf0cTC32Rs0TVHb +wcQYCLK9Hf6A7F+s6QCKhv/q3g4zJvBXma1Wh/OntLdGXY5RgfOVrz0KZohR +cpgP8p+bt4Nw5aSSs0sUHHxOsNvOrvWGhPc9OYc13bczGM57Q/TVS8PjY2ew +VcT/dkmH45pWk06/R/D/xOQe/WflC+eDw7vN10H9k8rLWZxSkPRx09dBfteC +fal60g6uoPAU8HMIeXv544yH0g45nD8XpFv7ObQqsKue2SLj4ND06PgMZz+H +L/s+bk0Xk3VAT28A3pEhjg== + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQ7XOC3Xb2WV+HX29fH7B8rOpQEbHC9Gyyr4ORMRBc +VnX4E5N79J+Rr8MW8x+HUk6pOlzIj2c/99IHzm9dHn7KqAfBf5K48JpJuA9c +f8Lhy9qpL70dLlwNe6P/G8Gv+bQhILtK3WHGTCD46O1w+gwQ6Gg4bNDLW8zI +4+PwKEJ8+0UGTYe5NjpXZpn5OKSngYCWg+6EBT8M+3wcxKde4cxw0nY4rmk1 +6fR7BB/mXhT5dF+H7Q5Nj47f0HLYWytrkd7j6zClvTXq8h9Nhx6vVywmO30d +ju3a0cv2QcNhz62uv6nHfR18L06M+ces4YAePgAM2I4f + "]}], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZiR+AxksEk1hxj1lJhJLb2UuBMA +8t8CMw== + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJjIGYC4uASlen/WwIcZswEgkpVB+FPjufTRAMd/oPA +fi2H60dzTRqkAx22OzQ9Ov5Dy4Hj54L0zWqBEPWS2hB15gj+/X18c4zdMPnP +s7S/Tf+r7aD6pHne2U8BcP6Ghy+nbioJcNgAkshVc9h5q+tvqjpUXlbLQfr1 +IzMpiQAHmXlxmqcvaDm82L6e+TlPgEPNpw0B2VbaDlO+scXPuOLv8CRx4TUT +fx0HV9VSplkv/BzeFG8V/b1a20EFbJ8fxP03tBx8TrDbzpb1d5izSHnnn+Na +EPc5+cP9u6b7dgZDvr8DC2eXfLKflkMOJ9DDzf4OG/TyFjPe0XSIyT36b5N1 +gENG/ofWkyEqDjz+66ekevg7uK45upyhQtZh6QsPvf+W/g6paUDwTMbhA9CZ +s+T9HUQqJ5WcbZFxMDEGAm4EH+ZedP4ZMJCC6J/uD+fLO35MPrMU6t56aYfl +IPtW+juEvL38ccZBaQeJqVc4Mw4h7P8DcvAjqP41cg5bW2oubGYMcOi08dyV +pqQACU+OAAeQs4yTFSDhHRLgsPLby4ozDcoO4PRxIMChVYFd9cwWGYcI8e0X +GQ5B+VNkHMQ9Av5InA5w6I/o9mfcIO3gLyeW5Xs5wEF+14J9qXzSDrtB8Xk7 +wOFNW2630Wwph8WTrBh9BQLh/kHn167bllQvieB/BvlfGTdf02rS6fqIQLj5 +MD4sPMHusw+Eu79/wQ/DZ0ZQ+SMy8PS8I9gq4r+7LDy9g82zlnNAzx8ATHt7 +EA== + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYCYo6fC9I3MwU7JIQEqS/wVHeA8eWWv/DQ26/h +UBmxwvQse7DDetUnzfN4tRxebF/P/Fwg2CHglnRNopG2Q/vy8FNGL4IcfE6w +287+qu3grlrKNOtIkMOTxIXXTPx1HCYs+GH4bBaCf/iydqpkFoKfH89+TtIw +yEGkx+sVyxZtB+nXj8ykvgQ6yIPsr4fatybQYbtD06PjEpoOxiDQHuggC5K/ +rwbnG4FoYRU4/4FrvOOsifIOj0VkTz59HuiwM9gq4n+7JMS9BUFwPtj+pQi+ +8CfH82kfgxxiVCNkzu2Rcrh+NNek4XeQQ39Etz/jBmm4/2fMBIKdspDwYgt2 +OAMCa+Qg5j0MctgBMi9d1kHbatLp+gNBDl/2fdyafk0G4p7ZCP6a7tsZDNoI +PticB4EO6WlAoKYI5+8A+T9CFc6Hxc/nDQHZs4SDHOYsUt75Z7kWxP/5CD7M +PhgfrP9MkIO+1krhCyxaDuIeAX8k7gdB/GOp6XB/H98c42dBGOkBxgcA3hr4 +8w== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGCQAWIQnZ4GBJ+CHVg4u+ST9XQcvrPFz/B5GezwJHHhNRN/ +HQfhT47n07YGO/hcnBjzb7G2g7bVpNP1DcEOAbekaxKNtB3e8O4zmOkV7GBu +szdoGiOC/zxL+9t0WS2H9uXhp4wKEPwX29czP5+B4IeUqEz/PyfYQV9rpfCF +J5pw/owJ/FVmp9XhfOHKSSVnlyjA+TuCrSL+u8s62OhcmfVsZrDDl30ft6Zf +k3HYeavrb2p5sEOrArvqmS0yDq6qpUyzPIIdRED6WxD8N2253UazpRy8q5v1 +fdYFO5wBA0x+bO7Rf5uOI/gF8eznJB/i5k9Y8MPwmVsI3HwYH2a/zOtHZlIS +IXD31azbllT/FeF+WHzA/Afjw/yPHl8AAavKxw== + "], {{ + 79.05630000000001, 17.618800000000004`}, {78.5797, + 17.618800000000004`}, {78.1672, 17.206299999999995`}, {78.1672, + 16.729699999999998`}, {78.1672, 16.2688}, {78.5797, + 15.854700000000001`}, {79.04059999999998, + 15.854700000000001`}, {79.5016, 15.854700000000001`}, { + 79.93130000000001, 16.2688}, {79.93130000000001, + 16.729699999999998`}, {79.93130000000001, + 17.173399999999997`}, {79.5016, 17.618800000000004`}, { + 79.05630000000001, 17.618800000000004`}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4h9s8TN89oY4TJ/AX2XWrekA4xuDQLICnH/f +Nd5xlqCMw4QFPwyf3QtxUP+k8nIWp5RDj9crFhPdUDjfTbWUaZYLgh9SojL9 +f0yow5u23G6jaCkHCY+APxLJoQ5nwEDK4YmI7Mmnk0Mdau7/uGWsLefA8XNB ++ua2UIe//4HAXh5if26oQ4xqhMy5GDmHSPHtFxniQh0qQOq55Rw4Qeq9EPw1 +3bczGJQRfLB5QqEOvRHd/owB8nA+f2zAfSNzRTgf5v8X29czP5+C4B+5rJ0q +OS/UQXzqFc4MJ224+j/fSh/MEUTwPfbXylq468D5U9pboy7P0XVQcPyYfEY0 +1MHUZm/QtIN6DjY6V2Y9kw11uC1dk2iUauCwtaXmwmbBUIflLzz0/k80cPgG +8u/PEAd9rZXCF0IMHNSeNM87eyvEARQc/+UNHALkxLJ8d4c4sHB2ySe/03fw +qm7W99kX4lDzaUNA9i89iPx+qPp4BP9F8VbR39m6cH7ALZADtB0YQKAgxMHn +BLvtbFEtOH+z+Y9DKVmI9AALDwCKk+oK + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQPWHBD8NnSeEOf/8Dgb28w9aWmgubQ8MdDnTvazJ5 +LO/gplrKNEsk3MF1zdHlDBWyDj1er1hM/oY5pKYBwTMZh9p125LqLyL4AXJi +Wb79CP6BWlmL9IgwhzVCOnzp++QcnojInnxqHeZQfnib68y3Cg6uIPM1whyc +JzQLpf1ShJinGOawFqT+npLDzltdf1Plwxx0FeW/5GxTcWAAgS0I/pHL2qmS +vxB8G50rs56phjuwcHbJJ59TcZB5/chMKifcYc4i5Z1/1FUdCuLZz0nmhjvM +BANViP68cIdfb18fsHyM4BtorRS+4KIG558BgTeaDqpPmuedVQp3eJK48JqJ +v47Di+3rmZ9vCIPzwf7vRvCvHs01aYgPc9AHmfdE20HB8WPyGdMwB3ObvUHT +FLUdQMGU9ijU4Q/I/sWaEHsOhDrMmMBfZbZaHc6f0t4adTlGBc5XvvYomCFG +CeK/C6EOwpWTSs4uUXD4tCEge9brUEh435NzWDLJitFXJMwBFL3/66Xh8bEz +2Crif7ukw4aHL6duWoLge1U36/ucQvDB4f0hzEH9k8rLWZxSkPQhGe4gv2vB +vlQ9aUh4moY7hLy9/HHGQ2mHpkDPuQ1e4Q6tCuyqZ7bIOLzl3Wcw0y/c4cu+ +j1vTxWQd0NMbAFoVG9Y= + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQ/WlDQPYs4XCHX29fH7B8rOrA+XNB+uZ7YQ5GxkBw +WdXBq7pZ3+dYmMMW8x+HUk6pOmxtqbmweSGCP2HBD8NnRQj+gVpZi/QIhP7a +dduS6hXDHC5cDXuj/xvBrwFZXKXuMBMEVMMcTp8BAh0NB9UnzfPOGoU5PIoQ +336RQdNB5vUjMymPMIf0NBDQcngiInvyaXGYg/jUK5wZTtoOGx6+nLppCYIP +cy+K/IMwh+0OTY+O39ByWNN9O4Phc5jDlPbWqMt/NB2EPjmeT+MMdzi2a0cv +2wcNBy2rSafrBcIdfC9OjPnHrOGAHj4Ad4aOoQ== + "]}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, { + 0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQ3Xzg1EJXs0iHLeY/DqV4aTt8Z4uf4fM3wmGt6pPm +ebw6DmdA4EGEw5PEhddM/HUcur1esZjsRfAVHD8mn1mI4At9cjyf1hnhcOKw +09pMOR2HxyKyJ5/mRziI9AA1btF2SAMBsQiH4yB5Oy2HA7WyFul3wh0SQoLU +F3hqOoCsPbst3CEl9o4b8w81ON/34sSYf84qcP77ResVzu5QdPCsbtb3uRTu +8Pc/ENjLO0i/fmQmxRLh0KrArnpmi4wDx88F6ZvVIhwiVCNkzt2RcmgK9Jzb +EBbhoP5J5eUsTikHV9VSplkzEPzgEpXp/9cg+PtB7jsS4VBz/8ctY28piP9O +RjhUgPjdUg73/Xun51lFOjhPaBZKs1JwiEyxvu9vGunwpi2322i2lMOJsn3z +pdIjHWJA9u+RcmiY6tydUx4JCdczUg53VNgapzYj+PuB0bGtG8F36c55/nsm +gj/n/fJj3usR5nnwMGm3b4PKr5FyaHdMeHrhFIJ/peKlmuEDhHtgfJHKSSVn +W2QcjihsKMrYGAkPL/4Iyy0n+iIdvuz7uDX9mgzcPTuCrSL+u8vC+cIg/UsU +UN0rY+SwGeThpkgH+8qIFaa2Rg7Pf6/8eCk00iEZHJ+GDvamcbs8TSIdPm8I +yJ513RCSPh5HOFwHBewyBF9fa6XwBRNDh/VFGRPfykTC+atlolKs9RF8WPoF +m8+B4EeIb7/I0GfggJ6+AYAoWoc= + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQ3Xzg1EJXs0iHMyCQo+IA4ytfexTMEKPkYG8at8vT +JNLBeUKzUBqXksPTC0q3f6pFOoRzirUb+ys6bD5Rtm8+V6RDwNvLH2cslHdY +//Dl1E03IhxUP6m8nLVS1uHF9vXMz1cg+Dtvdf1N9Ufw/eXEsnz5Ixzc1xxd +ztChCOdLzYvTPB2gCufPWaS8889xDYf7+/jmGLtFOMiA5C9oOSg4fkw+sxDB +318ra5F+AsHPj2c/J/kxwiE9DQS0HF6qGXKsEYl0+PP29QHLxZoO6kCujFak +w99vpQ/mGGrC/Q+zD8ZPBWlvQ/Bh4QUAE2yNbA== + "]}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4hp707hdmtEO3Taeu9I+KTrA+CFvL3+c0Sjv +IN/6OnCHWrTDjJkgIOvgwcOk3S4X7SC/a8G+VD5pB/Y1MlEpwdEOc0DSPyUd +/Hun5wlVRzvsDLaK+N8u6RCwQ6719UoE/3jZvvlS+jFwPksYn+6m3hiHN225 +3Ua/ZeF85wnNQmlSSnA+f2zAfSNxZYfvwY+Xzm6JcegEufeSssPb5ce8zQtj +HDLzP7SeLFFx4I+w3HIiLMbhUYT49osOqg6lIOtMYxwkpl7hzFik6rD/1ELX +bbejHc6AgI6aw3ag8wI7oh1YOLvkk9epQcRzoh3+fit9MCdQHc6fs0h555/j +GnD+icNOazPjtBxWfLzkmzQh2kEcZL6TNiR8ziH4W04APSwUgyrvFuPQwuu/ +foqqFpzvsb9W1mK5Bpz/qnir6O/X6g6xuzx5mJIR/PKXaoYcKTEO/hcnxvw7 +rOmwwHXb579AvjtIf7uWw5Ols48oZMQ4/Hj7+oBls7aDOCgAjWIcdBXlv+SI +6TgINB84tZA3xuFJ4sJrJv46DlOcu3OeP46G86+fA4ZwLoIPVq8K5fdrwfkm +xkCwWR3Oh4Un2H020Q4psXfcmCVUHdodE55eyILK56g4tACVu7YB09ME/ioz +bhUH/ySBCMs90Q4fFq1XONuh7HBEYUNRBmOMQzinWLsxvzI8vZQf3uY6c6+S +w3ml2z/rnKDxL4Tgl4Lk7yrA+TX3f9wy9pZzCAUmn7n8MZD0/FDaoX4q0MPH +o+H8FmDylqtF8K9UAD3gEQ1Jj9JycL5w5aSSs0sU4Hz0/ALjAwAplm+S + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4i9/r1S8FIt1mD6Bv8qsW9MBxjcGgWQFOP++ +a7zjLEEZh57peULNFrEO6p9UXs7ilHLgj7DccqINwZ/wtsbedB6Cb3Pfv3f6 +tliHN2253UbRUg4v1Aw51uyJdTgDBlIOundV2BrfxjrU3P9xy1hbzmG7XOvr +wAexDn//A4G9PMT+Y7EOMaoRMudi5BxC+HQ3zd0e61ABUs8t52BrGrfLcwmC +/z348dLZNQi+PUg+J9ahN6LbnzFAHs7njw24b2SuCOfD/O/Bw6Td/g7Bd39Y +JbLue6yD+NQrnBlO2nD1f76VPpgjiOB77K+VtXDXgfOntLdGXZ6j69Aw1bk7 +Jz/WwdRmb9C0g3oOBRkT39aUxzrclq5JNEo1cBC9ee57cHasw/IXHnr/Jxo4 +1Iisc38YFOugr7VS+EKIgYPC7Z91WSaxDqDg+C9v4LC+CGiASKwDC2eXfPI7 +fQeZqBTr++LA8Pu0ISD7l56DaadjwlMJqPp4BP9F8VbR39m6cH7ALZADtB1m +zASCkzEOPifYbWeLasH5m81/HErJQqQHWHgAAKrM9zQ= + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQPWMmEHjGOzxwjXecxajgILLO/WGVS7zDm7bcbqPZ +Ug429/17p7fFO5wBA0z+hrnvlx+bjOCbdjomPJ2B4P9Z+fGS76Z4hxjVCJlz +e6Qcjpftmy91H2E+jC9SOankbIuMQ/1U5+6c7VD+EhmHJxeUbv+cF+/QqsCu +emaLjEPsLk8eptnxDu5rji5nsJCF850nNAulaSnA+Reuhr3R/60K5/8Hgfla +DlcqXqoZFsQ7PElceM3EX8dBnCWMT/dXHJzvwcOk3X4OwX/+G+iBpXEOPifY +bWd/1XZYIxOVYl0f51DzaUNAtpW2A9D33uaeUHlTLTjfQGul8AUVDYf9pxa6 +bkuOc3hVvFX092t1SPgUxDnMWaS8889zDYeWA0AFbXEO6WkgoOWwAhhcSRPi +4O4F27cfwf/yF+gDOYR/wO51i3cIvCVdk1ik6QCLTxbOLvnkPjWH9UUZE98+ +iYOHx3lgcNZFxTmc2LWjl81A1aE2a0/JZIU4SPxvVIbzyw9vc535VgHOTwU5 +75kMxH0BcQ7qn1RezuKUckgQiLDcsgDBB4f3ZgTf1jRul+eROIi7LKUc2EEe +Oh3nUHH/xy3jbikH9PQHADE9MKY= + "], {{125.14999999999998`, + 8.670309999999999}, {124.68899999999996`, 8.018749999999999}, { + 123.68799999999997`, 7.4156299999999975`}, {123.06699999999996`, + 7.4156299999999975`}, {122.43099999999998`, + 7.4156299999999975`}, {121.87499999999999`, + 8.003129999999999}, {121.87499999999999`, 8.687499999999998}, { + 121.87499999999999`, 9.274999999999999}, {122.19400000000002`, + 9.831249999999999}, {122.67000000000002`, + 10.132799999999998`}, {123.06699999999996`, 10.3719}, {123.942, + 10.593800000000002`}, {125.14999999999998`, + 10.768799999999999`}, {125.14999999999998`, + 8.670309999999999}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYCYp1Nc98v10twmD6Bv8qsW9MBxjcGgWQFOP++ +a7zjLEEZh591WXtK7BMc1D+pvJzFKeVgfd+/d3oagv975cdLvkUI/gWl2z/r +6hIc3rTldhtFSzksP+Zt3tmY4HAGDKQcTi903fZ5ZoJDzf0ft4y15Rz6D33V +iJmc4PD3PxDYy0Psb0twiFGNkDkXI+cQu8uTh6k+waECpJ5bzuGyb5JARCmC +r39Xha0xEU0+MsGhN6LbnzFAHs7njw24b2SuCOfD/B9uueVE2SwE//riAluu ++QkO4lOvcGY4acPV//lW+mCOIILvsb9W1sJdB86f0t4adXmOrsPnv1cqXkYl +OJja7A2adlDPIfs5MITiEhxuS9ckGqUaOOyfL6V/NyLBYfkLD73/Ew0cgLZd +X+yT4KCvtVL4QoiBw2GFDUUZtgkOoOD4L2/g0J0DNEA3wYGFs0s++Z2+g2PC +0wtK+sDw+7QhIPuXnsP578GPl+pD1ccj+C+Kt4r+ztaF8wNugRygDVHHnuDg +c4LddraoFpy/2fzHoZQsRHqAhQcAoNP+Vw== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQbct1fXFBY6LD3/9AYC/vwKjdLnazKtHhQPe+JpPH +8g6/V3685BuV6OC65uhyhgpZB+v7/r3T/RIdUtOA4JmMw+2fdVl7LBD889+D +Hy8VR/CvVLxUM/yT4LBGSIcvfZ+cw+mFrts+v01wKD+8zXXmWwUHe9O4XZ5P +EhycJzQLpf1ShJj3IMFhLUj9PSWHA6eAGu4nOOgqyn/J2abisLtksgSLViKc +D+SF8fki+DnPgS5OSnRg4eySTz6n4mACNJ6nLdFhziLlnX/UVR0Of9WI6Qfy +Z4KBqgPQ97Zc7YkOv96+PmD5GME30FopfMFFDc4/AwJvNB2OKGwoykhMdHiS +uPCaib+Ow2yQgAaC3w1ygCiCb7nlRNm+/wkO+iDznmg7fP4LDJFXCQ7mNnuD +pilqO7xffszb/GCCwx+Q/Ys1HZRBAbAhwWHGBP4qs9XqcP6U9taoyzEqcL7y +tUfBDDFKDsDYSRLYkeAgXDmp5OwSBYd8oeYDp45Cw/uenMN8Kf27KrcSHEDR ++79eGh4fO4OtIv63SzqAgjNMKRHOBzlPzRTBB+tzT3RQ/6TychanlMN+kIEx +iQ7yuxbsS9WThoRnVqJDyNvLH2c8lHZIn/i2xr400aFVgV31zBYZh7kgD5Yn +OnzZ93FrupisA3p6AwDBey0b + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQnS/UfOBUZKLDr7evD1g+VnXoP/RVI8Y+0cHIGAgu +qzo4Jjy9oGSc6LDF/MehlFOqDvvnS+nfVUDwbbmuLy7gRPCvVLxUM/yTANd/ ++2dd1p4HCQ4Xroa90f+N4Nd82hCQXaXu0AGy4FGCw+kzQKCj4XBEYUNRxssE +h0cR4tsvMmg6fLzkmyTwJcEhPQ0EtBxOL3Td9hlon/jUK5wZTtoOJZMlWMKU +EHyYe2F8A441MlEOiQ7bHZoeHb+h5aB/V4Wt0TPRYUp7a9TlP5oOyQIRlltC +Eh2O7drRy/ZBw+G4t3mnY0Sig+/FiTH/mDUc0MMHAKzTip4= + "]}]}, + Thickness[0.007054176072234764]]}, { + ImageSize -> {141.75865504358654`, 22.58844333748443}, + BaselinePosition -> Scaled[0.29815266074630126`], + ImageSize -> {142., 23.}, PlotRange -> {{0., 141.76}, {0., 22.59}}, + AspectRatio -> Automatic}], + Graphics[{ + Thickness[0.0061330880098129405`], + Style[{ + + FilledCurve[{{{0, 2, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGI7IGYC4jMg4PPDngEEAowdIPx/cP7B7n1NJo8ZHOwr +I1aY/jV2MAaBz4wOX3fe6vqbauKg/knl5SxODocniQuvmZw3gejn4YXzq+// +uGW8WhDOnzUTCCxFHByaHh2foY3g1/+2KjiXYQznS8+L0zzdYOTwHwTiBR0i +xbdfZNhn6JCeBgTPuOF8mY1i85kUEPyS5SUb/vFzOXR7vWIxOWgIcc8ZDof9 +tbIW6UcMHexKHGtPx7A7fN4QkD3ruKGDCdhDbA5L7u/jm6MMNe8BG0S/IFR/ +D5eD9wl229muUPkEHofb0jWJRqGGDjGqETLn/vDB+eBwaxCG8x+4xjvOuijq +0AMyb6MBnH98145eNgN9OH8GyN87dSD+vS/kcP5q2Bt9aW2HJbeWPzY8zAPn ++z/xvGQazAHnQ/zD4pASe8eNuULb4TrvbbHUMkaHFl7/9VNUdeDxuV71SfO8 +tToOLeK1rJnHftuD9VvrOjz2e5nwV/6HfS0o/Dv0oOH7yX7qBP4qM289h5yp +CYUWn7/Z+98CeuiSDtR/P+xFQB76ou0w/8TkJdnLftofP+y0NnOfFjx9gOPb +Xwsevs+ztL9Nl9WC2s8J54P9u18AzgeHh6GoA9h8E21Iergp7gCzPxoU3jWS +DkdB4XdB16E/otufMUAKGm56cD44/hgN4Hxw/E01cHBbc3Q5Q4SkQyPL0X5D +cUOHN2253UazxSHpI8XQIQ0MxByiFRw/Js8xdNAApW9PUQd9rZXCF7YYwuMH +nD4vGDpEgdyzR8yhYE337YwJRg59IPsMJBxOg8JDzhjONwDpv4Lgg+PrhQkk +/cwRcTgFUj/PFBq+fHA+WP0Hdjj/y76PW9OnMUPSa7KpQyo4vv7ao+Q/pPwM +AGkkpqI= + "]], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZjR2DA5dDXI4rjYxJhJiV5cakhl +k2omMe5HZgMAEs4CVw== + "], CompressedData[" +1:eJxdk31IU1EYxjeVQioKLaw528bcx51su1enDlF6KhKlxBShUZaZn31YQkqY +E0nT0JVpaFiKlEUWmZpoipSGJopfZYaFSV8YSegfmohgZTv36hn0wvnjx33u +Oc953vcoTpyLTnIWiURi+9plX072dYtUkRKeNceYQXA4HhOtuROuQs5yUPqI +mcMQqY1qGHWP3N+YOCTzpUbkaFnsX3cHa6bya4YHWMp102GGlTIWlzdFNpbv +W9OzKL9ScHhMqkZF6eaLAT5G2ILDO5K7lVghFadAWH1vncisxELnXGvKohQi +UqwSW7NuZAy/kmJvab5b8k8FCuTrVUPlUsFftRwvbZ15pgQphglb5ZgpTLP5 +VklQRPZ/qxB09RLhHJkSsSqLdOS5BM2Gs/fEUm/h+5AELq7FsoQGB7cj71uf +WUWZJTl4q+n/LYFL3YmnNHR/Ps8dDD0/asLTGu/LUH/+wS+ibyo01H+Tyh5c +hFq4330pnhI/v1VI5GP0osyfZ91J+arFFineIkMEydVZjZjZsbnKSzKab/bn +pQm/I3IkHJ0MdW7XQq+QLZwZN1Lu79nz5OQnI9rI/T5okV5v+5gKFgHEn5iB +xaNtVFTCIo7MgysDj4p3rqm17Kp/hvY7e77p4OkgRsh1hYWMND5OB9L2pO0c +Aon+q07YX86hhfi3+lC2kv87DJS7crzMKd4sQrIsD/3TWMr8HH3XO9il9zp3 +QQcvftD0qCTz9FgDkx8pH8q8rVwdZT6fSQa+RDamQV9H+7V1TVrk83OqFfRd +2tV3oEEj6c8sI+T3TC3oS3XCnJSo6X3W+ED/+pCqCqPjO5mPYg4ppJ+hOsp8 +7pUGyr/sMdz+wWJDqCrTqZjFVPzdcVMXh5nzrduW9+vRU1h3aKCZQy55l9Na +vHeb3/36AYc/i5lfqqNUyLDLBhs4Yd5rlVT///v+B7q0ssM= + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4htCnxzPLzNz6Lbx3JX2SdEBxg95e/njjEZ5 +B9UnzfPOzjJzmDETBGQduNxUS5mqzBzkdy3Yl8on7fAiS/vbdF9zhzkg6Z+S +DjEKjh+T35g77Ay2ivjfLunwaUNA9qzlFnA+WH6PFZx/HWSfmY3Dm7bcbqPf +snC+84RmoTQpJTifPzbgvpG4soP41CucGUI2Dp0g915SdtDXWil84Yi1Q2b+ +h9aTJSoO0yfwV5lFWzs8ihDfftFBFSJ/xcpBAqRvkapDyVbR36fzLB3OgICO +mkO31ysWE0ULBxbOLvnkdWoOJsZAsNnc4e+30gdzAtXh/DmLlHf+Oa4B5584 +7LQ2M07L4Q9InaMFxF1O2pDwsbKE87eY/ziU4mUF53OA5KWsHVp4/ddPUdWC +8z3218paLNeA818VAx36Wt1hg17eYsYeBP8/CPRbO/hfnBjz77Cmgw+Inmzt +4A7S367lkL+m+3bGAmuHH29fH7Bs1nao/21VcO6ElYOuovyXHDEdh/Q0IDCz +cniSuPCaib+OQ19wicr0fks4Hxxf283hfJDytGlmEH6/FpwPCQd1OB8Wngwg +8MHMISX2jhuzhKrDDFB8rDaHyOeoOGi85d1nIGkBEedWcZCeF6d5+oOFw4dF +6xXOdig7+Jxgt53NauUQzinWbsyvDE8v5Ye3uc7cqwQJHy5rSPwLIfilIPm7 +CnB+zf0ft4y95RyOg+LJzgqSnh9KOzwHpVdZSzj/ADDY0r+Yw/kyIPcomEPS +o7QcnC9cOank7BIFOB89v8D4AK/SXwo= + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQvfNW19/U+44Of/8Dgb28A8viSVaMRx0dDnTvazJ5 +LO+g+qR53lknRwfXNUeXM1TIOmzUy1vMKOLokJoGBM9kHCZ/Y4ufsccBzje/ +djTXxALB19daKXxhir3DGiEdvvR9cg5H2paHn1Kydyg/vM115lsFB58T7Laz +r9o5OE9oFkr7peig/pZ3n8FOO4e1IPX3lBwk5sVpnt5g56CrKP8lZ5uKw0wQ +aHSA8+UdPyaf4XWE84U/OZ5PS3V0YOHskk8+p+JwMT+e/dxHR4c5i5R3/lFX +daiMWGF69rMjxJyZqhD9Xx0dfr19fcDyMYJvAHK3ixqcfwYE3mg6PE5ceM0k +3tHhCYj213HI5vy5IL3aAc4H+98Awe/xesVistEeEg5PtB22mP84lMJl72Bu +szdomqI2xNw9tg5/QPYv1oSEm5mtw4wJ/FVmq9Xh/CntrVGXY1TgfOVrj4IZ +YpQcltzfxzen2NZBuHJSydklCg5/vpU+mPPQFhLe9+Qc9tfKWqS32DmAovd/ +vTQ8PnYGW0X8b5d0+B2Te/RfkgOcrz9hwQ/DdQg+OJh+Ojiof1J5OYtTCpI+ +fB0d5Hct2JeqJ+1QAQrPZkeHkLeXP854KO0w30bnyqx1jg6tCuyqZ7bIOBRv +Ff19epujw5d9H7emi8k6oKc3AK+iITg= + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQXf/bquCcg6PDr7evD1g+VnVY3X07g+G6g4ORMRBc +VnXQnbDgh+EyB4ct5j8OpZxSdWBZPMmKMRbBL9kq+vv0P3s4X19rpfCFKfZw +/epvefcZ7LRzuHA17I3+bwS/5tOGgOwqdYcZM4HgpJ3D6TNAoKPhcPyw09rM +f3YOjyLEt19k0HRYcn8f35xge4f0NBDQckg8fFk7ldHBQXzqFc4MJ22H3zG5 +R/8lIfgw96LI33Jw2O7Q9Oj4DS2Hz0BrZ/13cJjS3hp1+Y+mw/5aWYt0HUeH +Y7t29LJ90HB4A3TeTCtHB9+LE2P+MWs4oIcPADoCjb0= + "]}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4jXdtzMY4l0dEkKC1Bd4qjvA+HLLX3jo7ddw +6PF6xWKS6eqwXvVJ8zxeLYcczp8L0qtdHQJuSdckGmk7LAMq+6/p6uBzgt12 +9ldtB5Cys49cHJ4kLrxm4q/jsPNW19/UfgRfwfFj8hldBL8yYoXp2d3ODiIg +i7ZoO1zOj2c/5+jsIA+yv17LIRtk32Ynh+0OTY+OS2g6/AeBdCcHWZD8fTU4 +38gYCIRV4PwHrvGOsybKOyQcvqydqunssDPYKuJ/uyTEvZYucH4FyP7FCP6B +WlmLdBtXhxjVCJlze6QcXFVLmWYFuDr0R3T7M26Qhvt/xkwg2CkLCa90V4cz +ILBGDuIfaVeHHSDz0mUd3vDuM5h5y8Xhy76PW9OvyTgkgtwzEcH/vCEge9Z6 +Zzgf5A1jaWeH9DQgUFOE83eA/B+hCufD4qf+t1XBuQZnhzmLlHf+Wa7lwAAC +Fi5wPsw+GN8EpP+zi4O+1krhCyxaDic0rSadFof6x1LTIUJ8+0UGNcz0AOMD +ALrR8W4= + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgAmJeKP1lQ0D2rO/uDk8SF14z8ddxWGCjc2XWOTc4v8fr +FYsJo5tD7W+rgnMcmnD+m+Ktor+9VeD8gLeXP85YKO+gO2HBD8Ntbg47g60i +/rdLOkz5xhY/Y487nB8hvv0iwzcPON/nBLvt7KueDs4TmoXStBTgfLD971Xg +/BkzgcBS0yENBPg84e5Dd/+vmNyj/y65O4hPvcKZ4aTtoAdyT58HnM/jv35K +qoSnQ2b+h9aTIhpw/gPXeMdZB5XhfLB7pBQc6kD+3uDh8B8E5ks7bNDLW8zI +g+CD/efiDueD3bfPzaH08DbXmXcV4PxHII8nqML5f7+VPphjqOnAAAIKCPei +ux8AwwS4MQ== + "]], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGIZIIaxWZDYzFDMAOUzoLFxqUEWJ8YcYswk1V5i9NLa +jwDSKwJB + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJzIGYC4oqIFaZno30d3rTldhvNlnI4qmk16fR1X4cz +YCDlcCE/nv3cTQR/f62sRfofBD+kRGX6fwk/nPwb0jWJRkv94ObD+CKVk0rO +tshAzA/0c2hVYFc9s0UGoo/Hz+HLvo9b06/JOMy10bkyi83PwX3N0eUMFrJw +vjBI/xIFON8D5LDjanC+/PIXHnr1Wg4lW0V/n57m6/AkceE1E38dB5UnzfPO +bvKB879sCMielY7gg+238XHQVZT/kiOm43B3H98cYyEfhx9vXx+wbNZ2+ABS +X+7tsNn8x6GULE04n4WzSz5ZTwfiv1RvuHkinxzPp/31cvC5ODHm32JtB/um +R8dnTPZyCLgFUqjtcBwU3upeDuY2e4OmMSL4z7O0v02X1XIwMQaCYgQfHP5H +EPwp39jiZ5zxctDXWil84YkmnD9jAn+V2Wl1OB8WXjD+jmCriP/usg7zQeF1 +zAse3gmHL2unNnrB40Pe8WPyGVUveHzB+LD4NL92NNdkg5dDjGqEzLk9Ug5r +um9nMDz3gsc/KBr+K3rD+SyLJ1kxxiL4G/TyFjNO8YbrT00DAjkfuPkwPsx+ +dVD8HfKGu8/nBLvt7FpvuPth8QHzH4wP8z+MbwYK70R1OP/4rh29bBc0IP77 +6+1w4rDT2sw4LUj6rPSB8++D0gOTL5wPyz9zFinv/HNcA87PyP/QejJEzQE9 +fwEAKpeNkQ== + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, { + 0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQveHhy6mb/gQ4bDH/cSjFS9shNvfov02HAxzWqj5p +nser42AMAssDHJ4kLrxm4q/j8HlDQPasZgS/fXn4KaMMBL8iYoXpWf8AhxOH +ndZmyuk4eFc36/uYBTiI9Hi9Ytmi7TBjJhDs9Hc4DpK303LwOcFuO9vV3yEh +JEh9gaemg/jUK5wZv/wcUmLvuDH/UIPzfS9OjPnnrALnv1+0XuHsDkWH+MOX +tVMN/R3+/gcCe3kHlsWTrBin+ju0KrCrntki43B3H98c41v+DhGqETLn7kg5 +vNi+nvm5TICD+ieVl7M4pRxWd9/OYIhH8Hfe6vqbWozgqwOD4WxXgEPN/R+3 +jL2lIP7rD3CoAPG7pRzOgABDoIPzhGahNCsFhxhQ+P0OcHjTltttNFvKoXbd +tqR63UCHGJD9e6Qc5B0/Jp+xDYToOyPlECG+/SKDF4IP8o5kEIK/v1bWIj0B +wd/aUnNhcynCPLB/aqDya6QcQMFsMhHBf8O7z2DmskC4e2B8kcpJJWdbZBwq +Qf4pD4SHVzdIf2igw5d9H7emX5OBu2dHsFXEf3dZOF8YpH+JAqp7ZYwcgktU +pv/3CHSwBxlsawRJHzKBDsng+DR04Py5IH3zrwBIOrpuCEkfqwIcrgt9cjy/ +DMHX11opfMHE0MFfTizL9zGCD0o+M78i+LD0CzafA8EHh2ufgQN6+gYAF9hX +FA== + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQveHhy6mb/gQ4nAGBHBUHGF/52qNghhglB86fC9I3 +/wpwcJ7QLJTGpeQg/MnxfNrbAIdwTrF2Y39Fh+ASlen/LwQ4BLy9/HHGQnkH +cY+APxLzAxxUP6m8nLVS1sFfTizLNx/Bl3f8mHxGFMHPAVmw2t/Bfc3R5Qwd +inC+1Lw4zdMBqnD+nEXKO/8c13BwVS1lmsUT4CADkr+g5dC+PPyUUQaCr/qk +ed7ZPgT/+tFck4btAQ7paSCgBXHf7QCHP29fH7BcrOmgbTXpdP2HAIe/30of +zDHUhPsfZh+MnwrS3obgw8ILAIzdmE4= + "]}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQ/Y0tfoZPZ4jD3/9AYC/vIPP6kZlUTYjDge59TSaP +5R3WdN/OYLAOcXBdc3Q5Q4Wsw6cNAdmzlEMcUtOA4JmMwxMR2ZNPvwfD+Vtb +ai5s3orgqz5pnne2LthhjZAOX/o+OQfP6mZ9n6Rgh/LD21xnvlWAmO8f7OA8 +oVko7ZcixDz3YIe1IPX3lBwUHD8mn3ENdtBVlP+Ss03FIR1k7i0EX8tq0ul6 +hRA4f9EkK0ZfnxAHFs4u+eRzKg5NgZ5zGyaFOMxZpLzzj7qqw9WjuSYNk0Mc +ZoKBKkT/lBCHX29fH7B8jOAbaK0UvuCiBuefAYE3mg49Xq9YTDxDHJ4kLrxm +4q/jECAnluV7PRjOB/t/I4Jvo3Nl1rPWYAd9kHlPtB3al4efMooJdjC32Rs0 +TVEbYi5HsMMfkP2LNR2MQeB5kMOMCfxVZqvV4fwp7a1Rl2NU4Hzla4+CGWKU +HJpB/vsW5CBcOank7BIFhwjx7RcZhKDhfU/OgfPngvTNVsEOoOj9Xy8Nj4+d +wVYR/9slHSQ8Av5InEbwNzx8OXXTBwQfFNxpYiEO6p9UXs7ilIKkD4cQB/ld +C/al6kk7XAOFZ3SIQ8jbyx9nPJR2eLF9PfPzghCHVgV21TNbZBxCSlSm/y8J +cfiy7+PWdDFZB/T0BgDv7xtg + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQHSG+/SKDVYjDr7evD1g+VnUoiGc/J8ka4mBkDASX +VR02PHw5ddObYIct5j8OpZxSdZB5/chM6gSC/50tfobPTARf9UnzvLN1wXD9 +T0RkTz51D3a4cDXsjf5vBL/m04aA7Cp1BwYQ8Al2OH0GCHQ0HHq8XrGYRAY7 +PAI7TNOhOdBzbkNesEN6GghoOXhXN+v7zAp2EJ96hTPDSdtBwiPgj8RpBB/m +XhR59hCH7Q5Nj47f0HIQ+uR4Pk0yxGFKe2vU5T+aDhURK0zP6oc4HNu1o5ft +g4bDhAU/DJ+ZhTj4XpwY849ZwwE9fABjO4ZR + "]}], + FilledCurve[CompressedData[" +1:eJxTTMoPymNmYGBgBGI5IAaxQYAJSjNCxZiR+AxksEk1hxj1lJhJLb2UuBMA +8t8CMw== + "], CompressedData[" +1:eJxTTMoPSmVmYGBgBGJjIGYC4o7l4aeMboQ6zJgJBJWqDq6qpUyzMsIc/oPA +fi0Hzp8L0jfnhTlsd2h6dPyHloONzpVZzyrDIOoltR1MjIGgG8EX+uR4Pm0m +Jv95lva36X+1HSLEt19kcEPwn4jInnx6PNRhg+qT5nm5ag5vePcZzKwKhcjL +ajkEyIll+WaHOsjMi9M8fUHLQeb1IzOphFCHmk8bArKttB1q121LqrcNdXiS +uPCaib+Ow7WjuSYNx0Mc3hRvFf29WhvinzMhEPff0ILY/yjEYc4i5Z1/jms5 +LJlkxej7JQTVv1yhDiycXfLJfloOL7avZ34uAnSfXt5ixjuaDhMW/DB81hfq +kJH/ofVkiIrDzltdf1O/hzi4rjm6nKFC1qENFJ4fQhxS04DgmYzDmu7bGQyP +QxxEKieVnG2RcTgDAjcQfJh70flgdWekIPrlQ+H8I5e1UyXVQiHurZd2AMef +RqhDyNvLH2cclHY4UCtrkW4SCrd/w8OXUze5QPWvkYP4JyTUodPGc1eakgIk +PGNCHUDRaJysAAnv5aEOK7+9rDjToAzxj0iYQ6sCu+qZLTIOPV6vWExEofwp +Mg5e1c36PnJhDv0R3f6MG6QdmgI95zaohTnI71qwL5VP2uEtKD71whzetOV2 +G82WcrgK8l9yGNw/6Hywe3MQfFCyOFuGmx+Te/TfptUI82F8WHh6gtw3CeF+ +cPi1QeWPyMDT845gq4j/7rLw9A42z1rOAT1/AABUt34K + "]], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYCYmudK7OehUY4JIQEqS/wVHeA8eWWv/DQ26/h +sKb7dgZDdITDetUnzfN4tRykXz8yk0qJcAi4JV2TaKTtsOtW199U6wgHnxPs +trO/ajtURqwwPSse4fAkceE1E38dhyOXtVMl34XD+T/Y4mf47EXwl0yyYvRt +CXcQ6fF6xbJF2yFATizL1z3cQR5kf72WgwzIPoZwh+0OTY+OS2g6pIHArTAH +WZD8fTU438gYCIRV4PwHrvGOsybKO0h4BPyRsA532BlsFfG/XdJhJ8i9hxF8 +sP0/EHw31VKmWS4RDjGqETLn9kg5cP5ckL7ZL8KhP6Lbn3GDNNz/M2YCwU5Z +SHhFRjicAYE1cg6LQeaZRDjsAJmXLusQm3v03ybhCIcv+z5uTb8m4yAGcs/7 +cDj/wT6+OcZ1CD4DCJiEO6SD/KGmCOfvAPk/QhXOh8UPKFrOpoU7zFmkvPPP +ci2I/w8h+DD7YPz/ICAf4aCvtVL4AouWg2d1s76PEdQ/lpoOQp8cz6dZYqYH +GB8Azi7qIQ== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGCQAWIQLdR84NRC10gHFs4u+WQ9HQfhde4Pq2wiHZ4kLrxm +4q/jUJe1p2QyR6SDz8WJMf8WazvE5h79t+lyhEPALemaRCNtB3nHj8ln5kY4 +mNvsDZrGiOA/z9L+Nl1Wy2Hnra6/qYcRfOnXj8yk3iD4bcvDTxl9iHDQ11op +fOGJJpw/YwJ/ldlpdThfuHJSydklCnD+jmCriP/usg758eznJN9GOHzZ93Fr ++jUZhze8+wxmnopwaFVgVz2zRcahImKF6dnZEQ4iIP0tCP6bttxuo9lSDts+ +/71SwRjpcAYMMPnVIsAAkULw7U3jdnma4OarG3KskZkVCTcfxofZL37z3Pfg +7Ei4+xIFIiy3eETC3Q+LD5j/YHyY/9HjCwBsg8wN + "], {{ + 100.35599999999998`, 17.618800000000004`}, {99.8797, + 17.618800000000004`}, {99.46719999999999, + 17.206299999999995`}, {99.46719999999999, + 16.729699999999998`}, {99.46719999999999, 16.2688}, {99.8797, + 15.854700000000001`}, {100.341, 15.854700000000001`}, { + 100.80199999999999`, 15.854700000000001`}, {101.23099999999998`, + 16.2688}, {101.23099999999998`, 16.729699999999998`}, { + 101.23099999999998`, 17.173399999999997`}, {100.80199999999999`, + 17.618800000000004`}, {100.35599999999998`, + 17.618800000000004`}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4p7peULNAlEO0yfwV5l1azrA+MYgkKwA5993 +jXecJSjjoG7IsUbGKMpB/ZPKy1mcUg4rPl7yTWpA8HXaxW6em47gX6l4qWa4 +IcrhTVtut1G0lEPLgVMLXbdFOZwBAymH42X75ks9j3Kouf/jlrG2nEPADrnW +1zejHP7+BwJ7eYj9B6IcYlQjZM7FyDm8X37M23xjlEMFSD23nMP1c9+DH89F +8Ce8rbE3LUPwb4DkU6MceiO6/RkD5OF8/tiA+0bminA+zP9Pls4+ovACwX9Q +JbLO/WOUg/jUK5wZTtpw9X++lT6YI4jge+yvlbVw14Hzp7S3Rl2eo+sgo39X +hS0zysHUZm/QtIN6DjxM2u1ihVEOt6VrEo1SDRzWF2VMfJsS5bD8hYfe/4kG +DkDbHlb5RDnoa60UvhBi4LCnZLIEi16UAyg4/ssbOHiADOCLcmDh7JJPfqfv +sP3z3ysVgsDw+7QhIPuXnsN5pds/64Sg6uMR/BfFW0V/Z+vC+QG3QA7QdjAB +xfPhSAefE+y2s0W14PzN5j8OpWQh0gMsPABco/jw + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQvdb9YZXIthiHv/+BwF7ewbTTMeHpihiHA937mkwe +yzvotIvdPJce4+C65uhyhgpZhxUfL/kmBcQ4pKYBwTMZhxdqhhxrVBD880q3 +f9Y9iobz76iwNU5dHe2wRkiHL32fnMPxsn3zpfqjHcoPb3Od+VbBYcPc98uP +VUc7OE9oFkr7pQgxryTaYS1I/T0lhy0ngBqKoh10FeW/5GxTcVgjE5VizR4D +50ekWN/390XweZi028UqYxxYOLvkk8+pOMwBGu+9P8ZhziLlnX/UVR22y7W+ +DjwQ4zATDFQdHlSJrHM/GOPw6+3rA5aPEXwDrZXCF1zU4PwzIPBG02FPyWQJ +lrIYhyeJC6+Z+Os4ZIAFEHwPkAPuRcP5y2cfUdiwKdpBH2TeE20HGf27Kmyd +0Q7mNnuDpilqOwg0Hzi10DTa4Q/I/sWaDuUvgQEgEu0wYwJ/ldlqdTh/Sntr +1OUYFThf+dqjYIYYJQfxm+e+BytHOwhXTio5u0TBgT/CcssJO2h435NzKMiY ++LYmPdoBFL3/66Xh8bEz2Crif7ukAyg4739H8HWBzmuUjYHzTYyBwDnGQf2T +ystZnFIO64uABubEOMjvWrAvVU8aEp4dMQ4hby9/nPFQ2oEljE9309wYh1YF +dtUzW2QccoVAHoxx+LLv49Z0MVkH9PQGAOGnF2U= + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQzR9hueVEWozDr7evD1g+VnUI2CHX+towxsHIGAgu +qzps/fz3SoVkjMMW8x+HUk6pOqwvypj49ks0gu/+sErkGIJ/R4WtcerqaLj+ +F2qGHGtKoh0uXA17o/8bwa/5tCEgu0rdwWUbyIJoh9NngEBHw2FPyWQJlrZo +h0cR4tsvMmg6iN889z14drRDehoIaDkcL9s3X+p4tIP41CucGU7aDjJRKdb3 +vyP4MPfC+FOcu3OeG8c4bHdoenT8hpbDhLc19qZuMQ5T2lujLv/RdPge/Hjp +7JgYh2O7dvSyfdBw2H9qoeu25BgH34sTY/4xazighw8Al+6Phg== + "]}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, { + 0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, + 0}}, {{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQB2IQvfXz3ysVnXEOW8x/HErx0nbomZ4n1BwQ57BW9Unz +PF4dh/KXaoYcJnEOTxIXXjPx13FY8fGSb5IAgr/Addvnv19i4fzvwY+Xzr4T +63DisNPaTDkdB/9eoIGHYx1EerxesWzRdpgxEwgyYx2Og+TttBxC+XQ3zdWP +dUgICVJf4Knp4NKd8/w3Z6xDSuwdN+YfanC+78WJMf+cVeD894vWK5zdoeig +e1eFrVE11uHvfyCwl3eY8375Me/wWIdWBXbVM1tkHAJ2yLW+rox1iFCNkDl3 +R8qhxt40btfKWAf1TyovZ3FKOWyYC9TwGsG/UgH0MEMcnB8Ccp94nEPN/R+3 +jL2lIP6TiXOoAPG7pRwEmg+cWtgb5+A8oVkozUoBEn4dcQ5v2nK7jWZLOfxZ +CQywXXEOMSD790g5bDlRtm/+qTiHM2Ag5cAfYbnlxDUE/wswOl7eQ/BL982X +0n+L4J9Xuv2zjikebh7YP5zxEPk1Ug57SiZLsMgh+OxrZKJSjOPh7oHxRSon +lZxtkYH4hyUeHl7g8H0Y5/Bl38et6ddk4O7ZEWwV8d9dFs4XBulfooDqXhkj +h+e/gR6+GudgXxmxwtTWyEFGHxhBK+McksHxaehQkDHxbU17nMPnDQHZs64b +OhwHBoeUeZzDdaFPjueXIfj6WiuFL5gYOjxZOvuIQgGCfxeUoJoQfFj6BZvP +geBHiG+/yNBn4ICevgFnL2W1 + "], CompressedData[" +1:eJxTTMoPSmViYGAQAWIQvfXz3ysVnXEOZ0AgR8UBxle+9iiYIUbJoSBj4tua +9jgH5wnNQmlcSg7iLGF8ulVxDuGcYu3G/ooOT3+v/HgpNs4h4O3ljzMWyjtM +ce7Oea4d56D6SeXlrJWyDhl7SiZL/ImF87ecKNs3fxGCf17p9s+6pFgH9zVH +lzN0KML5UvPiNE8HqML5cxYp7/xzXMPhiMKGooyZsQ4yIPkLWg4LXLd9/vsF +wb+jwtY4VToOzrc1jdvl6RLnkJ4GAloOMlEp1vfT4xz+vH19wHKxpkMEkOtf +G+fw91vpgzmGmnD/w+yD8VNB2tsQfFh4AQBzf5tk + "]}], + + FilledCurve[{{{1, 4, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJTIGYC4nDLLSfK7BIcum08d6V9UnSA8UPeXv44o1He +QSOm/9BXmwSHGTNBQNZh/3wp/bsWCQ7yuxbsS+WTdpj7fvkx7+AEhzkg6Z+S +Do4JTy8opSc47Ay2ivjfLulw+CvQhDoE/++VipdqBxH82UcUNhR9SHB405bb +bfRbFs53ntAslCalBOfzxwbcNxJXdpjq3J3z/HWCQyfIvZeUHSa8rbE3fZTg +kJn/ofVkiYrDQtdtn/9eSXB4FCG+/aKDqgPIOsMjCQ4SU69wZixSdfhZl7Wn +ZHqCwxkQ0FFzADnvUG6CAwtnl3zyOjWH/yAQn+Dw91vpgzmB6nD+nEXKO/8c +14DzTxx2WpsZp+WQL9R84FRhgoM4yHwnbUj4TEDwP4M8vAlN/kyCQwuv//op +qlpwvsf+WlmL5Rpw/qviraK/X6s7nCjbN1/qNoIfyqe7aS6Q739xYsy/w5oO +2XtKJkvcSXBwB+lv13IAhs7vlXcTHH68fX3AslnbYSkoAA8lOOgqyn/JEdNx +UL4NDIENCQ5PEhdeM/HXcUi2vu/fOxvBZ20EhnACgg9WbwPl92vB+SbGQLBZ +Hc6HhSfYfe4JDimxd9yYJVQdYnd58jDFQ+VzVBxAyvfkANPTBP4qM24VhwOn +gDHWnuDwYdF6hbMdyg6/V3685LsqwSGcU6zdmF8Znl7KD29znblXyYFRu13s +5ilo/Ash+KUg+bsKcH7N/R+3jL3lHEDJJ2MjND0/lHaITAF5GMGPBiZvjQwE +nzkM6AFfaHqUloPzhSsnlZxdogDno+cXGB8Ac6iLsw== + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4skSLGF8pokO0yfwV5l1azrA+MYgkKwA5993 +jXecJSjjEP/0gtJt10QH9U8qL2dxSjksdN32+W8Ogp8sEGG5pQLBN+90THja +kujwpi232yhayoFfd9Pc9+2JDmfAQMrBgGONTNSCRIea+z9uGWvLOXzViOk/ +NDPR4e9/ILCXh9jfm+gQoxohcy5GzuGwwoaijNZEhwqQem45B4stJ8r2VSP4 +U527c56nI/iWIPn4RIfeiG5/xgB5OJ8/NuC+kbkinA/z//75Uvp3FyD4tlzX +FxcsTXQQn3qFM8NJG67+z7fSB3MEEXyP/bWyFu46cP6U9taoy3N0HaJTrO/7 +JyY6mNrsDZp2UM/hsm+SQERqosNt6ZpEo1QDBxW2xqnOQPXLX3jo/Z9o4AC0 +zZYrONFBX2ul8IUQAwftdrGb55wTHUDB8V/ewOHjJaABJokOLJxd8snv9B2W +H/M27wTGT82nDQHZv/QcTOJ2efKYQdXHI/gvireK/s7WhfMDboEcoO2QngYE +fIkOPifYbWeLasH5m81/HErJQqQHWHgAALdK6HQ= + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, { + 1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, 3}, {1, 3, + 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQBGIQnZ4GBH5JDg9c4x1nMSo4LC6w5bruneTwpi2322i2 +lIN5p2PC05wkhzNggMkvzpj4tqYYwTeJ2+XJU4bgT88Taj7QlOQQoxohc26P +lMPfKxUv1WYizIfxRSonlZxtkXGITLG+798K5S+RceBm0m4Xq0xyaFVgVz2z +RcbhRNm++VLlSQ7ua44uZ7CQhfOdJzQLpWkpwPkXroa90f+tCuf/B4H5Wg7M +YXy6mxKTHJ4kLrxm4q/jsHT2EYUNagj+/vlS+ncFEPxekAf+JDr4nGC3nf1V +2+H98mPe5i8THWo+bQjIttJ2APre3vQcVN5UC8430FopfEFFw+FnXdaektuJ +Dq+Kt4r+fq0OCZ9HiQ5zFinv/PNcw+E2SMGbRAdwPKRpOeQDg+vUx0S4e8H2 +cSLcP1mCJYzPEsEHu9cnySHwlnRNYpGmAyw+WTi75JP71Bw+XvJNEpBBhAcj +MDhvXkt0OLFrRy+bgarDjXPfgx/vTITE/0ZlOL/88DbXmW8V4PxUkLnPZCDu +u5jooP5J5eUsTimH0wtdt33+ieCDw5s5Cc632AIU4U5ymDETCCylHOaCPMSf +5FBx/8ct424pB/T0BwDk/jM2 + "], {{146.45000000000002`, + 8.670309999999999}, {145.989, 8.018749999999999}, { + 144.98799999999997`, 7.4156299999999975`}, {144.36699999999996`, + 7.4156299999999975`}, {143.73099999999997`, + 7.4156299999999975`}, {143.17499999999998`, + 8.003129999999999}, {143.17499999999998`, 8.687499999999998}, { + 143.17499999999998`, 9.274999999999999}, {143.494, + 9.831249999999999}, {143.97, 10.132799999999998`}, { + 144.36699999999996`, 10.3719}, {145.242, 10.593800000000002`}, { + 146.45000000000002`, 10.768799999999999`}, {146.45000000000002`, + 8.670309999999999}}}], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, + 0}, {0, 1, 0}, {1, 3, 3}, {0, 1, 0}, {1, 3, 3}, {1, 3, 3}, {0, + 1, 0}, {0, 1, 0}, {0, 1, 0}, {0, 1, 0}}}, CompressedData[" +1:eJxTTMoPSmVmYGBgBGJlIGYC4uPe5p2ON5Icpk/grzLr1nSA8Y1BIFkBzr/v +Gu84S1DGYbIESxjfyyQH9U8qL2dxSjlcqXipZiiQDOdPde7OeS6N4GfvKZks +oZHs8KYtt9soWsrBMeHpBSXtZIczYCDlkGJ937/XOdmh5v6PW8bacg4aMf2H +vtokO/z9DwT28hD7DZIdYlQjZM7FyDl8D368dDbQvAqQem45h+znv1d+lEPw +T5Ttmy/FjeDngOSZkh16I7r9GQPk4Xz+2ID7RuaKcD7M/x8v+SYJuCD4BbZc +1xd7JDuIT73CmeGkDVf/51vpgzmCCL7H/lpZC3cdOH9Ke2vU5Tm6Dr3T84Sa +WZIdTG32Bk07qOfA2ggMIY5kh9vSNYlGqQYO4ZZbTpQB1S9/4aH3f6KBA/f1 +xQW235Ic9LVWCl8IMXCI3eXJw/Q8yQEUHP/lDRxU2IAGXE9yYOHskk9+p+9w ++2dd1h5g/NR82hCQ/UvPIX3i2xr7m1D18Qj+i+Ktor+zdeH8gFsgB2g7zASB +jUkOPifYbWeLasH5m81/HErJQqQHWHgAAMLo+uc= + "]], + + FilledCurve[{{{0, 2, 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, + 0}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, + 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {0, 1, 0}}, {{1, 4, + 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, 3}, {1, 3, + 3}}}, {CompressedData[" +1:eJxTTMoPSmViYGDQAGIQfWNxgS2XdorD3/9AYC/vMOeIwoYilRSHA937mkwe +yztMde7Oec6c4uC65uhyhgpZhysVL9UMfyQ7pKYBwTMZh5LJEixhjxD8jIlv +a+wPIvj5Qs0HTi1NdlgjpMOXvk/OIcX6vn/v9GSH8sPbXGe+VXC4ce578OPe +ZAfnCc1Cab8UIeZ1JTusBam/p+QQDdLQmeygqyj/JWebikMon+6muZcRfJ1N +c98v/4bgszUCXcyT4sDC2SWffE7FAWT8Uv0UhzmLlHf+UVd1iOk/9FXDIMVh +JhioOgB9f30xkP/r7esDlo8RfAOtlcIXXNTg/DMg8EbTIW6XJw8Td4rDk8SF +10z8dRxMQAKXkuF8FZAD9iP4V3yTBCJWJjvog8x7ou3QOz1PqHlKsoO5zd6g +aYraDh2OCU8vZCU7/AHZv1jTYQ8oAKKSHWZM4K8yW60O509pb426HKMC5ytf +exTMEKPk0JPz/PfKxGQH4cpJJWeXKDhwrJGJSsmHhvc9OQeLLSfK9jUnO4Ci +93+9NDw+dgZbRfxvl3TgBwbn+9MI/gyg8w7cQ/DBwfQx2UH9k8rLWZxSDhGW +QAPZUhzkdy3Yl6onDQlPkRSHkLeXP854KO3AqN0udlMuxaFVgV31zBYZB4tO +oAcVUhy+7Pu4NV1M1gE9vQEAELAaHw== + "], CompressedData[" +1:eJxTTMoPSmViYGAQBmIQzbFGJiqFOcXh19vXBywfqzpoxPQf+voi2cHIGAgu +qzrc+VmXtedOssMW8x+HUk6pOkRYbjlRdgrBv7G4wJZrM4KfL9R84NRShP6S +yRIsYV3JDheuhr3R/43g13zaEJBdpe6gfBtoQU+yw+kzQKCj4RC/y5OHaXKy +w6MI8e0XGTQdenKe/145N9khPQ0EtBxSrO/79wLtE596hTPDSduBX3fT3Pen +EXyYe2H80wtdt31+meyw3aHp0fEbWg4nyvbNl/qc7DClvTXq8h9Nhz8rP17y +/ZfscGzXjl62DxoOCU8vKN1mTHHwvTgx5h+zhgN6+AAANaCQaA== + "]}]}, + Thickness[0.0061330880098129405`]]}, { + ImageSize -> {163.05480448318804`, 22.58844333748443}, + BaselinePosition -> Scaled[0.29815266074630126`], + ImageSize -> {164., 23.}, PlotRange -> {{0., 163.05}, {0., 22.59}}, + AspectRatio -> Automatic}]}, + LegendMarkers -> {{False, Automatic}, {False, Automatic}, { + False, Automatic}}, Joined -> {True, True, True}, + LabelStyle -> {FontFamily -> "Times"}, LegendLayout -> "Column"]], { + Left, Bottom}, Identity]]& ], + AutoDelete->True, + Editable->True, + SelectWithContents->False, + Selectable->True]], "Output", + CellChangeTimes->{{3.8194433229611483`*^9, 3.8194433376204233`*^9}, { + 3.819448952806275*^9, 3.819449065328403*^9}, 3.819449479885154*^9, { + 3.8194495790538*^9, 3.819449612025311*^9}, {3.819449650363661*^9, + 3.819449666201268*^9}, 3.819449701649157*^9, {3.819449737681958*^9, + 3.8194497593939047`*^9}, 3.819449831598805*^9, {3.819449868587122*^9, + 3.81945004208081*^9}, {3.819450087283841*^9, 3.8194501011219177`*^9}, { + 3.819450161688531*^9, 3.819450200201569*^9}}, + CellLabel-> + "Out[253]=",ExpressionUUID->"a8394bf7-c1fe-421f-ab00-3065601f65da"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Singlet P state", "Subsection", + CellChangeTimes->{{3.742903401180684*^9, + 3.742903411063073*^9}},ExpressionUUID->"d406c2ba-4ab0-44d0-9b6f-\ +c0c1db6c1acf"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[CapitalPhi]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "=", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "\t", + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"]}], "=", + RowBox[{ + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Gamma]", "]"}], "]"}], "\t", + SubscriptBox["c", "\[ScriptL]"]}]}], "=", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], "2"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Gamma]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + RowBox[{"Sin", "[", "\[Gamma]", "]"}], + RowBox[{"\[DifferentialD]", "\[Gamma]"}]}]}]}]}]}]}]], "Input", + CellChangeTimes->{{3.742897993868801*^9, 3.7428981067548847`*^9}, { + 3.742898182660631*^9, + 3.742898271183833*^9}},ExpressionUUID->"5964132e-935a-46a6-b153-\ +12b5727d94a0"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{ + RowBox[{"2", + RowBox[{"\[Integral]", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "=", + RowBox[{"2", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], + FractionBox[ + RowBox[{"4", "\[Pi]"}], + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}]], + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"m", "=", + RowBox[{"-", "\[ScriptL]"}]}], "\[ScriptL]"], + RowBox[{ + RowBox[{ + SubsuperscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}], "*"], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}]}]}]}]}]}]}]], "Input",\ + + CellChangeTimes->{{3.742898286664424*^9, + 3.7428983914044456`*^9}},ExpressionUUID->"9e3ef216-9ad2-4adb-b9e7-\ +96392657d2b3"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}], "=", + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}]}], ")"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t\t\t\t\t ", + RowBox[{"=", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "0"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "0"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "1"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "2"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + SubscriptBox["\[Delta]", + RowBox[{"\[ScriptL]", ",", "0"}]], + SubscriptBox["\[Delta]", + RowBox[{"m", ",", "0"}]]}]}]}]}]}], "Input", + CellChangeTimes->{3.742903519772635*^9}, + EmphasizeSyntaxErrors->True, + CellLabel->"In[59]:=",ExpressionUUID->"fd5e482a-7176-4bda-b608-c9d284776293"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Simplify", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "+", + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ")"}], "2"], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{"Simplify", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + RowBox[{"-", + FractionBox[ + SqrtBox["5"], "2"]}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}]}], + "]"}]}], "Input", + CellChangeTimes->{{3.742880368692409*^9, 3.7428804029481373`*^9}, { + 3.742880525109131*^9, 3.7428805458700542`*^9}, {3.742898467130229*^9, + 3.7428985242579517`*^9}, {3.7428992114127827`*^9, 3.742899287783554*^9}, { + 3.7429000811947393`*^9, 3.742900096336309*^9}, {3.7429001529365797`*^9, + 3.742900153845666*^9}, {3.7429004278822927`*^9, 3.742900428277691*^9}, { + 3.742903418965905*^9, 3.7429034224918003`*^9}, {3.742903559452738*^9, + 3.7429035641164207`*^9}}, + CellLabel-> + "In[112]:=",ExpressionUUID->"d44672a8-904c-49d5-a749-404599638355"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742880543408547*^9, 3.742880546332151*^9}, { + 3.7428984748725023`*^9, 3.742898524985319*^9}, 3.742899228848856*^9, { + 3.7428992728911753`*^9, 3.742899296001245*^9}, {3.742900084424329*^9, + 3.74290010643225*^9}, 3.7429001543651667`*^9, 3.7429004286643667`*^9, + 3.742903423093584*^9, {3.742903537210059*^9, 3.742903564703141*^9}, + 3.819444693584455*^9, 3.8194462226703672`*^9}, + CellLabel-> + "Out[112]=",ExpressionUUID->"1252dce1-bd9d-4c0b-a27a-4a9ea1fd0d90"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742880543408547*^9, 3.742880546332151*^9}, { + 3.7428984748725023`*^9, 3.742898524985319*^9}, 3.742899228848856*^9, { + 3.7428992728911753`*^9, 3.742899296001245*^9}, {3.742900084424329*^9, + 3.74290010643225*^9}, 3.7429001543651667`*^9, 3.7429004286643667`*^9, + 3.742903423093584*^9, {3.742903537210059*^9, 3.742903564703141*^9}, + 3.819444693584455*^9, 3.8194462227279787`*^9}, + CellLabel-> + "Out[113]=",ExpressionUUID->"77f79985-ba0c-4e4f-bf6b-e218325f8b1c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + SqrtBox["5"], "2"]}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}], ")"}]}], + "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + SqrtBox["5"], "2"]}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}], ")"}]}], + "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], "==", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}]}], "//", + "FullSimplify"}]], "Input", + CellChangeTimes->{{3.819446229984541*^9, 3.8194462800814953`*^9}}, + CellLabel-> + "In[116]:=",ExpressionUUID->"5f1d575c-4c3c-4bde-8f8f-240d45244a88"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.819446240084282*^9, 3.8194462809734297`*^9}}, + CellLabel-> + "Out[116]=",ExpressionUUID->"61d6448d-7998-43fb-b38e-205c44de9446"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + SqrtBox["5"], "2"]}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}], ")"}]}], + "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + SqrtBox["5"], "2"]}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}], ")"}]}], + "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], "==", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}]}], "//", + "FullSimplify"}]], "Input",ExpressionUUID->"d0f32758-1361-44ee-bb02-\ +8950288c60b3"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], "==", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}]}]}], "//", + "FullSimplify"}]], "Input", + CellChangeTimes->{{3.742903615997718*^9, 3.742903634439269*^9}, { + 3.819446306819173*^9, 3.819446321359915*^9}}, + CellLabel-> + "In[117]:=",ExpressionUUID->"318015e8-2886-4487-be95-e7f69ff7a94c"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{3.819446322096216*^9}, + CellLabel-> + "Out[117]=",ExpressionUUID->"3c0943dd-d696-48fb-95bf-e076fa93c9b0"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "0"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], "9"], + SubscriptBox["c", "1"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"]}], + RowBox[{"15", " ", + SqrtBox["5"]}]], + SubscriptBox["c", "2"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + "2"]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t ", + RowBox[{"=", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}]}], + ")"}]}]}]}]}], "Input", + CellChangeTimes->{3.742903435971887*^9, + 3.74290368331061*^9},ExpressionUUID->"b4079bea-4a03-45f8-9706-9190d1a1a2fd"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], " ", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[Phi]", "1"]}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[Theta]", "1"]}]}]}]}], "\[Equal]", "2"}], ",", + SubscriptBox["c", "0"]}], "]"}], "//", "Expand"}]], "Input", + CellChangeTimes->{{3.819446339018919*^9, 3.819446363714183*^9}, { + 3.819446590201914*^9, 3.819446591088716*^9}, {3.819447309899662*^9, + 3.819447319139097*^9}}, + CellLabel-> + "In[166]:=",ExpressionUUID->"523e901d-07d6-4226-ab0a-a0f8b4022ef8"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{3.819446364233666*^9, 3.8194465914559927`*^9, + 3.819447319610235*^9, 3.8194476543197317`*^9, 3.819448144409718*^9}, + CellLabel-> + "Out[166]=",ExpressionUUID->"cdd496d7-6f57-4d4b-9410-784a9d2ec602"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], ",", + RowBox[{ + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}]}], "}"}], "/.", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}]}]], "Input", + CellChangeTimes->{{3.819447325708128*^9, 3.819447336599598*^9}}, + CellLabel-> + "In[156]:=",ExpressionUUID->"a2621bef-7c52-4cc5-b04b-4a41d784cd3d"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"], "-", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ",", + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}]}], "}"}]], "Output", + CellChangeTimes->{3.8194473369186583`*^9, 3.819447655705583*^9}, + CellLabel-> + "Out[156]=",ExpressionUUID->"47b658d6-e43b-40a5-bd62-147a938a1d86"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "/.", + RowBox[{ + SubscriptBox["c", "2"], "\[Rule]", + RowBox[{ + RowBox[{"-", "10"}], "+", + RowBox[{"5", " ", + SubscriptBox["c", "0"]}]}]}]}], "//", "Simplify"}]], "Input", + CellChangeTimes->{{3.8194468444392157`*^9, 3.819446857015703*^9}}, + CellLabel-> + "In[138]:=",ExpressionUUID->"ab059271-ba95-494b-97be-904cc891c23e"], + +Cell[BoxData[ + RowBox[{ + FractionBox["2", "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "3"}], "+", + RowBox[{"3", " ", + SubscriptBox["c", "0"]}], "+", + SubscriptBox["c", "1"]}], ")"}]}]], "Output", + CellChangeTimes->{{3.819446845534431*^9, 3.819446857285016*^9}}, + CellLabel-> + "Out[138]=",ExpressionUUID->"8f57ea33-6026-4373-bdf2-c97365a6aff0"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "0"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.819447580369944*^9, 3.819447646849441*^9}}, + CellLabel-> + "In[154]:=",ExpressionUUID->"1423d03d-0009-4a98-923c-6616c220bc62"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwt2Hk4VF/8B3BLZSiVrQgt2iSRFhJ6D99KUbZKiwilJGUrVKJFKkpIkiyV +EKEklCREIWlBoVRkj7nWmXtnRn7n93t+f32e1/PMPOeecz/nfc7MPGcPGxcx +ERERcVERkf+rr6Vq/6z2Wify/3VhT7HB7BuWOK9c0aNKKv+J9oGmqH2Y+9NK +pZHUDnlXOj/KA1cLxxpzSG3eGFyWEhWEm/bj6yNJbdgXtTgh6jpaEwZ1zEm1 +cVdqjo1KwsSdsySsI5MQObQ3NybqMaJgFut37TEMKsykTHxKwM27VZZ5qASe +pyyccj0rwbvedKvErBJHn7uEi83/hKGyT4OlnI+o794smeZcj8HQBSPNUvUI +1eaK5O9uxO+FukYu5d/gtbTyZknKD7yOeexlnvsd/P1HsluO/YZli822Cs9f +cH5laxVxsA33n508YHCoFfsH60tKLrcjYLq5567Ff3B1eYFHakgnmoZvnZma +3w6xkgK94FPd6Gg+oSeypBMyGua1v2J7wdGcwrua3IVNSSbJA1F9GJs21/JP +XzdmUjUbgwo4GOCwj+zS7UXcu0JR8cMDEHseuOfS3r8wVDUen3tgEN9+3Fv5 +YFsflv6e3n7m+BBG0vUT69n9sOiaW+brP4T07dfkp6zvhydn+V2PgCG02s19 +ZWzaj2dCq71OwUNYM2Xtg7St/TBUiqxfHz0EeuKLcvs9/dhiI1Mx+dkQFpxd +Ot/Hpx/u5TKpt4eHcLtvYIz9oB9ZD2Vd87yHYVhWXOUgwkFww2tjcb9hMK1y +ZnvFOdgrdlTZ+vQwLp1wTdw5iQOpve9q+y4MI0dzZZnpFA4OTgtYveDmMG7O +shiQVuRgrm+H2I2CYXToKRboaHMQ/d/zBE/hMB4o6J9usOMg4Kd93dKQERiI +FZWfz+ZgxNQowSV0BPKJLKvuJxy456gcSgofQUjS5gLzXA7sgr/zZW+N4Kzz +P8UpzzlYq7FbjZ82AkonaoFPKQfMie1elVUjONnarNdcx4GvtPk0F+lRCJOu +rZjM44Djq9GUKDMKU4vMvqUMed7fksmNCqM4zDw7YybgwDa3UnfL7FFkSvXP +PzfOwerdGx1Wao9idm9LQL0EhZEHxlmi1qMo7PJgyylS8DJcY54YPQr19Gy5 +AV0KIseig67HjmLRw5LIR2sohCcN5J6NH8X25/EaLmspZIilq+x/MIqtHNPM +L0YU2iqVOIufjcLa+kJfzHoK23cIInLqRpFRmLu53JqC7rHir+WyXOT56L3N +caNQnjRrcv4MLj5c+HpkuTsFm8++SJvFxf6x2UuyjlI4tkr74RU1Lny+Wvbe +9aSQxk86abGCi7R1OcFevhQUL51TabTmIlq/YWLBOQr8pPXOfyO4ODD2/v6X +GArreEZROje5WLV0VFo7lsI5C70yv9tcSGpSelduU2CNLVGbcJ8LW5Hhd7rx +FBT2TGtTyeWi8XBEg+89Csvlm50sGriI0bOPCn1EwedIXWR0Exf9brt/lWVS +yC+rKW1u4YIVkt1DZ1Ew8no971AnF39VJus6PKFgVvugNYjHhYa/5iPpPAou +lz2ccpR4+F53dWT8FYWHv1wjeao8JHTLSsu/ptCn61xqpMbDm/XJrQtLKHh3 +bJ9XrcFD0ZfoYpMyCmdN1ra2GfAgbXV/g9NbCnHCCU7yDjz8kFzsr1NL4ZNn +nKPffR72a+0eVf1BQSNiuuB4KrHm6vHvxBceh9z0zuBhWWKKdGwLeR8c7+qj +T3nYpaOwRuoXhYQj5qsOlPGQaU6Vfm2l4HZQKGHdxoNmPJ00vYu8r4ve9y06 +eehT6OjPJlZN6Tbc0stDQ/ILmHeT8f/Ue5kO8TBVd4RzpoeCnlPWdyMxGl25 +qafe/6UwYa/DYw01GmF1CyAxQMHhdP1m9UU0eLWb3l0kLogza1+oQcNwVqWN +2CAZv0lXad4KGo5lL3xGiT/bTrsw04SGx8rYH2+Gyfx8L6oqbKQRm1EeuGKE +QvBNQYGsGY0LfTILkojX1Hf1SdvQ8Osa9vMepZBoXWI7wZlG2sa560V5FGhP +3UHRgzSU38T/20dsE5EZNn6YhpaHRFER8cSPsSV8LxqmzhHwpCm4b/HSGDxH +4z/uV9fXDIW3R7rKORdpyG/XWDuVT2FOmP2+vis05ukYT7Uj/lK1Oborkkac +W2oxh1jfVO1fyz0yfv0n/BNQWJVcffldCo0zNR6UgZCC1ri3XE46jcX5gXl+ +xGoFb9SDc2g8Wv4zuIdYRc4992gejYjhxeFzxijM8JBft/MFDbsp9VnbiCcv +dtmmUUqjqGPj8nziSRekf8pV0Agtk7jRTizyK891rJLGs2Vzpsj8I/s/ZlLg +p080opaYGh8g5gxlswrraRSU2IyFEndb7LyR3EhDYTjj42PilkkPH/r+puHu +v6ZgmLjR2WqlYzuNaUWHa2THyXyL6Vebu2msC/jF0yaumXVv08o+Guf5t/TN +id/6bq5TGSDzuRkZeYC45Mug/aQRGp+rqsdPExdqxXVTPBrblpsERxI/CzXx +aRLQ+B7EnZ1C/Lizd6xsnMauq50f84kzTG5czhRnIGYqc+st8YNEA7kYCQZ7 +i08crydO5P9JCJrMYNlsOdffxLG2V9UPT2MQ+rjbq5c46umqXBs5BtWNo5FD +xFenthgZzmRwQ3VtJU0c4naxcqEyg4+z8+THiM+9XbZt2hwGuXEH/caJA9S+ +ttBqDArdLQb+176Bga5tixhkXnMP+kfs2bxo+L0Ggxi50gUCYjfdj2fytBjU +6mz5PUp8IMqPlbSCwfCaqU85xA6cOTcu6zKgYiTiOoh3mVWqeq9lMPh1TWwz +8bZUz4d26xh437uf+YHYQkxp5QYTBiuLNnwrJt7kUPpKayMDSM1XzCY2KTy8 +SdGMQU+YgccdYsMZsnWiFgyqHCJ+hBDrehfa/7VmUPFKzdGTeHmtc3f9DgaT +REeYncQLQ3LH0uwZeCze7TmPeG6b3eVIJwY7tg5sESeetW6C3GkXBv9+1OAP +6Yep3O3qFkcZaIg6uCYQs2zGnup5MUgvm5HoRyyWnWI07wSDdlPVXktingvX +ZiSArLe+agWf9OdQaWJLy1kGRq+Ut38g7lM1dX0XzGDqSm8mgfh3w60zcVcZ +3HFZcUmfuGqD/kN2PAPa0fbxbrI//N8FagXdZXDd0zN3JrH65vJnrx6Q9eQ6 ++dWR/RayxbJ0bRYD7Yqf69YTr9/m0ryqmMHLzx9rpMj+HKnPcPQpY9DZsepT +PtnfybYDnTlvGchvjr/hSCy25/Sw1kcGBW6he7JIHpQ4Rk5Z8puBsfBWz1KS +F55tX6MOtTPgbi3rr+CSPDigopTazaCme/5Te+LAQ2kL5w8yeOufcTqE5JHh +sVfrVMX4UNgZL/uK5FnB6R5PmQV8XEyw2VlMUTg4psWzVOdjkVGh8yriGUHH +z4Rr8tF7ulXrIYfC8fPjVyavJp8/ESN5pZ/CiisKyRM38jF25XmVNsnb7Bjj +BuYQH6yL2wJlOkl/KV6yW+POh+B4Vtz+DgrScTWtvp58LKn3889tJ/mWsJMz +7M9H9Z3r/lv+kHx9cFSCc4WP9k3Lr+7/TSEl57Z+2yM+np5sm7KomfSzwE6j +8TEfVccb7JybSP9smK1cm0u+/1G9IL6RQlHjfeGLl3xI6M67MfkbhbrxR68j +3/Px1zW39XMdBVGL4g3Gf/moFMa0i3ygYN/bZn1XQ4AlIkdbu8n5qLYqxSRG +S4CDn1d+7SwieXTm0MqrKwQY+6zU1PaSzF+mT95/rQBP9C9INrygELZm9Jul +mQBn10bOuE/O2xchEg7jhwUQvNUY+EnOa4X5mm4O6QKYhimptJPzPyIqzDY9 +SwBtY3WpK+R+ICX212QkRwAv3/GcpbdIXramK4cWCuA4213bLZr0Y+LiD3nv +BXhexWp/H07Ow1nzl0tzBGDN1TRXu0CeR3YW9+UKIVTVbnxSJvcb6tzJtkl6 +QkjR0Uv9Xcl6DTbWWhsIYSje8N+XgxQcP91K6/pPiPa9VzKD9lPYEq6wW26H +EEdz5ji/3kthvpRMkZufEPFTPE9+sSD5Kso6r1QkhF51uOEmHZLXWbcdrEqE +YF6mBrhoU5Dcs9TgUrkQOhVtUWeXUWA/tRgZqRHCqmGryZMlpB+cbx781CLE +btu0J6PzyHq9UTO/NC7EasV7PYqyZD9cNJIfNRnDrBU73pYOcJDH8kn9VDWG +a/vYJ1LSOOgMONdf/GEMXySj1fencKA4eH1V1ucx+HYcEJuTTO6/TZllV5rG +0LZXSiMykYP1GZ0/TXrGIFKCrftucvDFfM/MPNY/1MRcE0s+T343hBtfvm36 +D89bbNWryP1ZU2G6m3PFP6ygygtjWRxQ4Vz5lV/HsbZiWYW9QT/mX7qk7eEm +wq7Vtjr42b4PbXu+N5t0ibAnjucr7z/8F5s66pi8Y6Lsw5Sv8TOTXvh7u7jO +6Bdl1+SdOa6v0AOL/DtmM3zF2CMiosn1T7vAEboFiHPF2BdMjxjus+zEvW/n +nh3zEWfv2GjZs66lHXxXI8eTAnG2zr65bZqr/0B1LNLO69QEdvAduvvdzVZ0 +moZVsyZMZHdYduZbnv2FN4tqMDtsInuC7qkPpWXf4cZKnTBPchK7xf1PQOSS +RhTcXWD0JnISW1G5o9pJvR61BoYVNjIS7JQi+9jjtp9Au93Z5hguwd5TP6eH +N60KlVZJO6RnsNgROT4qD5+WwFnfMC0tmsX+zOvi/0zNweH+D6M/Ylhs1TDf +sH2OOfC8t2+97G0WO0NmZtVPpRwESV5oDUhgse8XSzk1XX2C+KYqZZtUFvs3 +bbsqqCMbX0/ujBAWsNgHq7Wq0wMyYFbofdL6O4ttOGuZSGT6PVgfm1AZ0sJi +71w3om+jcg+71GJmFP1isWOfChfKXr+LQ6Evche1s9iNKkVBKj2JCN4jwhH0 +sdiurwKtBgPjUMy/5pz6j8Wu2Gh1FBmRqMiek/NdRJIdH2bNvn89AjXOOePT +xSXZzNnYuxK94fheXR9/WkKS3ca+yw8JCgUdp/zNaroku6Bb6sOxjHMYt8ha +GCIryU7skR/c3BuISeI4/lJekq3/Q7Y/N+gU5I84yyxSkmQ3bIvXPJ/hBeU5 +I/vslMl47q1raoPcoFZ3MTtCVZItavJILibDCRqXZo5VzJFkTxUWL32RYQ0d +g3RzwTxJtrbOtf/7f+B/AAObe4U= + "]]}, + Annotation[#, "Charting`Private`Tag$6490849#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange-> + NCache[{{0, Pi}, {0., 0.9999999707682925}}, {{0, 3.141592653589793}, {0., + 0.9999999707682925}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.819447591278878*^9, 3.819447647286221*^9}}, + CellLabel-> + "Out[154]=",ExpressionUUID->"a9257c0c-b5e1-4c1f-b935-f11312fc5f0c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Solve", "[", + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox["2", "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"3", " ", + SubscriptBox["c", "0"]}], "+", + SubscriptBox["c", "1"]}], ")"}]}], "\[Equal]", "2"}], ",", + SubscriptBox["c", "0"]}], "]"}], "//", "Expand"}]], "Input", + CellChangeTimes->{{3.8194463704912663`*^9, 3.819446378817926*^9}, { + 3.819446594262562*^9, 3.81944659977628*^9}}, + CellLabel-> + "In[132]:=",ExpressionUUID->"7d937c46-315c-4127-85c4-712b14bc01aa"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"{", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}], "}"}], "}"}]], "Output", + CellChangeTimes->{ + 3.819446373556425*^9, 3.819446457246375*^9, {3.819446596071899*^9, + 3.819446600165804*^9}}, + CellLabel-> + "Out[132]=",ExpressionUUID->"cd9d35dd-d570-4a5a-8d26-67dfbe5a07bb"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["2", "3"], + SubscriptBox["c", "1"]}], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "/.", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}]}]], "Input", + CellChangeTimes->{{3.819446938558178*^9, 3.8194469387544727`*^9}}, + CellLabel-> + "In[139]:=",ExpressionUUID->"a2ac8ff2-1cae-41e1-a20b-4fbb997dec08"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], "/.", + RowBox[{ + SubscriptBox["c", "0"], "\[Rule]", + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"]}]}]}]], "Input", + CellChangeTimes->{{3.819446972587152*^9, 3.819446972587624*^9}}, + CellLabel-> + "In[140]:=",ExpressionUUID->"2f20c949-180a-497c-b460-fc41151522d8"], + +Cell[BoxData[ + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}]], "Output", + CellChangeTimes->{3.8194469736722193`*^9}, + CellLabel-> + "Out[140]=",ExpressionUUID->"0b25d327-e92b-4494-a4e0-91dc831b2739"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}]], "Input",ExpressionUUID->"939751eb-557e-4570-\ +ac5e-0177a1ac50cf"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "1"]}]}]}], "=", + RowBox[{ + RowBox[{"2", "\t", "\[Implies]", "\t", + SubscriptBox["c", "0"]}], "=", + RowBox[{ + RowBox[{ + RowBox[{"1", "-", + FractionBox[ + SubscriptBox["c", "1"], "3"]}], "\t", "\[Implies]", "\t", + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}]}], "=", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", "2"]}], "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "+", + FractionBox[ + SubscriptBox["c", "1"], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}]}], + ")"}]}]}]}]}]], "Input", + CellChangeTimes->{{3.74290046592192*^9, 3.742900508615451*^9}, { + 3.7429008186008587`*^9, 3.742900822411848*^9}, {3.742901066474793*^9, + 3.7429010697015457`*^9}, {3.7429037586511917`*^9, 3.742903804969626*^9}, + 3.819446463588112*^9, 3.819446602336863*^9, {3.819446946046637*^9, + 3.8194469837946663`*^9}},ExpressionUUID->"7f39c9ab-32fa-41ee-a84c-\ +0db48d3fd4ca"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"2", "-", + SubscriptBox["c", "0"], "+", + RowBox[{ + FractionBox["1", "5"], + SubscriptBox["c", "2"]}]}], "=", + RowBox[{"0", "\t", "\[Implies]", "\t", + RowBox[{ + SubscriptBox["c", "2"], "\[Equal]", + RowBox[{ + RowBox[{"5", + SubscriptBox["c", "0"]}], "-", "10"}]}]}]}]], "Input", + CellChangeTimes->{{3.74290109712473*^9, + 3.742901159497686*^9}},ExpressionUUID->"59da42ed-948c-40cc-9a75-\ +afe1a8b88822"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n_"], "[", "u_", "]"}], "=", + SuperscriptBox["u", + RowBox[{"n", "-", "1"}]]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "10"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"H", "[", "R_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "R"}]], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "u", "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox["u", "2"], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", "1"}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[DoublePrime]"], "[", "u", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"5", "u"}], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", + FractionBox["1", "u"]}], ")"}], " ", + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[Prime]"], "[", "u", "]"}]}], + "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["1", "u"], "+", + FractionBox["1", + SuperscriptBox["R", "2"]]}], ")"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "u", "]"}]}]}], ")"}], "u", + RowBox[{"\[DifferentialD]", "u"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"S", "[", "R_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "R"}]], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "u", "]"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "u", "]"}], "u", + RowBox[{"\[DifferentialD]", "u"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "M"}], "}"}]}], "]"}]}], ";"}]}], + "\[IndentingNewLine]", "]"}], ";"}]}], "Input", + CellChangeTimes->{{3.742918604620111*^9, 3.7429186131351423`*^9}, + 3.742918719955948*^9, {3.74291885295679*^9, 3.742918854648775*^9}, + 3.742922362967875*^9, 3.742980439148241*^9, 3.742980540306929*^9, { + 3.742994989188118*^9, 3.742995016518692*^9}, {3.742995150772037*^9, + 3.7429951513978567`*^9}, 3.7429952985264072`*^9, {3.74299538074587*^9, + 3.7429953808123302`*^9}, {3.742996132486848*^9, 3.7429961349036427`*^9}, + 3.7429963078815823`*^9, {3.742996660743409*^9, 3.742996660843338*^9}, { + 3.742996945034573*^9, 3.742996945161457*^9}, 3.7430081967857656`*^9, + 3.743009059579871*^9, 3.743009234820531*^9, 3.743009382026333*^9, { + 3.7430094920285807`*^9, 3.74300951455619*^9}, 3.74300961041049*^9, + 3.743009666438663*^9, {3.7430098539824047`*^9, 3.743009854170718*^9}, + 3.743009922023739*^9, 3.743011705512869*^9, 3.743221089107052*^9, { + 3.819390722822253*^9, 3.819390722929696*^9}, {3.8194447299518957`*^9, + 3.8194447300307302`*^9}, {3.8194454195469217`*^9, 3.81944544596133*^9}, + 3.8194458115917053`*^9, 3.819445858103506*^9, 3.819445888951119*^9, + 3.8194490992227716`*^9, {3.8194608763035583`*^9, 3.81946087644112*^9}, { + 3.819460920551358*^9, 3.819460920613429*^9}}, + CellLabel->"In[34]:=",ExpressionUUID->"fb90afa3-6319-4401-96d5-c434cb0ab8fe"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "10"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{"tab", "=", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "c"}], "}"}], "=", + RowBox[{"SortEigensystem", "[", + RowBox[{"Eigensystem", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"H", "[", "R", "]"}], ",", "200"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"S", "[", "R", "]"}], ",", "200"}], "]"}]}], "}"}], + "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"f", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n"], "[", + RowBox[{"2", " ", "R", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", + FractionBox["1", "2"]}], ")"}], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], + ".", "f"}], ")"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "50"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"(*", + RowBox[{ + RowBox[{"Print", "[", + RowBox[{"\"\\"", ",", + RowBox[{"N", "[", "R", "]"}]}], "]"}], ";", "\[IndentingNewLine]", + + RowBox[{"Print", "[", + RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";"}], "*)"}], + "\[IndentingNewLine]", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", "R", "]"}], ",", + RowBox[{"Chop", "[", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "+", + RowBox[{ + FractionBox["2", "3"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", + "\[RightDoubleBracket]"}]}], "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}]}]}], "]"}]}], "}"}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{ + RowBox[{"-", "1"}], "/", "10"}], ",", + RowBox[{"1", "/", "10"}], ",", + RowBox[{"1", "/", "100"}]}], "}"}]}], "]"}]}]}], + "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{"tab", ",", + RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]}], "Input", + CellChangeTimes->{ + 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, + 3.725887922914515*^9}, {3.725887992098515*^9, 3.725888054354484*^9}, { + 3.725888190363358*^9, 3.725888220466589*^9}, {3.725888405954722*^9, + 3.7258884143609447`*^9}, {3.725888474666101*^9, 3.725888479977105*^9}, { + 3.725888867994993*^9, 3.725888870697344*^9}, {3.7258889297858877`*^9, + 3.725888934808717*^9}, {3.725888967938243*^9, 3.725889013634396*^9}, { + 3.725889098059265*^9, 3.725889127921206*^9}, {3.725948058954719*^9, + 3.7259480590574303`*^9}, 3.72594816605788*^9, {3.7259484228037577`*^9, + 3.7259484452333307`*^9}, {3.7428020644337606`*^9, + 3.7428020663834143`*^9}, {3.74280212730392*^9, 3.74280222326132*^9}, + 3.742813402384555*^9, {3.7428134755684967`*^9, 3.742813490200959*^9}, + 3.742814183560895*^9, {3.742819919975389*^9, 3.742819921001403*^9}, { + 3.7428199815500298`*^9, 3.742819983199623*^9}, {3.742877775652999*^9, + 3.7428779074014883`*^9}, {3.7428779855771227`*^9, 3.742878008161315*^9}, { + 3.7428782383972187`*^9, 3.742878269832116*^9}, {3.742878722461308*^9, + 3.7428787571128817`*^9}, {3.742878822183488*^9, 3.742878822578849*^9}, { + 3.7428788828839493`*^9, 3.7428788901191797`*^9}, {3.74287901611771*^9, + 3.742879142617798*^9}, {3.742879199059029*^9, 3.7428791995390997`*^9}, + 3.742901214891993*^9, {3.74290164400101*^9, 3.742901906207686*^9}, { + 3.742901977623595*^9, 3.742902002095676*^9}, {3.742902032247851*^9, + 3.742902129781516*^9}, {3.742902162525971*^9, 3.74290222166597*^9}, { + 3.742902276796481*^9, 3.742902287956953*^9}, {3.74290235927039*^9, + 3.7429024146277122`*^9}, {3.7429024507177353`*^9, + 3.7429025388586197`*^9}, {3.742903006310214*^9, 3.7429030105077744`*^9}, { + 3.742903134891645*^9, 3.742903234602419*^9}, {3.742903317285879*^9, + 3.7429033173754187`*^9}, {3.742903361602311*^9, 3.74290336281636*^9}, { + 3.742905076823636*^9, 3.7429050778905582`*^9}, {3.742918166486006*^9, + 3.742918220012596*^9}, {3.742918311916502*^9, 3.742918313196629*^9}, { + 3.7429183606868353`*^9, 3.742918373040654*^9}, 3.742918421383092*^9, { + 3.742918494233326*^9, 3.742918623848249*^9}, {3.74291880637696*^9, + 3.7429188584054213`*^9}, {3.742918994743949*^9, 3.742919000933652*^9}, { + 3.742919057477284*^9, 3.7429190853953876`*^9}, {3.742919151618346*^9, + 3.742919208160902*^9}, {3.742920743629745*^9, 3.742920743849949*^9}, + 3.742922144965681*^9, {3.742922177083435*^9, 3.742922183503256*^9}, + 3.742922225061594*^9, 3.742922262893311*^9, {3.742922314745081*^9, + 3.7429223742620287`*^9}, {3.74292246647335*^9, 3.742922597303072*^9}, { + 3.742922649922433*^9, 3.7429226518828707`*^9}, {3.742923296115052*^9, + 3.742923318322493*^9}, {3.742980141599243*^9, 3.74298028080587*^9}, { + 3.742980310806139*^9, 3.7429803255358543`*^9}, {3.742980357754479*^9, + 3.742980398957408*^9}, {3.7429804420837727`*^9, 3.7429804467641287`*^9}, { + 3.742980541432966*^9, 3.742980548122097*^9}, {3.742980578285955*^9, + 3.742980578400919*^9}, {3.7429806326930037`*^9, 3.742980650442853*^9}, { + 3.742980694195736*^9, 3.742980749099784*^9}, {3.742981142831009*^9, + 3.742981146671338*^9}, {3.742995040906142*^9, 3.7429950736953487`*^9}, { + 3.742995103988391*^9, 3.742995134262944*^9}, {3.742995247787807*^9, + 3.742995324266892*^9}, {3.742995360656518*^9, 3.742995384384591*^9}, { + 3.7429954237133417`*^9, 3.742995433990855*^9}, {3.74299547198099*^9, + 3.742995484920415*^9}, {3.742995760731353*^9, 3.7429957673259373`*^9}, { + 3.742995847653798*^9, 3.7429958543557777`*^9}, {3.7429960931764708`*^9, + 3.742996100192951*^9}, {3.742996300021468*^9, 3.742996312749928*^9}, { + 3.742996623983343*^9, 3.742996683485918*^9}, {3.742996763260223*^9, + 3.7429967667513227`*^9}, {3.742996823435986*^9, 3.742996947881322*^9}, { + 3.7429969858904467`*^9, 3.7429969890918093`*^9}, {3.742997154797719*^9, + 3.742997179630937*^9}, {3.742997221183319*^9, 3.7429972234251423`*^9}, { + 3.742997256190982*^9, 3.742997295285985*^9}, {3.742997325738884*^9, + 3.7429973513749123`*^9}, {3.74299738735357*^9, 3.7429974112679663`*^9}, { + 3.742997461552939*^9, 3.7429974669219646`*^9}, {3.743008210683326*^9, + 3.743008225538146*^9}, 3.743009057265111*^9, {3.743009239073036*^9, + 3.7430092656499767`*^9}, {3.743009361125576*^9, 3.743009373039097*^9}, { + 3.7430094955856752`*^9, 3.7430095437002373`*^9}, {3.7430096137618933`*^9, + 3.743009669733102*^9}, {3.743009863885*^9, 3.7430099872406483`*^9}, { + 3.743010046219955*^9, 3.743010048241816*^9}, {3.7430103170795507`*^9, + 3.743010344854659*^9}, {3.743011088494897*^9, 3.7430111264389553`*^9}, { + 3.7430111611489353`*^9, 3.743011161959427*^9}, {3.743011716328226*^9, + 3.7430117899482517`*^9}, 3.743221076129325*^9, {3.8193907581118402`*^9, + 3.8193907617791357`*^9}, {3.8193907925481987`*^9, 3.819390804206044*^9}, { + 3.819390849865067*^9, 3.819390936727295*^9}, {3.819391001811208*^9, + 3.8193910257883453`*^9}, {3.819391085700403*^9, 3.819391087526915*^9}, { + 3.8193914241938553`*^9, 3.819391470682129*^9}, {3.819391627347579*^9, + 3.8193917104671087`*^9}, {3.819391752709236*^9, 3.8193917589749203`*^9}, + 3.8194447427358437`*^9, {3.81944477511159*^9, 3.819444799254642*^9}, { + 3.819445423554438*^9, 3.8194454485467577`*^9}, {3.8194455041540318`*^9, + 3.8194455101392508`*^9}, 3.819445596217606*^9, {3.8194456567851753`*^9, + 3.819445656839918*^9}, {3.819445746264432*^9, 3.819445757912693*^9}, { + 3.819445813352127*^9, 3.819445825887064*^9}, 3.8194458612711887`*^9, + 3.8194458919673147`*^9, {3.819445967319127*^9, 3.819445968614059*^9}, { + 3.819449084439749*^9, 3.819449109599296*^9}, {3.8194607735707207`*^9, + 3.81946092478191*^9}}, + CellLabel->"In[36]:=",ExpressionUUID->"54cba639-78de-41b7-b09f-3fb5cc912380"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.1`"}], ",", + "2.622415842725466443893251577820650672377872973670922710865906670241171`\ +49.11468284888112*^-8"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.09`"}], ",", + "6.06190502636507879507515175559796184193854731377204564126308188112786`\ +49.11479240919177*^-9"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.08`"}], ",", + "1.17447601234699468445510136405307647387550934513333852666869845718458`\ +49.114893364196135*^-9"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.07`"}], ",", + "1.4024940395158898924654784294178614485161184767019759036195479717372`\ +49.114985727315386*^-10"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.06`"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.05`"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.04`"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.03`"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.02`"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"-", "0.01`"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.`", ",", + RowBox[{"2", " ", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}], ".", + "f"}], ")"}], "2"], " ", + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "50"}]}], "]"}]}]}], "}"}], + ",", + RowBox[{"{", + RowBox[{"0.01`", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.02`", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.03`", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.04`", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.05`", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{"0.06`", ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.07`", ",", + "1.6928021246676030316508937283990323565974600157978072741088239637394`\ +49.11539060031272*^-10"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.08`", ",", + "1.45179154699787609350247306840718344570117853855922030674948684050816`\ +49.11535747274172*^-9"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.09`", ",", + "7.66818146325018157049352655502915988683421514732471670517861640201907`\ +49.115316304666756*^-9"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + "0.1`", ",", + "3.404552155169235778275158707980233029929030601029727595659420596653119`\ +49.115267147067*^-8"}], "}"}]}], "}"}]], "Output", + CellChangeTimes->{ + 3.819391014749713*^9, {3.819391071671455*^9, 3.819391093328039*^9}, { + 3.81939143621446*^9, 3.819391475405188*^9}, 3.819391636446169*^9, { + 3.8193916949654408`*^9, 3.819391720160043*^9}, 3.8193917634000683`*^9, { + 3.8194447707974577`*^9, 3.819444802118456*^9}, 3.819445429630782*^9, { + 3.81944548901746*^9, 3.819445510028133*^9}, 3.8194455422005568`*^9, + 3.819445630309391*^9, 3.819445726083826*^9, {3.81944581458074*^9, + 3.8194458335917597`*^9}, 3.819445882243606*^9, 3.8194459359917192`*^9, + 3.819446005097937*^9, {3.819449087924513*^9, 3.81944911372517*^9}, { + 3.8194607891681128`*^9, 3.819460928218804*^9}}, + CellLabel->"Out[36]=",ExpressionUUID->"30a67b2f-36de-472b-9923-bea976f44530"], + +Cell[BoxData[ + GraphicsBox[{{}, {{{}, {}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.012833333333333334`], AbsoluteThickness[1.6], + LineBox[{{-0.09450984191040196, 1.5154762565912697`*^-8}, {-0.09, + 6.061905026365079*^-9}, {-0.08, 1.1744760123469948`*^-9}, {-0.07, + 1.40249403951589*^-10}, {-0.06, 0.}, {-0.05, 0.}, {-0.04, 0.}, {-0.03, + 0.}, {-0.02, 0.}, {-0.01, 0.}}], + LineBox[{{0.01, 0.}, {0.02, 0.}, {0.03, 0.}, {0.04, 0.}, {0.05, 0.}, { + 0.06, 0.}, {0.07, 1.6928021246676031`*^-10}, {0.08, + 1.451791546997876*^-9}, {0.09, 7.668181463250181*^-9}, { + 0.09283826234091849, 1.5154762565912697`*^-8}}]}}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`], + AbsoluteThickness[1.6]}, { + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.012833333333333334`], AbsoluteThickness[1.6]}, {}}, { + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.012833333333333334`], AbsoluteThickness[1.6]}, {}}}, {{}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{-0.1, 0.1}, {0, 1.5154762565912697`*^-8}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.02], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.819391014749713*^9, {3.819391071671455*^9, 3.819391093328039*^9}, { + 3.81939143621446*^9, 3.819391475405188*^9}, 3.819391636446169*^9, { + 3.8193916949654408`*^9, 3.819391720160043*^9}, 3.8193917634000683`*^9, { + 3.8194447707974577`*^9, 3.819444802118456*^9}, 3.819445429630782*^9, { + 3.81944548901746*^9, 3.819445510028133*^9}, 3.8194455422005568`*^9, + 3.819445630309391*^9, 3.819445726083826*^9, {3.81944581458074*^9, + 3.8194458335917597`*^9}, 3.819445882243606*^9, 3.8194459359917192`*^9, + 3.819446005097937*^9, {3.819449087924513*^9, 3.81944911372517*^9}, { + 3.8194607891681128`*^9, 3.819460913162878*^9}, 3.819460945531849*^9}, + CellLabel->"Out[37]=",ExpressionUUID->"a2999cb1-22fd-4cbd-9bc7-6a54cac3c4ea"] +}, Open ]] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[TextData[{ + "Triplet ", + Cell[BoxData[ + FormBox[ + SuperscriptBox["p", "2"], TraditionalForm]],ExpressionUUID-> + "57d5e92b-0647-42c8-93a1-b798006a46c1"] +}], "Subsection", + CellChangeTimes->{{3.742921809427841*^9, + 3.742921815126781*^9}},ExpressionUUID->"c3267724-2a1e-46ae-a70a-\ +24dbe2bc9597"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "2"], "]"}], + RowBox[{"Cos", "[", + RowBox[{ + SubscriptBox["\[Phi]", "1"], "-", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], ")"}], "2"], "\[Equal]", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], ")"}], "2"], + SuperscriptBox[ + RowBox[{"(", " ", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}], "2"]}]}], "//", + "FullSimplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", + SqrtBox["\[Pi]"]}]]}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox["1", + RowBox[{"2", " ", + SqrtBox[ + RowBox[{"5", " ", "\[Pi]"}]]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + FractionBox["1", "96"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"160", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "-", + RowBox[{"80", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{"16", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "\[Equal]", + RowBox[{ + SqrtBox[ + FractionBox["3", + RowBox[{"10", " ", "\[Pi]"}]]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}], ",", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "\[Equal]", + RowBox[{ + SqrtBox[ + FractionBox["3", + RowBox[{"10", " ", "\[Pi]"}]]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}]}], "}"}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "2"], "]"}], + RowBox[{"Cos", "[", + RowBox[{ + SubscriptBox["\[Phi]", "1"], "-", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], ")"}], "2"], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{"8", "\[Pi]"}], "9"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "-", + RowBox[{ + FractionBox["1", + RowBox[{" ", + SqrtBox["5"]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}]}], "+", + RowBox[{ + FractionBox["9", "45"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox["9", "15"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}]}]}], ")"}]}]}], "//", + "FullSimplify"}], "\[IndentingNewLine]"}], "Input", + CellChangeTimes->{{3.742921541073929*^9, 3.7429217915991783`*^9}, { + 3.743221206846005*^9, 3.7432213027031612`*^9}, {3.743223071879881*^9, + 3.7432230721557083`*^9}, {3.743223122804291*^9, 3.743223160854814*^9}, { + 3.743229983868244*^9, 3.743229987103587*^9}, 3.743230196503038*^9, { + 3.743230229246484*^9, 3.743230392876593*^9}, {3.74323042341105*^9, + 3.743230423574142*^9}, {3.74323046932085*^9, 3.74323050342354*^9}, { + 3.743230609148362*^9, 3.743230658741049*^9}, {3.743232501718238*^9, + 3.743232502023597*^9}, {3.7432396332522507`*^9, 3.743239693010103*^9}, { + 3.743239813190792*^9, 3.743239835225259*^9}, {3.743239957601283*^9, + 3.743239964073461*^9}},ExpressionUUID->"093b63ec-d5d7-429c-a6ae-\ +daee424561d5"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742921693566469*^9, 3.7429217919516277`*^9}, + 3.743221130252604*^9, {3.743221239571553*^9, 3.743221251731104*^9}, { + 3.743221289458893*^9, 3.7432213035428667`*^9}, 3.743223072588331*^9, + 3.7432231612608023`*^9, 3.743223192566586*^9, 3.743229987526679*^9, + 3.743230199018121*^9, {3.743230249889526*^9, 3.743230269081333*^9}, + 3.743230332948771*^9, 3.74323039351552*^9, 3.743230425246151*^9, + 3.7432304703532124`*^9, 3.743230503952559*^9, 3.743230609797349*^9, + 3.743230659345324*^9, 3.743232503176585*^9, 3.743239662879141*^9, + 3.7432396964774113`*^9, 3.7432398357846203`*^9, {3.743239959398622*^9, + 3.743239964638369*^9}},ExpressionUUID->"c8bc8a1a-7edb-4bf3-8401-\ +c89b58f107f2"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742921693566469*^9, 3.7429217919516277`*^9}, + 3.743221130252604*^9, {3.743221239571553*^9, 3.743221251731104*^9}, { + 3.743221289458893*^9, 3.7432213035428667`*^9}, 3.743223072588331*^9, + 3.7432231612608023`*^9, 3.743223192566586*^9, 3.743229987526679*^9, + 3.743230199018121*^9, {3.743230249889526*^9, 3.743230269081333*^9}, + 3.743230332948771*^9, 3.74323039351552*^9, 3.743230425246151*^9, + 3.7432304703532124`*^9, 3.743230503952559*^9, 3.743230609797349*^9, + 3.743230659345324*^9, 3.743232503176585*^9, 3.743239662879141*^9, + 3.7432396964774113`*^9, 3.7432398357846203`*^9, {3.743239959398622*^9, + 3.743239964660324*^9}},ExpressionUUID->"f48a9ecf-9fbe-47d9-ae87-\ +f8b5af6c5e0b"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742921693566469*^9, 3.7429217919516277`*^9}, + 3.743221130252604*^9, {3.743221239571553*^9, 3.743221251731104*^9}, { + 3.743221289458893*^9, 3.7432213035428667`*^9}, 3.743223072588331*^9, + 3.7432231612608023`*^9, 3.743223192566586*^9, 3.743229987526679*^9, + 3.743230199018121*^9, {3.743230249889526*^9, 3.743230269081333*^9}, + 3.743230332948771*^9, 3.74323039351552*^9, 3.743230425246151*^9, + 3.7432304703532124`*^9, 3.743230503952559*^9, 3.743230609797349*^9, + 3.743230659345324*^9, 3.743232503176585*^9, 3.743239662879141*^9, + 3.7432396964774113`*^9, 3.7432398357846203`*^9, {3.743239959398622*^9, + 3.743239964668839*^9}},ExpressionUUID->"ec1755b9-8f51-47c9-9a0f-\ +1629807636d1"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"True", ",", "True"}], "}"}]], "Output", + CellChangeTimes->{{3.742921693566469*^9, 3.7429217919516277`*^9}, + 3.743221130252604*^9, {3.743221239571553*^9, 3.743221251731104*^9}, { + 3.743221289458893*^9, 3.7432213035428667`*^9}, 3.743223072588331*^9, + 3.7432231612608023`*^9, 3.743223192566586*^9, 3.743229987526679*^9, + 3.743230199018121*^9, {3.743230249889526*^9, 3.743230269081333*^9}, + 3.743230332948771*^9, 3.74323039351552*^9, 3.743230425246151*^9, + 3.7432304703532124`*^9, 3.743230503952559*^9, 3.743230609797349*^9, + 3.743230659345324*^9, 3.743232503176585*^9, 3.743239662879141*^9, + 3.7432396964774113`*^9, 3.7432398357846203`*^9, {3.743239959398622*^9, + 3.7432399646776123`*^9}},ExpressionUUID->"de84db82-7bcd-4321-be05-\ +acdd32c5a02c"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.742921693566469*^9, 3.7429217919516277`*^9}, + 3.743221130252604*^9, {3.743221239571553*^9, 3.743221251731104*^9}, { + 3.743221289458893*^9, 3.7432213035428667`*^9}, 3.743223072588331*^9, + 3.7432231612608023`*^9, 3.743223192566586*^9, 3.743229987526679*^9, + 3.743230199018121*^9, {3.743230249889526*^9, 3.743230269081333*^9}, + 3.743230332948771*^9, 3.74323039351552*^9, 3.743230425246151*^9, + 3.7432304703532124`*^9, 3.743230503952559*^9, 3.743230609797349*^9, + 3.743230659345324*^9, 3.743232503176585*^9, 3.743239662879141*^9, + 3.7432396964774113`*^9, 3.7432398357846203`*^9, {3.743239959398622*^9, + 3.743239964686699*^9}},ExpressionUUID->"e6a683e2-6c11-4e7d-802c-\ +2b921896631b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", "\[Pi]"}], "9"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "-", + RowBox[{ + FractionBox["1", + RowBox[{" ", + SqrtBox["5"]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + SubscriptBox["c", "2"], "5"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}], ")"}]}], "+", + RowBox[{ + FractionBox["9", "45"], + FractionBox[ + SubscriptBox["c", "2"], "5"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox["9", "15"], + FractionBox[ + SubscriptBox["c", "2"], "5"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{"-", "1"}], ")"}], "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "+", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}]}], ")"}]}], + "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{"8", "\[Pi]"}], "9"], " ", + RowBox[{"(", " ", + RowBox[{ + RowBox[{ + FractionBox["3", "2"], + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + FractionBox[ + SubscriptBox["c", "2"], "15"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "-", " ", + RowBox[{ + FractionBox["1", "2"], + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox["9", "45"], + FractionBox[ + SubscriptBox["c", "2"], "5"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox["9", "15"], + FractionBox[ + SubscriptBox["c", "2"], "5"], + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "+", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}]}], + ")"}]}]}], "//", "Simplify"}]], "Input", + CellChangeTimes->{{3.7432309244892607`*^9, 3.7432310360686903`*^9}, { + 3.743231109097535*^9, 3.743231258697278*^9}, {3.743231364454309*^9, + 3.743231409370471*^9}, {3.743231900965172*^9, 3.743231986117247*^9}, { + 3.7432324923575897`*^9, 3.743232492703197*^9}, {3.74323512483928*^9, + 3.743235190355508*^9}, {3.74323981050996*^9, 3.743239811158902*^9}, { + 3.7432398596065817`*^9, 3.743240075487534*^9}, {3.743240106386077*^9, + 3.743240217956325*^9}, {3.7432406734447002`*^9, + 3.743240698438498*^9}},ExpressionUUID->"5ce35750-7da9-4ff5-b83f-\ +0ae5f5377437"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.743240691995799*^9, + 3.74324069870498*^9}},ExpressionUUID->"7fb01024-0558-4c4e-bc04-\ +f537ce36e159"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell[TextData[Cell[BoxData[ + FormBox[ + RowBox[{ + SuperscriptBox["\[InvisiblePrefixScriptBase]", "3"], + SuperscriptBox["D", "o"]}], + TraditionalForm]],ExpressionUUID->"428b48f7-9cd0-4f69-b100-8c3380ba5a83"]], \ +"Subsection", + CellChangeTimes->{{3.743235924912355*^9, + 3.743235950104946*^9}},ExpressionUUID->"59690161-1c60-4593-a2e7-\ +c717480798c8"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "-", + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ")"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "2"], "]"}], + RowBox[{"Cos", "[", + RowBox[{ + SubscriptBox["\[Phi]", "1"], "-", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], ")"}], "2"], "\[Equal]", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + FractionBox[ + RowBox[{"4", " ", "\[Pi]"}], "3"], ")"}], "2"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "-", + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ")"}], "2"], + SuperscriptBox[ + RowBox[{"(", " ", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}], "2"]}]}], "//", + "FullSimplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", + SqrtBox["\[Pi]"]}]]}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox["1", + RowBox[{"2", " ", + SqrtBox[ + RowBox[{"5", " ", "\[Pi]"}]]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + FractionBox["1", "96"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"160", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "-", + RowBox[{"80", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{"16", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", + RowBox[{"-", "1"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "\[Equal]", + RowBox[{ + SqrtBox[ + FractionBox["3", + RowBox[{"10", " ", "\[Pi]"}]]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}], ",", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "1"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "\[Equal]", + RowBox[{ + SqrtBox[ + FractionBox["3", + RowBox[{"10", " ", "\[Pi]"}]]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}]}], "}"}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "-", + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ")"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "2"], "]"}], + RowBox[{"Cos", "[", + RowBox[{ + SubscriptBox["\[Phi]", "1"], "-", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], ")"}], "2"], "\[Equal]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["8", "9"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "-", + FractionBox[ + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], + RowBox[{"9", " ", + SqrtBox["5"]}]], "-", + FractionBox[ + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], + RowBox[{"9", " ", + SqrtBox["5"]}]], "+", + RowBox[{ + FractionBox["8", "45"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox["8", "15"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox["8", "15"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}]}]}], "//", + "FullSimplify"}], "\[IndentingNewLine]"}], "Input", + CellChangeTimes->{{3.742921541073929*^9, 3.7429217915991783`*^9}, { + 3.743221206846005*^9, 3.7432213027031612`*^9}, {3.743223071879881*^9, + 3.7432230721557083`*^9}, {3.743223122804291*^9, 3.743223160854814*^9}, { + 3.743229983868244*^9, 3.743229987103587*^9}, 3.743230196503038*^9, { + 3.743230229246484*^9, 3.743230392876593*^9}, {3.74323042341105*^9, + 3.743230423574142*^9}, {3.74323046932085*^9, 3.74323050342354*^9}, { + 3.743230609148362*^9, 3.743230658741049*^9}, {3.743232501718238*^9, + 3.743232502023597*^9}, {3.743235961240123*^9, 3.743236001680119*^9}, { + 3.7432360560871887`*^9, + 3.743236072427079*^9}},ExpressionUUID->"83dd638d-a3d9-4eac-9812-\ +c6a4cf31efb2"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.743235997619177*^9, 3.7432360158032103`*^9}, { + 3.7432360571012383`*^9, + 3.74323607285853*^9}},ExpressionUUID->"b4e381d7-4a23-4e07-981a-\ +8f2086d6ecb0"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.743235997619177*^9, 3.7432360158032103`*^9}, { + 3.7432360571012383`*^9, + 3.743236072869734*^9}},ExpressionUUID->"c0f052e7-e375-40fb-9cda-\ +e30d1e386bf6"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.743235997619177*^9, 3.7432360158032103`*^9}, { + 3.7432360571012383`*^9, + 3.743236072878709*^9}},ExpressionUUID->"0bae4c27-c7b9-457a-8a0b-\ +94924bb3d300"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{"True", ",", "True"}], "}"}]], "Output", + CellChangeTimes->{{3.743235997619177*^9, 3.7432360158032103`*^9}, { + 3.7432360571012383`*^9, + 3.7432360728882093`*^9}},ExpressionUUID->"c64341aa-bf6d-4dfd-8f07-\ +5440230a7974"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{{3.743235997619177*^9, 3.7432360158032103`*^9}, { + 3.7432360571012383`*^9, + 3.743236072897498*^9}},ExpressionUUID->"55d747c3-742f-4a1c-84a2-\ +fde40e88cc5e"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}]}], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["8", "9"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "-", + FractionBox[ + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], + RowBox[{"9", " ", + SqrtBox["5"]}]], "-", + FractionBox[ + RowBox[{"8", " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], + RowBox[{"9", " ", + SqrtBox["5"]}]], "+", + RowBox[{ + FractionBox["8", "45"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + RowBox[{ + FractionBox["8", "15"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], "+", + RowBox[{ + FractionBox["8", "15"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}]}], ")"}]}], "==", + RowBox[{ + RowBox[{ + FractionBox["64", "27"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], "2"]}], "-", + RowBox[{ + FractionBox["64", "27"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], " ", + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], + RowBox[{"27", " ", + SqrtBox["5"]}]], "-", + RowBox[{ + FractionBox["64", "135"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"]}], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], + RowBox[{"27", " ", + SqrtBox["5"]}]], "-", + RowBox[{ + FractionBox["64", "135"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "-", + RowBox[{ + FractionBox["64", "135"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], + RowBox[{"135", " ", + SqrtBox["5"]}]], "-", + RowBox[{ + FractionBox["64", "135"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], "2"]}], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], "2"]}], + RowBox[{"135", " ", + SqrtBox["5"]}]], "+", + RowBox[{ + FractionBox["64", "45"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], "-", + RowBox[{ + FractionBox["64", "45"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], + RowBox[{"45", " ", + SqrtBox["5"]}]], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], + RowBox[{"45", " ", + SqrtBox["5"]}]], "+", + RowBox[{ + FractionBox["64", "45"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "-", + RowBox[{ + FractionBox["64", "45"], " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], + RowBox[{"45", " ", + SqrtBox["5"]}]], "+", + FractionBox[ + RowBox[{"64", " ", + SuperscriptBox["\[Pi]", "2"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", + RowBox[{"-", "2"}]}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "2"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], + RowBox[{"45", " ", + SqrtBox["5"]}]]}]}], "//", "FullSimplify"}], + "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.743236087870112*^9, + 3.743236258450646*^9}},ExpressionUUID->"e4ec2f88-e321-4297-8368-\ +7cf33b0e5d5e"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"2", " ", + SqrtBox["\[Pi]"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"5", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", + SqrtBox["\[Pi]"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}]}], ")"}]}], "-", + RowBox[{"2", " ", + SqrtBox["\[Pi]"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{"2", " ", + SqrtBox["\[Pi]"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}]}], ")"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}]}], ")"}]}], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{"(", + RowBox[{"5", "+", + RowBox[{"4", " ", + SqrtBox["5"], " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}]}], "-", + RowBox[{"2", " ", + SqrtBox[ + RowBox[{"5", " ", "\[Pi]"}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], "+", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ")"}]}], "+", + RowBox[{"4", " ", "\[Pi]", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "1"], "]"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "5"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], "+", + RowBox[{ + SqrtBox["5"], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[Theta]", "2"], "]"}]}]}], ")"}]}]}], ")"}]}]}], + "\[Equal]", "0"}]], "Output", + CellChangeTimes->{3.743236150702338*^9, + 3.743242100431136*^9},ExpressionUUID->"468a3fca-bc22-4dbe-ba2e-\ +d09f5efde874"] +}, Open ]] +}, Closed]], + +Cell[CellGroupData[{ + +Cell["Triplet D state", "Subsection", + CellChangeTimes->{{3.742903401180684*^9, 3.742903403606084*^9}, { + 3.742918347228277*^9, 3.742918347362217*^9}, + 3.7429860324223146`*^9},ExpressionUUID->"eac4bda2-189e-42f0-81dc-\ +51e5ebbd2f4a"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[CapitalPhi]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "=", + RowBox[{ + RowBox[{ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "\t", + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"]}], "=", + RowBox[{ + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Gamma]", "]"}], "]"}], "\t", + SubscriptBox["c", "\[ScriptL]"]}]}], "=", + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}], "2"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Gamma]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + RowBox[{"Sin", "[", "\[Gamma]", "]"}], + RowBox[{"\[DifferentialD]", "\[Gamma]"}]}]}]}]}]}]}]], "Input", + CellChangeTimes->{{3.742897993868801*^9, 3.7428981067548847`*^9}, { + 3.742898182660631*^9, + 3.742898271183833*^9}},ExpressionUUID->"17b135d5-7e41-4643-b4bb-\ +f3eea5ce1e51"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Rho]", "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{ + RowBox[{"2", + RowBox[{"\[Integral]", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "=", + RowBox[{"8", "\[Pi]", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + FractionBox[ + SubscriptBox["c", "\[ScriptL]"], + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}]], + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"m", "=", + RowBox[{"-", "\[ScriptL]"}]}], "\[ScriptL]"], + RowBox[{ + RowBox[{ + SubsuperscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}], "*"], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}]}]}]}]}]}]}]], "Input",\ + + CellChangeTimes->{{3.742898286664424*^9, 3.7428983914044456`*^9}, { + 3.7429901583001747`*^9, + 3.7429901628375263`*^9}},ExpressionUUID->"14802bea-9955-4893-8c9c-\ +a17bac458ece"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}], "=", + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + SqrtBox[ + RowBox[{"4", "\[Pi]"}]], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "-", + RowBox[{"2", " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}]}], "+", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], "2"]}], ")"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t\t\t\t\t ", + RowBox[{"=", + RowBox[{ + RowBox[{ + SqrtBox[ + RowBox[{"4", "\[Pi]"}]], + SubscriptBox["c", "0"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{"2", " ", + SqrtBox[ + RowBox[{"5", " ", "\[Pi]"}]], " ", + FractionBox[ + SubscriptBox["c", "2"], "5"], + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], ")"}]}], "+", + " ", + RowBox[{"4", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", + SqrtBox[ + RowBox[{"4", " ", "\[Pi]"}]]], + SubscriptBox["c", "0"]}], "+", + RowBox[{ + FractionBox["1", "7"], " ", + SqrtBox[ + FractionBox["5", "\[Pi]"]], " ", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"3", " "}], + RowBox[{"7", " ", + SqrtBox["\[Pi]"]}]], + FractionBox[ + SubscriptBox["c", "4"], "9"]}]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + "2"]}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t\t\t\t\t ", + RowBox[{"=", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", + SqrtBox["\[Pi]"], " ", + SubscriptBox["c", "0"]}], "+", + RowBox[{ + FractionBox["18", "7"], " ", + SqrtBox[ + FractionBox["\[Pi]", "5"]], " ", + SubscriptBox["c", "2"]}], "+", + FractionBox[ + RowBox[{"4", " ", + SqrtBox["\[Pi]"], " ", + SubscriptBox["c", "4"]}], "21"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "-", + RowBox[{"2", " ", + SqrtBox[ + FractionBox["\[Pi]", "5"]], " ", + SubscriptBox["c", "2"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}], "+", + RowBox[{"2", " ", + SqrtBox["\[Pi]"], " ", + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "2"]}]}]}]}]}], "Input", + CellChangeTimes->{{3.742898559305214*^9, 3.7428985732593737`*^9}, { + 3.7428986183390417`*^9, 3.742898668556341*^9}, {3.742898891156012*^9, + 3.7428989301880617`*^9}, {3.7428993174640627`*^9, 3.742899416229143*^9}, { + 3.7428994864779387`*^9, 3.742899491064481*^9}, 3.7429886359329147`*^9, + 3.7429900484723463`*^9, {3.742990166278675*^9, 3.742990237918317*^9}, { + 3.7429902717689734`*^9, 3.742990293829607*^9}, {3.74299036171*^9, + 3.742990367572699*^9}},ExpressionUUID->"d3a6ec1b-6a01-430d-947f-\ +8f0e2ffa4abc"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"Simplify", "[", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}], "2"]}], ")"}], "2"], "\[Equal]", + " ", + RowBox[{ + FractionBox[ + RowBox[{"16", "\[Pi]"}], "45"], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "-", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], ")"}], "2"]}]}], + "]"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + FractionBox[ + SqrtBox["5"], "2"], + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"4", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "\[Equal]", + RowBox[{ + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], + RowBox[{"(", + FractionBox[ + RowBox[{"3", " "}], + RowBox[{"16", " ", + SqrtBox["\[Pi]"]}]], ")"}], + RowBox[{"(", + RowBox[{ + RowBox[{"12", "\[Pi]", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "-", + RowBox[{"30", " ", + FractionBox[ + RowBox[{"4", "\[Pi]"}], "3"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox["35", "9"], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"16", " ", "\[Pi]"}], "5"], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{"8", + SqrtBox[ + FractionBox["\[Pi]", "5"]], + SqrtBox[ + RowBox[{"4", "\[Pi]"}]], + FractionBox[ + SqrtBox["5"], "2"], + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], ")"}]}], "+", + RowBox[{"4", "\[Pi]", " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}]}]}], + ")"}]}]}], "//", "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", + SqrtBox[ + RowBox[{"4", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox["1", + SqrtBox[ + RowBox[{"5", " ", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"], "\[Equal]", + RowBox[{ + RowBox[{ + FractionBox["1", + SqrtBox[ + RowBox[{"4", " ", "\[Pi]"}]]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox["1", "7"], " ", + SqrtBox[ + FractionBox["5", "\[Pi]"]], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"3", " "}], + RowBox[{"7", " ", + SqrtBox["\[Pi]"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"4", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}]}], "//", + "Simplify"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + SuperscriptBox[ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "1"], "]"}], "2"], "-", + SuperscriptBox[ + RowBox[{"Cos", "[", + SubscriptBox["\[Theta]", "2"], "]"}], "2"]}], ")"}], "2"], "\[Equal]", + RowBox[{ + FractionBox[ + RowBox[{"32", " ", "\[Pi]"}], "45"], + RowBox[{"(", " ", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + SqrtBox["5"], "7"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}]}], "-", " ", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox["3", "7"], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"4", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", " ", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"4", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}]}]}], ")"}]}]}], "//", + "Simplify"}]}], "Input", + CellChangeTimes->{{3.742880368692409*^9, 3.7428804029481373`*^9}, { + 3.742880525109131*^9, 3.7428805458700542`*^9}, {3.742898467130229*^9, + 3.7428985242579517`*^9}, {3.7428992114127827`*^9, 3.742899287783554*^9}, { + 3.7429000811947393`*^9, 3.742900096336309*^9}, {3.7429001529365797`*^9, + 3.742900153845666*^9}, {3.7429004278822927`*^9, 3.742900428277691*^9}, { + 3.74298603971874*^9, 3.7429860419785643`*^9}, 3.742986079185611*^9, + 3.7429861263095503`*^9, {3.7429861707391243`*^9, 3.742986176886547*^9}, { + 3.742988127917576*^9, 3.7429881333292313`*^9}, {3.7429884518630743`*^9, + 3.742988466927435*^9}, {3.742988614273793*^9, 3.742988621922674*^9}, { + 3.742988949793998*^9, 3.7429889765908937`*^9}, {3.742989035521098*^9, + 3.742989036038781*^9}, {3.742989066504467*^9, 3.742989077787426*^9}, { + 3.742989120733507*^9, 3.742989125869351*^9}, {3.742989158533863*^9, + 3.742989165084914*^9}, {3.7429892546397333`*^9, 3.742989256945628*^9}, { + 3.74298965374714*^9, 3.742989684099773*^9}, 3.742989723248888*^9, + 3.742989769652746*^9, 3.742990034250306*^9, {3.742990088379957*^9, + 3.742990101236594*^9}, {3.74299030724561*^9, 3.742990327161159*^9}, { + 3.7429907017821703`*^9, 3.74299072239389*^9}, {3.7429908205311613`*^9, + 3.7429908668042183`*^9}, {3.742990911350947*^9, 3.7429909369698267`*^9}, { + 3.742990986407577*^9, 3.742991149240193*^9}, {3.742991181429986*^9, + 3.7429911879128942`*^9}, {3.742991228402446*^9, 3.742991283398488*^9}, { + 3.7429913939451714`*^9, 3.742991452973744*^9}, {3.743012976931136*^9, + 3.743012981788251*^9}, {3.743014002358323*^9, 3.743014005210388*^9}, { + 3.743014104919067*^9, 3.743014159696444*^9}, {3.74301459429853*^9, + 3.743014634843196*^9}, {3.743015160912546*^9, 3.743015175544134*^9}, { + 3.7430158664921703`*^9, 3.7430158941204767`*^9}, {3.743242363536222*^9, + 3.743242389796681*^9}},ExpressionUUID->"9bfbd342-26ab-4960-b0c1-\ +6d30bc401946"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.742990035044002*^9, {3.742990089298437*^9, 3.742990101821583*^9}, { + 3.74299031120933*^9, 3.742990327878141*^9}, {3.74299070268925*^9, + 3.7429907228016376`*^9}, {3.74299084137978*^9, 3.742990867547271*^9}, { + 3.742990919780897*^9, 3.742990937796235*^9}, {3.742990999884145*^9, + 3.742991032479315*^9}, {3.742991086930072*^9, 3.742991150291108*^9}, + 3.742991188683301*^9, {3.7429912342502527`*^9, 3.742991284798403*^9}, { + 3.742991402090814*^9, 3.742991453961009*^9}, 3.743012984577449*^9, { + 3.743014110712698*^9, 3.743014160015524*^9}, {3.7430146058709993`*^9, + 3.7430146353393784`*^9}, {3.743015162920779*^9, 3.743015175881279*^9}, { + 3.743015887754745*^9, 3.743015894566107*^9}, + 3.743242390346169*^9},ExpressionUUID->"bad42b6b-febc-423c-b781-\ +8e8f634645b2"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.742990035044002*^9, {3.742990089298437*^9, 3.742990101821583*^9}, { + 3.74299031120933*^9, 3.742990327878141*^9}, {3.74299070268925*^9, + 3.7429907228016376`*^9}, {3.74299084137978*^9, 3.742990867547271*^9}, { + 3.742990919780897*^9, 3.742990937796235*^9}, {3.742990999884145*^9, + 3.742991032479315*^9}, {3.742991086930072*^9, 3.742991150291108*^9}, + 3.742991188683301*^9, {3.7429912342502527`*^9, 3.742991284798403*^9}, { + 3.742991402090814*^9, 3.742991453961009*^9}, 3.743012984577449*^9, { + 3.743014110712698*^9, 3.743014160015524*^9}, {3.7430146058709993`*^9, + 3.7430146353393784`*^9}, {3.743015162920779*^9, 3.743015175881279*^9}, { + 3.743015887754745*^9, 3.743015894566107*^9}, + 3.743242390358519*^9},ExpressionUUID->"08268186-e6a0-4d08-92db-\ +7368a97e5b15"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.742990035044002*^9, {3.742990089298437*^9, 3.742990101821583*^9}, { + 3.74299031120933*^9, 3.742990327878141*^9}, {3.74299070268925*^9, + 3.7429907228016376`*^9}, {3.74299084137978*^9, 3.742990867547271*^9}, { + 3.742990919780897*^9, 3.742990937796235*^9}, {3.742990999884145*^9, + 3.742991032479315*^9}, {3.742991086930072*^9, 3.742991150291108*^9}, + 3.742991188683301*^9, {3.7429912342502527`*^9, 3.742991284798403*^9}, { + 3.742991402090814*^9, 3.742991453961009*^9}, 3.743012984577449*^9, { + 3.743014110712698*^9, 3.743014160015524*^9}, {3.7430146058709993`*^9, + 3.7430146353393784`*^9}, {3.743015162920779*^9, 3.743015175881279*^9}, { + 3.743015887754745*^9, 3.743015894566107*^9}, + 3.7432423903674*^9},ExpressionUUID->"14e5cd70-74bd-402b-9647-758b00e98438"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.742990035044002*^9, {3.742990089298437*^9, 3.742990101821583*^9}, { + 3.74299031120933*^9, 3.742990327878141*^9}, {3.74299070268925*^9, + 3.7429907228016376`*^9}, {3.74299084137978*^9, 3.742990867547271*^9}, { + 3.742990919780897*^9, 3.742990937796235*^9}, {3.742990999884145*^9, + 3.742991032479315*^9}, {3.742991086930072*^9, 3.742991150291108*^9}, + 3.742991188683301*^9, {3.7429912342502527`*^9, 3.742991284798403*^9}, { + 3.742991402090814*^9, 3.742991453961009*^9}, 3.743012984577449*^9, { + 3.743014110712698*^9, 3.743014160015524*^9}, {3.7430146058709993`*^9, + 3.7430146353393784`*^9}, {3.743015162920779*^9, 3.743015175881279*^9}, { + 3.743015887754745*^9, 3.743015894566107*^9}, + 3.7432423903763742`*^9},ExpressionUUID->"a1021d01-c1ea-43ff-815d-\ +85bf1860cda5"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.742990035044002*^9, {3.742990089298437*^9, 3.742990101821583*^9}, { + 3.74299031120933*^9, 3.742990327878141*^9}, {3.74299070268925*^9, + 3.7429907228016376`*^9}, {3.74299084137978*^9, 3.742990867547271*^9}, { + 3.742990919780897*^9, 3.742990937796235*^9}, {3.742990999884145*^9, + 3.742991032479315*^9}, {3.742991086930072*^9, 3.742991150291108*^9}, + 3.742991188683301*^9, {3.7429912342502527`*^9, 3.742991284798403*^9}, { + 3.742991402090814*^9, 3.742991453961009*^9}, 3.743012984577449*^9, { + 3.743014110712698*^9, 3.743014160015524*^9}, {3.7430146058709993`*^9, + 3.7430146353393784`*^9}, {3.743015162920779*^9, 3.743015175881279*^9}, { + 3.743015887754745*^9, 3.743015894566107*^9}, + 3.743242390470005*^9},ExpressionUUID->"a6228c72-c3ab-4a4b-a7dd-\ +114c74203722"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.742990035044002*^9, {3.742990089298437*^9, 3.742990101821583*^9}, { + 3.74299031120933*^9, 3.742990327878141*^9}, {3.74299070268925*^9, + 3.7429907228016376`*^9}, {3.74299084137978*^9, 3.742990867547271*^9}, { + 3.742990919780897*^9, 3.742990937796235*^9}, {3.742990999884145*^9, + 3.742991032479315*^9}, {3.742991086930072*^9, 3.742991150291108*^9}, + 3.742991188683301*^9, {3.7429912342502527`*^9, 3.742991284798403*^9}, { + 3.742991402090814*^9, 3.742991453961009*^9}, 3.743012984577449*^9, { + 3.743014110712698*^9, 3.743014160015524*^9}, {3.7430146058709993`*^9, + 3.7430146353393784`*^9}, {3.743015162920779*^9, 3.743015175881279*^9}, { + 3.743015887754745*^9, 3.743015894566107*^9}, + 3.743242390489365*^9},ExpressionUUID->"449b7df1-0d75-4d67-925c-\ +350cdef9600b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"32", " ", "\[Pi]"}], "45"], + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["c", "0"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox[ + SqrtBox["5"], "7"], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}], "-", + RowBox[{ + FractionBox[ + SubscriptBox["c", "2"], "5"], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox["3", "7"], + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "+", + FractionBox[ + SubscriptBox["c", "4"], "9"]}], " ", ")"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], " ", + RowBox[{ + SubscriptBox["Y", + RowBox[{"4", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}], ")"}]}], "==", + RowBox[{ + FractionBox[ + RowBox[{"16", " ", "\[Pi]"}], "45"], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + FractionBox[ + SubscriptBox["c", "2"], "7"], "-", + FractionBox[ + RowBox[{"2", " ", + SubscriptBox["c", "4"]}], "63"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + FractionBox["1", "7"], + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "2"], "-", + FractionBox[ + RowBox[{"5", " ", + SubscriptBox["c", "4"]}], "9"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + FractionBox[ + RowBox[{"2", " ", + SubscriptBox["c", "2"]}], "5"], "+", + FractionBox[ + SubscriptBox["c", "4"], "9"]}], ")"}], " ", + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "2"]}]}], ")"}]}]}], "//", + "Simplify"}]], "Input", + CellChangeTimes->{{3.743242411599864*^9, 3.743242542176011*^9}, { + 3.7432426464259987`*^9, + 3.743242663769794*^9}},ExpressionUUID->"f27d4a85-2a37-4803-a443-\ +435791839d08"], + +Cell[BoxData["True"], "Output", + CellChangeTimes->{ + 3.7432425122523003`*^9, 3.743242543096746*^9, {3.7432426562822657`*^9, + 3.7432426685230703`*^9}},ExpressionUUID->"2dc3a301-69c8-4267-acd1-\ +185a7e3220d5"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n_"], "[", "u_", "]"}], "=", + SuperscriptBox["u", + RowBox[{"n", "-", "1"}]]}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "10"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"H", "[", "R_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "R"}]], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "u", "]"}], + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox["u", "2"], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", "1"}], ")"}], + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[DoublePrime]"], "[", "u", + "]"}]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"7", "u"}], + RowBox[{"4", + SuperscriptBox["R", "2"]}]], "-", + FractionBox["3", "u"]}], ")"}], " ", + RowBox[{ + SubsuperscriptBox["\[Psi]", "j", "\[Prime]"], "[", "u", "]"}]}], + "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + FractionBox["1", "u"], "+", + FractionBox["3", + SuperscriptBox["R", "2"]]}], ")"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "u", "]"}]}]}], ")"}], "u", + RowBox[{"\[DifferentialD]", "u"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{ + RowBox[{"S", "[", "R_", "]"}], "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "R"}]], + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "i"], "[", "u", "]"}], + RowBox[{ + SubscriptBox["\[Psi]", "j"], "[", "u", "]"}], "u", + RowBox[{"\[DifferentialD]", "u"}]}]}], ",", + RowBox[{"{", + RowBox[{"i", ",", "M"}], "}"}], ",", + RowBox[{"{", + RowBox[{"j", ",", "M"}], "}"}]}], "]"}]}], ";"}]}], + "\[IndentingNewLine]", "]"}], ";"}]}], "Input", + CellChangeTimes->{{3.742918604620111*^9, 3.7429186131351423`*^9}, + 3.742918719955948*^9, {3.74291885295679*^9, 3.742918854648775*^9}, + 3.742922362967875*^9, 3.742980439148241*^9, 3.742980540306929*^9, { + 3.742994989188118*^9, 3.742995016518692*^9}, {3.742995150772037*^9, + 3.7429951513978567`*^9}, 3.7429952985264072`*^9, {3.74299538074587*^9, + 3.7429953808123302`*^9}, {3.742996132486848*^9, 3.7429961349036427`*^9}, + 3.7429963078815823`*^9, {3.742996660743409*^9, 3.742996660843338*^9}, { + 3.742996945034573*^9, 3.742996945161457*^9}, 3.7430081967857656`*^9, + 3.743009059579871*^9, 3.743009234820531*^9, 3.743009382026333*^9, { + 3.7430094920285807`*^9, 3.74300951455619*^9}, 3.74300961041049*^9, + 3.743009666438663*^9, {3.7430098539824047`*^9, 3.743009854170718*^9}, + 3.743009922023739*^9, 3.743011705512869*^9, {3.743012282155789*^9, + 3.74301230752779*^9}, 3.819448341004202*^9, 3.8194484732834682`*^9}, + CellLabel->"In[38]:=",ExpressionUUID->"17d3180a-586b-41af-a83f-6e20a124c592"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"With", "[", + RowBox[{ + RowBox[{"{", + RowBox[{"M", "=", "10"}], "}"}], ",", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"tab", "=", + RowBox[{"Table", "[", "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{"\[Epsilon]", ",", "c"}], "}"}], "=", + RowBox[{"SortEigensystem", "[", + RowBox[{"Eigensystem", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", + RowBox[{ + RowBox[{"H", "[", "R", "]"}], ",", "100"}], "]"}], ",", + RowBox[{"N", "[", + RowBox[{ + RowBox[{"S", "[", "R", "]"}], ",", "100"}], "]"}]}], "}"}], + "]"}], "]"}]}], ";", "\[IndentingNewLine]", + RowBox[{"f", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + SubscriptBox["\[Psi]", "n"], "[", + RowBox[{"2", " ", "R", " ", + RowBox[{"Sin", "[", + RowBox[{"\[Theta]", "/", "2"}], "]"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"n", ",", "M"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"\[ScriptL]", "+", + FractionBox["1", "2"]}], ")"}], + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + SubscriptBox["P", "\[ScriptL]"], "[", + RowBox[{"Cos", "[", "\[Theta]", "]"}], "]"}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + "c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + ".", "f"}], ")"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}], ",", + RowBox[{"WorkingPrecision", "\[Rule]", "15"}]}], "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[ScriptL]", ",", "0", ",", "4"}], "}"}]}], "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"\[Rho]", "=", + RowBox[{"Normalize", "[", "\[Rho]", "]"}]}], ";", + "\[IndentingNewLine]", + RowBox[{"Chop", "[", + RowBox[{"{", + RowBox[{ + RowBox[{"N", "[", "R", "]"}], ",", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", "\[RightDoubleBracket]"}], + "-", + RowBox[{ + FractionBox["5", "9"], " ", + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "5", + "\[RightDoubleBracket]"}]}]}], ",", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + RowBox[{ + FractionBox["2", "5"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}]}], "+", + RowBox[{ + FractionBox["1", "9"], + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", + "\[RightDoubleBracket]"}]}]}]}], "}"}], "]"}]}], + "\[IndentingNewLine]", ",", + RowBox[{"{", + RowBox[{"R", ",", + RowBox[{"-", "20"}], ",", "20"}], "}"}]}], "]"}]}], ";"}]}], + "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]", + RowBox[{"ListPlot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"tab", "\[LeftDoubleBracket]", + RowBox[{";;", ",", + RowBox[{"{", + RowBox[{"1", ",", "2"}], "}"}]}], "\[RightDoubleBracket]"}], ",", + RowBox[{"tab", "\[LeftDoubleBracket]", + RowBox[{";;", ",", + RowBox[{"{", + RowBox[{"1", ",", "3"}], "}"}]}], "\[RightDoubleBracket]"}]}], "}"}], + ",", + RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]}], "Input", + CellChangeTimes->{ + 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, + 3.725887922914515*^9}, {3.725887992098515*^9, 3.725888054354484*^9}, { + 3.725888190363358*^9, 3.725888220466589*^9}, {3.725888405954722*^9, + 3.7258884143609447`*^9}, {3.725888474666101*^9, 3.725888479977105*^9}, { + 3.725888867994993*^9, 3.725888870697344*^9}, {3.7258889297858877`*^9, + 3.725888934808717*^9}, {3.725888967938243*^9, 3.725889013634396*^9}, { + 3.725889098059265*^9, 3.725889127921206*^9}, {3.725948058954719*^9, + 3.7259480590574303`*^9}, 3.72594816605788*^9, {3.7259484228037577`*^9, + 3.7259484452333307`*^9}, {3.7428020644337606`*^9, + 3.7428020663834143`*^9}, {3.74280212730392*^9, 3.74280222326132*^9}, + 3.742813402384555*^9, {3.7428134755684967`*^9, 3.742813490200959*^9}, + 3.742814183560895*^9, {3.742819919975389*^9, 3.742819921001403*^9}, { + 3.7428199815500298`*^9, 3.742819983199623*^9}, {3.742877775652999*^9, + 3.7428779074014883`*^9}, {3.7428779855771227`*^9, 3.742878008161315*^9}, { + 3.7428782383972187`*^9, 3.742878269832116*^9}, {3.742878722461308*^9, + 3.7428787571128817`*^9}, {3.742878822183488*^9, 3.742878822578849*^9}, { + 3.7428788828839493`*^9, 3.7428788901191797`*^9}, {3.74287901611771*^9, + 3.742879142617798*^9}, {3.742879199059029*^9, 3.7428791995390997`*^9}, + 3.742901214891993*^9, {3.74290164400101*^9, 3.742901906207686*^9}, { + 3.742901977623595*^9, 3.742902002095676*^9}, {3.742902032247851*^9, + 3.742902129781516*^9}, {3.742902162525971*^9, 3.74290222166597*^9}, { + 3.742902276796481*^9, 3.742902287956953*^9}, {3.74290235927039*^9, + 3.7429024146277122`*^9}, {3.7429024507177353`*^9, + 3.7429025388586197`*^9}, {3.742903006310214*^9, 3.7429030105077744`*^9}, { + 3.742903134891645*^9, 3.742903234602419*^9}, {3.742903317285879*^9, + 3.7429033173754187`*^9}, {3.742903361602311*^9, 3.74290336281636*^9}, { + 3.742905076823636*^9, 3.7429050778905582`*^9}, {3.742918166486006*^9, + 3.742918220012596*^9}, {3.742918311916502*^9, 3.742918313196629*^9}, { + 3.7429183606868353`*^9, 3.742918373040654*^9}, 3.742918421383092*^9, { + 3.742918494233326*^9, 3.742918623848249*^9}, {3.74291880637696*^9, + 3.7429188584054213`*^9}, {3.742918994743949*^9, 3.742919000933652*^9}, { + 3.742919057477284*^9, 3.7429190853953876`*^9}, {3.742919151618346*^9, + 3.742919208160902*^9}, {3.742920743629745*^9, 3.742920743849949*^9}, + 3.742922144965681*^9, {3.742922177083435*^9, 3.742922183503256*^9}, + 3.742922225061594*^9, 3.742922262893311*^9, {3.742922314745081*^9, + 3.7429223742620287`*^9}, {3.74292246647335*^9, 3.742922597303072*^9}, { + 3.742922649922433*^9, 3.7429226518828707`*^9}, {3.742923296115052*^9, + 3.742923318322493*^9}, {3.742980141599243*^9, 3.74298028080587*^9}, { + 3.742980310806139*^9, 3.7429803255358543`*^9}, {3.742980357754479*^9, + 3.742980398957408*^9}, {3.7429804420837727`*^9, 3.7429804467641287`*^9}, { + 3.742980541432966*^9, 3.742980548122097*^9}, {3.742980578285955*^9, + 3.742980578400919*^9}, {3.7429806326930037`*^9, 3.742980650442853*^9}, { + 3.742980694195736*^9, 3.742980749099784*^9}, {3.742981142831009*^9, + 3.742981146671338*^9}, {3.742995040906142*^9, 3.7429950736953487`*^9}, { + 3.742995103988391*^9, 3.742995134262944*^9}, {3.742995247787807*^9, + 3.742995324266892*^9}, {3.742995360656518*^9, 3.742995384384591*^9}, { + 3.7429954237133417`*^9, 3.742995433990855*^9}, {3.74299547198099*^9, + 3.742995484920415*^9}, {3.742995760731353*^9, 3.7429957673259373`*^9}, { + 3.742995847653798*^9, 3.7429958543557777`*^9}, {3.7429960931764708`*^9, + 3.742996100192951*^9}, {3.742996300021468*^9, 3.742996312749928*^9}, { + 3.742996623983343*^9, 3.742996683485918*^9}, {3.742996763260223*^9, + 3.7429967667513227`*^9}, {3.742996823435986*^9, 3.742996947881322*^9}, { + 3.7429969858904467`*^9, 3.7429969890918093`*^9}, {3.742997154797719*^9, + 3.742997179630937*^9}, {3.742997221183319*^9, 3.7429972234251423`*^9}, { + 3.742997256190982*^9, 3.742997295285985*^9}, {3.742997325738884*^9, + 3.7429973513749123`*^9}, {3.74299738735357*^9, 3.7429974112679663`*^9}, { + 3.742997461552939*^9, 3.7429974669219646`*^9}, {3.743008210683326*^9, + 3.743008225538146*^9}, 3.743009057265111*^9, {3.743009239073036*^9, + 3.7430092656499767`*^9}, {3.743009361125576*^9, 3.743009373039097*^9}, { + 3.7430094955856752`*^9, 3.7430095437002373`*^9}, {3.7430096137618933`*^9, + 3.743009669733102*^9}, {3.743009863885*^9, 3.7430099872406483`*^9}, { + 3.743010046219955*^9, 3.743010048241816*^9}, {3.7430103170795507`*^9, + 3.743010344854659*^9}, {3.743011088494897*^9, 3.7430111264389553`*^9}, { + 3.7430111611489353`*^9, 3.743011161959427*^9}, {3.743011716328226*^9, + 3.7430117899482517`*^9}, {3.743011834479101*^9, 3.743011843089284*^9}, { + 3.743012369035474*^9, 3.7430124950847063`*^9}, {3.7430153810128*^9, + 3.7430155810205812`*^9}, {3.7430156217096233`*^9, + 3.7430156592999067`*^9}, {3.743016498555264*^9, 3.743016521049993*^9}, { + 3.743016567918239*^9, 3.743016589484662*^9}, {3.743017337660697*^9, + 3.7430173705891113`*^9}, {3.743017472981872*^9, 3.7430174949264183`*^9}, { + 3.743049426352824*^9, 3.743049462340137*^9}, {3.743049515767*^9, + 3.743049532564899*^9}, {3.7430495813737097`*^9, 3.743049625292449*^9}, { + 3.743049662050229*^9, 3.743049691793056*^9}, 3.743049918773452*^9, { + 3.743050058713081*^9, 3.743050090033937*^9}, {3.743050142594883*^9, + 3.74305016311656*^9}, {3.7430502085142813`*^9, 3.7430502178348913`*^9}, + 3.74305026397199*^9, {3.743050578043778*^9, 3.743050605922763*^9}, { + 3.819448286225428*^9, 3.81944833030002*^9}, 3.8194493548537903`*^9, { + 3.819461124517785*^9, 3.819461125384673*^9}, 3.819461243348475*^9}, + CellLabel->"In[42]:=",ExpressionUUID->"e8a12bd0-24b7-41d6-8141-13207367f442"], + +Cell[BoxData[ + GraphicsBox[{{}, {{{}, {}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6], LineBox[CompressedData[" + +1:eJxTTMoPSmViYGDQBGIQDQEmB156ihVovVxmD+EbHyhne33ujNtKKN/oQL3v +4l5GtjVQvuEBwzyT1VI266F8gwPefdy+LE0boXy9A79mHD/HcmAzlK9zwGZe +5tXHudugfK0DFvdcVmYu3wnlaxyw2eHV1d2/F8pXOzC5RP57k8ZBKF/lQHiG +eFUy3xEoX+lAwU7HN14Tj0P5CgdOv2Zsytx3GsqXOVDLLqb8x+EClC9xYLL+ +zVe79l+C8kUOfL+tfiD27RUoX+BARfCurHKGa1A+x4H3/nfP5x+ByTMcOFnW +v+XJ1vNQ/of9N781M9y13QeTRwMf7Df8WsbtprpmP1TA4eBygVUfuNdC+RwO +hu27X9RWzoPyBRzqf11p7rZtgbnPoT6M6dCZptUw9zt0zt1+0/fXDpj/HPR4 +Lj6VuQ4LHwWHyIzZDWsvHoOFjwNX09Wbqsmw8FBxuP010GNJN8z9ag4+d12W +8a24CAt/h7k3b6XfiL4Mix8HXo6GIrmnMP/rOPxvWXHsnDssfPQcbq6SerC0 +/Tos/h0aNPu7JVbcgKUPh+/Oe/R81tyEpR8HruDJV8Sm34KlL4fmhw9NmbNv +Q/kmDo84nGaHad2xBwCXwsCN + "]]}, + {RGBColor[0.880722, 0.611041, 0.142051], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6], LineBox[CompressedData[" + +1:eJxTTMoPSmViYGAQAWIQDQEmBz79vvD3+6qN+yF84wPzr3H2fl8M4xsdWFnK +4eo6C8Y3PPAsYO2rXT0wvsEBXrnMglmVML7eAUfjR/cM4mB8nQPhX/1ETc1g +fK0DywQjdiz/tQHK1ziQbeYTvH8+jK92wPHv1sUfBGB8lQMW1jcuWwatg/KV +DnCuqpkx03U1lK9wQGXxufP1H5ZC+TIHHOI1vHZOmgHlSxwocZe4dTu9zR7C +FzmwJmHDa7/8zVC+wIHtxxJu77h0AsrnOPC9Wle/xvkmlM9w4ITSMeeGr0+h +/A/77Y/xvymye28PAPRxbP0= + "]], LineBox[CompressedData[" +1:eJxTTMoPSmViYGAQAWIQDQEf7FM2yLbE1Hy0hwo4FH6IOBJh8QHK53CQ2zRP +VGbWWyhfwOHTVE3btT9eQfkiDh99pq2OXP4CypdwyNnOrcy4+BmUL+MgY554 +o/HhEyhfwaHNkdU4IuIxlK/k8Pa427egfw+hfBWHE/lZepdOP4Dy1RyKy7z+ +W5feh/I1HJba7twR0H0Xytdy4JrSdHbJxdtQvo6DluwJyXLHW1C+noOs5Ct+ +06s3oHwDh41XrnTZdlyH8g0d8les498Ydg3KN3JQmrqwycf2KpRv7HDUrfe5 +t+UVKN/E4SZjT2Cwx2V7ANcnWZY= + "]]}}, { + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6]}, + {RGBColor[0.880722, 0.611041, 0.142051], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6]}}, { + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6]}, + {RGBColor[0.880722, 0.611041, 0.142051], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6]}, {}, {}, {}}, { + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6]}, + {RGBColor[0.880722, 0.611041, 0.142051], PointSize[ + 0.011000000000000001`], AbsoluteThickness[1.6]}, {}, {}, {}}}, {{}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImageSize->{821.2421875, Automatic}, + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{-20., 20.}, {-0.06901502558410735, 1.092861667707461}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.7430123811424637`*^9, 3.743012408192389*^9}, { + 3.7430124387563047`*^9, 3.743012508045164*^9}, {3.7430154219485817`*^9, + 3.743015452598775*^9}, {3.743015490869273*^9, 3.743015590126574*^9}, { + 3.743015634807576*^9, 3.743015676803303*^9}, 3.743016540493622*^9, { + 3.743016579584977*^9, 3.74301659848284*^9}, 3.743017504154944*^9, { + 3.743049470930752*^9, 3.7430494941500807`*^9}, {3.743049533404334*^9, + 3.743049546355226*^9}, {3.743049615424395*^9, 3.743049644042947*^9}, + 3.743049688622527*^9, 3.743049735290845*^9, {3.743050075077178*^9, + 3.743050118654882*^9}, {3.74305015232526*^9, 3.743050173216238*^9}, + 3.743050228261497*^9, 3.743050274432351*^9, {3.7430505492426453`*^9, + 3.7430505625451717`*^9}, {3.7430505977198277`*^9, 3.743050624288727*^9}, + 3.819448332544907*^9, 3.819448474023838*^9, 3.8194485230467*^9, + 3.819449404013495*^9, 3.819461183333342*^9, 3.819461295735427*^9}, + CellLabel->"Out[43]=",ExpressionUUID->"6cf12868-5980-4ee9-9f5e-473067fd4e9d"] +}, Open ]] +}, Open ]] +}, Open ]] +}, Open ]] +}, +WindowSize->{1280, 755}, +WindowMargins->{{0, Automatic}, {Automatic, 0}}, +FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (March 13, 2020)", +StyleDefinitions->"Default.nb", +ExpressionUUID->"8b8f66d5-74ef-4f00-a943-e92faec4ee0a" +] +(* End of Notebook Content *) + +(* Internal cache information *) +(*CellTagsOutline +CellTagsIndex->{} +*) +(*CellTagsIndex +CellTagsIndex->{} +*) +(*NotebookFileOutline +Notebook[{ +Cell[CellGroupData[{ +Cell[580, 22, 157, 3, 98, "Title",ExpressionUUID->"f14a9b83-4155-4933-b4bd-86482283a3f0"], +Cell[740, 27, 574, 12, 68, "Input",ExpressionUUID->"f63df8ff-a805-43cf-b25e-970437446449", + InitializationCell->True], +Cell[1317, 41, 593, 16, 46, "Input",ExpressionUUID->"06b69520-f042-4fc6-9314-22d2e79542d6", + InitializationCell->True], +Cell[1913, 59, 549, 16, 46, "Input",ExpressionUUID->"a8c11cd4-a9a5-4079-8595-5294b1fb94c7", + InitializationCell->True], +Cell[2465, 77, 484, 12, 49, "Input",ExpressionUUID->"e29c6d12-164d-461c-b102-761d687a35f0", + InitializationCell->True], +Cell[2952, 91, 470, 11, 49, "Input",ExpressionUUID->"74769596-3e6e-4ca2-8edd-d3dad7f9f8d1", + InitializationCell->True], +Cell[3425, 104, 439, 10, 49, "Input",ExpressionUUID->"1fff622e-e162-45b8-93d8-03e2f95f6a4a", + InitializationCell->True], +Cell[3867, 116, 2202, 63, 69, "Input",ExpressionUUID->"7fc2e2a8-1267-4aa2-acf5-d2d12a58563c", + InitializationCell->True], +Cell[6072, 181, 296, 8, 49, "Input",ExpressionUUID->"76897437-158e-48b2-bca0-c92679d71862", + InitializationCell->True], +Cell[6371, 191, 246, 6, 49, "Input",ExpressionUUID->"751041e2-0753-48c1-aa6c-9f69333e4db7", + InitializationCell->True], +Cell[6620, 199, 879, 25, 49, "Input",ExpressionUUID->"f13406bf-d041-4fbb-823f-f514d04fe27c", + InitializationCell->True], +Cell[7502, 226, 315, 7, 46, "Input",ExpressionUUID->"183ae429-a997-4f0d-baef-2a20bbc5c8ff", + InitializationCell->True], +Cell[7820, 235, 1716, 51, 77, "Input",ExpressionUUID->"2fd619d6-5e78-47b6-adfc-2c3a75428669", + InitializationCell->True] +}, Closed]], +Cell[CellGroupData[{ +Cell[9573, 291, 226, 4, 72, "Title",ExpressionUUID->"c626dffe-68a4-4be1-b83c-a98638c384be"], +Cell[CellGroupData[{ +Cell[9824, 299, 161, 3, 67, "Section",ExpressionUUID->"e0a5c645-2143-460d-a4e6-085c89e142f8"], +Cell[CellGroupData[{ +Cell[10010, 306, 3716, 104, 118, "Input",ExpressionUUID->"18ee6744-3e3b-4677-9588-1803214665ac"], +Cell[13729, 412, 3605, 105, 98, "Output",ExpressionUUID->"cbca8ed1-5d8f-4e61-8033-cf95096b7059"] +}, Open ]], +Cell[CellGroupData[{ +Cell[17371, 522, 3842, 109, 125, "Input",ExpressionUUID->"ea189845-c47e-4753-ae12-0c29bb7fe966"], +Cell[21216, 633, 2907, 81, 119, "Output",ExpressionUUID->"92d6db72-9f08-4355-8160-14f066aceceb"] +}, Open ]], +Cell[CellGroupData[{ +Cell[24160, 719, 2154, 64, 63, "Input",ExpressionUUID->"c2d3be71-50b2-4d02-bc7c-fa8422bb9511"], +Cell[26317, 785, 943, 29, 56, "Output",ExpressionUUID->"3a86ae5d-84b5-4de4-bf01-e2f7182357aa"] +}, Open ]], +Cell[CellGroupData[{ +Cell[27297, 819, 2113, 62, 63, "Input",ExpressionUUID->"6d246081-7c23-4031-b117-f6e9dbc0e0a0"], +Cell[29413, 883, 981, 24, 65, "Output",ExpressionUUID->"3f1ab4cb-673d-4ce6-aaea-91d682381bce"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[30443, 913, 192, 3, 53, "Section",ExpressionUUID->"f857da23-6512-4a44-801c-0238416ec25a"], +Cell[30638, 918, 582, 11, 35, "Text",ExpressionUUID->"2556e3c0-3c07-46c8-a4f0-e0d5f873e557"], +Cell[31223, 931, 468, 14, 46, "Input",ExpressionUUID->"52f037c3-c011-4459-9ec6-6f496c768a58"], +Cell[31694, 947, 1494, 39, 67, "Input",ExpressionUUID->"e939f164-90ed-4275-8c20-a3c9b35f02a0"], +Cell[33191, 988, 1322, 35, 67, "Input",ExpressionUUID->"abec2db9-74cd-44ab-8e15-ec3c2d9acd58"], +Cell[34516, 1025, 1045, 31, 67, "Input",ExpressionUUID->"6245dfde-4373-46ac-8f56-97c43c57cefd"] +}, Closed]], +Cell[CellGroupData[{ +Cell[35598, 1061, 697, 10, 53, "Section",ExpressionUUID->"d36161d9-7065-4d0c-9aa3-9e184ff60f78"], +Cell[CellGroupData[{ +Cell[36320, 1075, 509, 8, 54, "Subsection",ExpressionUUID->"caba0f41-e4c2-48bd-b7f9-f49d444689e8"], +Cell[36832, 1085, 1902, 45, 53, "Input",ExpressionUUID->"19db6ad5-bc03-487e-a573-966ce5a1e931"], +Cell[CellGroupData[{ +Cell[38759, 1134, 1804, 46, 53, "Input",ExpressionUUID->"6cb4dcc6-ee3c-42a3-83e3-235f526f9182"], +Cell[40566, 1182, 280, 5, 34, "Output",ExpressionUUID->"7a5608ac-da7f-4146-9663-314f8a925eb7"] +}, Open ]], +Cell[40861, 1190, 2101, 56, 49, "Input",ExpressionUUID->"4538602f-e656-4a1f-8b53-fef84aa71ecb"], +Cell[42965, 1248, 6017, 123, 282, "Input",ExpressionUUID->"1fc2dedb-8f1a-403e-a7e1-c8dbd76bc9e5"] +}, Closed]], +Cell[CellGroupData[{ +Cell[49019, 1376, 490, 7, 38, "Subsection",ExpressionUUID->"bdb8d3b4-c988-408c-865f-6a4aaefec0cc"], +Cell[CellGroupData[{ +Cell[49534, 1387, 9360, 179, 332, "Input",ExpressionUUID->"fd4d7d77-fd44-443b-a877-600297ee2a20"], +Cell[58897, 1568, 1753, 31, 196, "Print",ExpressionUUID->"eddb80e0-8314-4b81-a073-134184dae11a"], +Cell[60653, 1601, 711, 14, 37, "Output",ExpressionUUID->"77e73b0a-4204-439b-880c-363ddd8df3f0"], +Cell[61367, 1617, 1780, 45, 242, "Output",ExpressionUUID->"e954db0b-9de5-4b95-884f-97be0d9ee069"] +}, Open ]], +Cell[63162, 1665, 248, 5, 30, "Input",ExpressionUUID->"2a334965-e048-4730-b8d2-934066eee580"], +Cell[63413, 1672, 370, 12, 48, "Input",ExpressionUUID->"7e0bdb5b-809c-478e-a3d8-bbaf3faf9a2a"], +Cell[63786, 1686, 670, 19, 45, "Input",ExpressionUUID->"efa3f2c4-c56a-4f0d-a231-57f12b695850"], +Cell[64459, 1707, 419, 12, 54, "Input",ExpressionUUID->"6d2eae8e-6c4d-48f2-a1b2-4de4ecc2600b"], +Cell[64881, 1721, 499, 14, 48, "Input",ExpressionUUID->"ae82bc8b-92a9-43b2-ac92-6cd163b82739"], +Cell[65383, 1737, 1953, 45, 98, "Input",ExpressionUUID->"87275d0e-03a0-4d3c-9d6f-87d7d86f1997"], +Cell[CellGroupData[{ +Cell[67361, 1786, 3013, 81, 63, "Input",ExpressionUUID->"3a93abe4-2ad3-486e-8c6e-7fdc2391862f"], +Cell[70377, 1869, 1192, 22, 34, "Output",ExpressionUUID->"3f0af36f-5a14-4009-9228-7f92279f21fd"] +}, Open ]], +Cell[CellGroupData[{ +Cell[71606, 1896, 8927, 172, 325, "Input",ExpressionUUID->"d1b1610f-85af-4346-ac50-e489107603e8"], +Cell[80536, 2070, 2691, 64, 56, "Output",ExpressionUUID->"d46330e7-34f6-4fd6-87c7-9d62e37f39f0"], +Cell[83230, 2136, 2830, 58, 240, "Output",ExpressionUUID->"a1eff725-6cd6-4766-9c48-e4596ad8fcd8"] +}, Open ]], +Cell[CellGroupData[{ +Cell[86097, 2199, 2391, 67, 205, "Input",ExpressionUUID->"312998b8-f34f-4d8f-ada8-529ce8e4fc92"], +Cell[88491, 2268, 1880, 62, 77, "Output",ExpressionUUID->"732834ed-bb17-43bb-807d-6b18ef0060a2"] +}, Open ]], +Cell[CellGroupData[{ +Cell[90408, 2335, 6643, 173, 162, "Input",ExpressionUUID->"2016af84-5098-4a00-a783-f0d93f8c9ba3"], +Cell[97054, 2510, 1495, 25, 60, "Output",ExpressionUUID->"bd9eb2f7-582b-4a68-9544-172d9b5d206c"], +Cell[98552, 2537, 815, 13, 34, "Output",ExpressionUUID->"202780ab-b52d-489c-a92e-1b0fd0915e99"] +}, Open ]], +Cell[CellGroupData[{ +Cell[99404, 2555, 1857, 44, 140, "Input",ExpressionUUID->"30e5f6ef-f847-4642-bbeb-30c280b77e0b"], +Cell[101264, 2601, 767, 15, 60, "Output",ExpressionUUID->"5e69b9d6-c0fe-4adf-b5a6-d354021c664b"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[102080, 2622, 212, 4, 38, "Subsection",ExpressionUUID->"c866a966-62d2-4aaa-be30-188e454b7735"], +Cell[102295, 2628, 1505, 42, 54, "Input",ExpressionUUID->"5f15e614-bd85-47be-b20b-e346fe08a2c7"], +Cell[103803, 2672, 1820, 52, 56, "Input",ExpressionUUID->"95762630-81b3-4910-890e-f8cbb4b3594c"], +Cell[105626, 2726, 4914, 151, 102, "Input",ExpressionUUID->"d65bd25c-ca2f-407d-9b79-7092dc14020a"], +Cell[CellGroupData[{ +Cell[110565, 2881, 3637, 118, 99, "Input",ExpressionUUID->"86c4c204-12d5-4cc4-91f3-4ef38f2f1176"], +Cell[114205, 3001, 403, 6, 34, "Output",ExpressionUUID->"a2be3453-5dee-4d23-b728-7cbc223eac21"], +Cell[114611, 3009, 405, 6, 34, "Output",ExpressionUUID->"f9680827-b5a0-43a4-8fce-6d063ed22fc4"] +}, Open ]], +Cell[115031, 3018, 2969, 102, 101, "Input",ExpressionUUID->"ffcbeb9c-6e95-4df6-bb5b-328b41b21992"], +Cell[CellGroupData[{ +Cell[118025, 3124, 2044, 57, 48, "Input",ExpressionUUID->"61ee86cb-074d-4ac7-9f61-c1c6b64052ea"], +Cell[120072, 3183, 453, 12, 49, "Output",ExpressionUUID->"c480bc7f-ce40-4eee-b55d-3f73c76d3e72"] +}, Open ]], +Cell[CellGroupData[{ +Cell[120562, 3200, 819, 26, 48, "Input",ExpressionUUID->"b6e55c8f-0333-4b09-aed9-bd0241fab7b8"], +Cell[121384, 3228, 552, 16, 49, "Output",ExpressionUUID->"dacdb030-75e3-4580-b198-bc005365a6e5"] +}, Open ]], +Cell[121951, 3247, 1773, 53, 51, "Input",ExpressionUUID->"db51f6a7-4690-40c2-af32-a6f7eab9b126"], +Cell[123727, 3302, 468, 15, 48, "Input",ExpressionUUID->"67e833cb-794e-46bf-aaaa-f7fedec74084"], +Cell[CellGroupData[{ +Cell[124220, 3321, 385, 12, 48, "Input",ExpressionUUID->"3ade0751-2e40-483d-aa9f-7c6decd096ba"], +Cell[124608, 3335, 303, 9, 34, "Output",ExpressionUUID->"e43011ca-1485-4c14-8ef5-e3e5c2853e54"] +}, Open ]], +Cell[CellGroupData[{ +Cell[124948, 3349, 607, 20, 48, "Input",ExpressionUUID->"1f77c8a4-02f2-4a43-9353-2c6dc0e607c1"], +Cell[125558, 3371, 305, 9, 34, "Output",ExpressionUUID->"8b84c089-d48f-4520-a0df-2c902ca82399"] +}, Open ]], +Cell[125878, 3383, 4864, 127, 182, "Input",ExpressionUUID->"fc6fe6fa-c5e9-41cb-966e-1e14dcc26ff6"], +Cell[130745, 3512, 10398, 188, 282, "Input",ExpressionUUID->"a06ef68f-50cc-4e7f-bfb8-5863cadce9e2"], +Cell[CellGroupData[{ +Cell[141168, 3704, 3545, 82, 199, "Input",ExpressionUUID->"6619aa61-41df-4561-afa2-5b697e931325"], +Cell[144716, 3788, 273958, 4808, 318, "Output",ExpressionUUID->"a8394bf7-c1fe-421f-ab00-3065601f65da"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[418723, 8602, 163, 3, 38, "Subsection",ExpressionUUID->"d406c2ba-4ab0-44d0-9b6f-c0c1db6c1acf"], +Cell[418889, 8607, 1505, 42, 54, "Input",ExpressionUUID->"5964132e-935a-46a6-b153-12b5727d94a0"], +Cell[420397, 8651, 1820, 52, 56, "Input",ExpressionUUID->"9e3ef216-9ad2-4adb-b9e7-96392657d2b3"], +Cell[422220, 8705, 4736, 148, 102, "Input",ExpressionUUID->"fd5e482a-7176-4bda-b608-c9d284776293"], +Cell[CellGroupData[{ +Cell[426981, 8857, 3766, 120, 99, "Input",ExpressionUUID->"d44672a8-904c-49d5-a749-404599638355"], +Cell[430750, 8979, 525, 8, 34, "Output",ExpressionUUID->"1252dce1-bd9d-4c0b-a27a-4a9ea1fd0d90"], +Cell[431278, 8989, 525, 8, 34, "Output",ExpressionUUID->"77f79985-ba0c-4e4f-bf6b-e218325f8b1c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[431840, 9002, 5197, 176, 154, "Input",ExpressionUUID->"5f1d575c-4c3c-4bde-8f8f-240d45244a88"], +Cell[437040, 9180, 182, 3, 34, "Output",ExpressionUUID->"61d6448d-7998-43fb-b38e-205c44de9446"] +}, Open ]], +Cell[437237, 9186, 5103, 174, 154, "Input",ExpressionUUID->"d0f32758-1361-44ee-bb02-8950288c60b3"], +Cell[CellGroupData[{ +Cell[442365, 9364, 3554, 119, 101, "Input",ExpressionUUID->"318015e8-2886-4487-be95-e7f69ff7a94c"], +Cell[445922, 9485, 156, 3, 34, "Output",ExpressionUUID->"3c0943dd-d696-48fb-95bf-e076fa93c9b0"] +}, Open ]], +Cell[446093, 9491, 3033, 103, 101, "Input",ExpressionUUID->"b4079bea-4a03-45f8-9706-9190d1a1a2fd"], +Cell[CellGroupData[{ +Cell[449151, 9598, 1956, 55, 48, "Input",ExpressionUUID->"523e901d-07d6-4226-ab0a-a0f8b4022ef8"], +Cell[451110, 9655, 422, 11, 49, "Output",ExpressionUUID->"cdd496d7-6f57-4d4b-9410-784a9d2ec602"] +}, Open ]], +Cell[CellGroupData[{ +Cell[451569, 9671, 696, 24, 48, "Input",ExpressionUUID->"a2621bef-7c52-4cc5-b04b-4a41d784cd3d"], +Cell[452268, 9697, 482, 15, 49, "Output",ExpressionUUID->"47b658d6-e43b-40a5-bd62-147a938a1d86"] +}, Open ]], +Cell[CellGroupData[{ +Cell[452787, 9717, 581, 19, 48, "Input",ExpressionUUID->"ab059271-ba95-494b-97be-904cc891c23e"], +Cell[453371, 9738, 371, 11, 51, "Output",ExpressionUUID->"8f57ea33-6026-4373-bdf2-c97365a6aff0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[453779, 9754, 452, 12, 30, "Input",ExpressionUUID->"1423d03d-0009-4a98-923c-6616c220bc62"], +Cell[454234, 9768, 7116, 137, 239, "Output",ExpressionUUID->"a9257c0c-b5e1-4c1f-b935-f11312fc5f0c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[461387, 9910, 558, 16, 48, "Input",ExpressionUUID->"7d937c46-315c-4127-85c4-712b14bc01aa"], +Cell[461948, 9928, 402, 12, 49, "Output",ExpressionUUID->"cd9d35dd-d570-4a5a-8d26-67dfbe5a07bb"] +}, Open ]], +Cell[462365, 9943, 513, 17, 48, "Input",ExpressionUUID->"a2ac8ff2-1cae-41e1-a20b-4fbb997dec08"], +Cell[CellGroupData[{ +Cell[462903, 9964, 448, 14, 46, "Input",ExpressionUUID->"2f20c949-180a-497c-b460-fc41151522d8"], +Cell[463354, 9980, 275, 8, 49, "Output",ExpressionUUID->"0b25d327-e92b-4494-a4e0-91dc831b2739"] +}, Open ]], +Cell[463644, 9991, 191, 6, 48, "Input",ExpressionUUID->"939751eb-557e-4570-ac5e-0177a1ac50cf"], +Cell[463838, 9999, 1875, 54, 51, "Input",ExpressionUUID->"7f39c9ab-32fa-41ee-a84c-0db48d3fd4ca"], +Cell[465716, 10055, 468, 15, 48, "Input",ExpressionUUID->"59da42ed-948c-40cc-9a75-afe1a8b88822"], +Cell[466187, 10072, 3895, 95, 172, "Input",ExpressionUUID->"fb90afa3-6319-4401-96d5-c434cb0ab8fe"], +Cell[CellGroupData[{ +Cell[470107, 10171, 9359, 177, 304, "Input",ExpressionUUID->"54cba639-78de-41b7-b09f-3fb5cc912380"], +Cell[479469, 10350, 3768, 103, 152, "Output",ExpressionUUID->"30a67b2f-36de-472b-9923-bea976f44530"], +Cell[483240, 10455, 2760, 58, 248, "Output",ExpressionUUID->"a2999cb1-22fd-4cbd-9bc7-6a54cac3c4ea"] +}, Open ]] +}, Open ]], +Cell[CellGroupData[{ +Cell[486049, 10519, 304, 9, 54, "Subsection",ExpressionUUID->"c3267724-2a1e-46ae-a70a-24dbe2bc9597"], +Cell[CellGroupData[{ +Cell[486378, 10532, 9486, 298, 329, "Input",ExpressionUUID->"093b63ec-d5d7-429c-a6ae-daee424561d5"], +Cell[495867, 10832, 759, 11, 34, "Output",ExpressionUUID->"c8bc8a1a-7edb-4bf3-8401-c89b58f107f2"], +Cell[496629, 10845, 759, 11, 34, "Output",ExpressionUUID->"f48a9ecf-9fbe-47d9-ae87-f8b5af6c5e0b"], +Cell[497391, 10858, 759, 11, 34, "Output",ExpressionUUID->"ec1755b9-8f51-47c9-9a0f-1629807636d1"], +Cell[498153, 10871, 809, 13, 34, "Output",ExpressionUUID->"de84db82-7bcd-4321-be05-acdd32c5a02c"], +Cell[498965, 10886, 759, 11, 34, "Output",ExpressionUUID->"e6a683e2-6c11-4e7d-802c-2b921896631b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[499761, 10902, 5317, 162, 97, "Input",ExpressionUUID->"5ce35750-7da9-4ff5-b83f-0ae5f5377437"], +Cell[505081, 11066, 156, 3, 34, "Output",ExpressionUUID->"7fb01024-0558-4c4e-bc04-f537ce36e159"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[505286, 11075, 357, 9, 38, "Subsection",ExpressionUUID->"59690161-1c60-4593-a2e7-c717480798c8"], +Cell[CellGroupData[{ +Cell[505668, 11088, 12034, 380, 331, "Input",ExpressionUUID->"83dd638d-a3d9-4eac-9812-c6a4cf31efb2"], +Cell[517705, 11470, 209, 4, 34, "Output",ExpressionUUID->"b4e381d7-4a23-4e07-981a-8f2086d6ecb0"], +Cell[517917, 11476, 210, 4, 34, "Output",ExpressionUUID->"c0f052e7-e375-40fb-9cda-e30d1e386bf6"], +Cell[518130, 11482, 210, 4, 34, "Output",ExpressionUUID->"0bae4c27-c7b9-457a-8a0b-94924bb3d300"], +Cell[518343, 11488, 260, 6, 34, "Output",ExpressionUUID->"c64341aa-bf6d-4dfd-8f07-5440230a7974"], +Cell[518606, 11496, 210, 4, 34, "Output",ExpressionUUID->"55d747c3-742f-4a1c-84a2-fde40e88cc5e"] +}, Open ]], +Cell[CellGroupData[{ +Cell[518853, 11505, 15052, 468, 347, "Input",ExpressionUUID->"e4ec2f88-e321-4297-8368-7cf33b0e5d5e"], +Cell[533908, 11975, 3774, 117, 61, "Output",ExpressionUUID->"468a3fca-bc22-4dbe-ba2e-d09f5efde874"] +}, Open ]] +}, Closed]], +Cell[CellGroupData[{ +Cell[537731, 12098, 238, 4, 38, "Subsection",ExpressionUUID->"eac4bda2-189e-42f0-81dc-51e5ebbd2f4a"], +Cell[537972, 12104, 1505, 42, 54, "Input",ExpressionUUID->"17b135d5-7e41-4643-b4bb-f3eea5ce1e51"], +Cell[539480, 12148, 1851, 52, 56, "Input",ExpressionUUID->"14802bea-9955-4893-8c9c-a17bac458ece"], +Cell[541334, 12202, 5028, 155, 151, "Input",ExpressionUUID->"d3a6ec1b-6a01-430d-947f-8f0e2ffa4abc"], +Cell[CellGroupData[{ +Cell[546387, 12361, 12016, 360, 415, "Input",ExpressionUUID->"9bfbd342-26ab-4960-b0c1-6d30bc401946"], +Cell[558406, 12723, 842, 13, 34, "Output",ExpressionUUID->"bad42b6b-febc-423c-b781-8e8f634645b2"], +Cell[559251, 12738, 842, 13, 34, "Output",ExpressionUUID->"08268186-e6a0-4d08-92db-7368a97e5b15"], +Cell[560096, 12753, 838, 12, 34, "Output",ExpressionUUID->"14e5cd70-74bd-402b-9647-758b00e98438"], +Cell[560937, 12767, 844, 13, 34, "Output",ExpressionUUID->"a1021d01-c1ea-43ff-815d-85bf1860cda5"], +Cell[561784, 12782, 842, 13, 34, "Output",ExpressionUUID->"a6228c72-c3ab-4a4b-a7dd-114c74203722"], +Cell[562629, 12797, 842, 13, 34, "Output",ExpressionUUID->"449b7df1-0d75-4d67-925c-350cdef9600b"] +}, Open ]], +Cell[CellGroupData[{ +Cell[563508, 12815, 3780, 122, 98, "Input",ExpressionUUID->"f27d4a85-2a37-4803-a443-435791839d08"], +Cell[567291, 12939, 211, 4, 34, "Output",ExpressionUUID->"2dc3a301-69c8-4267-acd1-185a7e3220d5"] +}, Open ]], +Cell[567517, 12946, 3620, 91, 172, "Input",ExpressionUUID->"17d3180a-586b-41af-a83f-6e20a124c592"], +Cell[CellGroupData[{ +Cell[571162, 13041, 9840, 189, 283, "Input",ExpressionUUID->"e8a12bd0-24b7-41d6-8141-13207367f442"], +Cell[581005, 13232, 4442, 90, 525, "Output",ExpressionUUID->"6cf12868-5980-4ee9-9f5e-473067fd4e9d"] +}, Open ]] +}, Open ]] +}, Open ]] +}, Open ]] +} +] +*) +