diff --git a/TrUEGs.bib b/TrUEGs.bib index e3e6a44..ffbdab6 100644 --- a/TrUEGs.bib +++ b/TrUEGs.bib @@ -1,13 +1,49 @@ %% This BibTeX bibliography file was created using BibDesk. %% http://bibdesk.sourceforge.net/ -%% Created for Pierre-Francois Loos at 2021-03-23 15:51:47 +0100 +%% Created for Pierre-Francois Loos at 2021-04-08 08:22:37 +0200 %% Saved with string encoding Unicode (UTF-8) +@book{VignaleBook, + address = {Cambridge, England}, + author = {G. F. Giuliani and G. Vignale}, + date-added = {2021-04-08 08:22:31 +0200}, + date-modified = {2021-04-08 08:22:31 +0200}, + keywords = {jellium}, + publisher = {Cambridge University Press}, + title = {Quantum Theory of Electron Liquid}, + year = {2005}} + +@inbook{Stuber_2003, + address = {Dordrecht}, + author = {Stuber, J and Paldus, J}, + booktitle = {Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov L\"{o}wdin}, + date-added = {2021-04-08 08:21:59 +0200}, + date-modified = {2021-04-08 08:22:04 +0200}, + editor = {Br\"{a}ndas, E J and Kryachko, E S}, + pages = {67}, + publisher = {Kluwer Academic}, + title = {{Symmetry Breaking in the Independent Particle Model}}, + volume = {1}, + year = {2003}} + +@article{Fukutome_1981, + author = {Fukutome, Hideo}, + date-added = {2021-04-08 08:21:36 +0200}, + date-modified = {2021-04-08 08:21:49 +0200}, + doi = {10.1002/qua.560200502}, + journal = {Int. J. Quantum Chem.}, + number = {5}, + pages = {955--1065}, + title = {Unrestricted {Hartree-Fock} theory and its applications to molecules and chemical reactions}, + volume = {20}, + year = {1981}, + Bdsk-Url-1 = {https://doi.org/10.1002/qua.560200502}} + @article{Boyd_1974, abstract = {A new definition of the Fermi hole in many-electron systems is provided in terms of the distribution function falpha alpha (r12) of the interelectronic distance for electrons with parallel spins. By analogy with the Coulomb hole, the Fermi hole is defined as the difference between the values of f22(r12) derived from the Hartree-Fock and the Hartree wavefunctions. this definition, unlike previous ones, provides a simple picture of the Fermi hole as a function of r12. By assuming that the Hartree and Hartree-Fock orbitals are identical, an analytical formula is derived for the Fermi hole. Explicit calculations are presented for the 23S state of He and the ground state of Be. It is observed that the Fermi hole is remarkably similar in these two cases; and that the effects of Coulomb correlation are more long-ranged than those of Fermi correlation.}, author = {R J Boyd and C A Coulson}, diff --git a/TrUEGs.nb b/TrUEGs.nb index 6b1cd72..d59f09a 100644 --- a/TrUEGs.nb +++ b/TrUEGs.nb @@ -10,21 +10,16 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 640403, 14683] -NotebookOptionsPosition[ 621323, 14376] -NotebookOutlinePosition[ 621716, 14392] -CellTagsIndexPosition[ 621673, 14389] +NotebookDataLength[ 687043, 15889] +NotebookOptionsPosition[ 664932, 15538] +NotebookOutlinePosition[ 665325, 15554] +CellTagsIndexPosition[ 665282, 15551] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ -Cell[BoxData[" "], "Input", - CellChangeTimes->{ - 3.824293199711501*^9},ExpressionUUID->"51e960e2-2f64-41fc-8977-\ -199523762b87"], Cell[CellGroupData[{ - Cell["Initialization", "Title", CellChangeTimes->{{3.726041770598298*^9, 3.726041773223225*^9}},ExpressionUUID->"f14a9b83-4155-4933-b4bd-\ @@ -42,7 +37,7 @@ mathpazo,xcolor,bm,mhchem}\>\"", "}"}]}]}], "]"}], ";"}]}], "Input", InitializationCell->True, CellChangeTimes->{{3.7288240181604652`*^9, 3.728824027007351*^9}, { 3.733131339213026*^9, 3.733131352923026*^9}}, - CellLabel->"In[62]:=",ExpressionUUID->"f63df8ff-a805-43cf-b25e-970437446449"], + CellLabel->"In[14]:=",ExpressionUUID->"f63df8ff-a805-43cf-b25e-970437446449"], Cell[BoxData[ RowBox[{ @@ -60,7 +55,7 @@ Cell[BoxData[ InitializationCell->True, CellChangeTimes->{{3.600453124069656*^9, 3.6004531282446003`*^9}, { 3.60048222016492*^9, 3.6004822548645678`*^9}}, - CellLabel->"In[64]:=",ExpressionUUID->"06b69520-f042-4fc6-9314-22d2e79542d6"], + CellLabel->"In[16]:=",ExpressionUUID->"06b69520-f042-4fc6-9314-22d2e79542d6"], Cell[BoxData[ RowBox[{ @@ -78,7 +73,7 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"e", ",", "f", ",", "g"}], "}"}]}], "]"}]}], ";"}]], "Input", InitializationCell->True, - CellLabel->"In[65]:=",ExpressionUUID->"a8c11cd4-a9a5-4079-8595-5294b1fb94c7"], + CellLabel->"In[17]:=",ExpressionUUID->"a8c11cd4-a9a5-4079-8595-5294b1fb94c7"], Cell[BoxData[ RowBox[{ @@ -92,7 +87,7 @@ Cell[BoxData[ ";"}]], "Input", InitializationCell->True, CellChangeTimes->{{3.6167931952908697`*^9, 3.616793207770255*^9}}, - CellLabel->"In[66]:=",ExpressionUUID->"e29c6d12-164d-461c-b102-761d687a35f0"], + CellLabel->"In[18]:=",ExpressionUUID->"e29c6d12-164d-461c-b102-761d687a35f0"], Cell[BoxData[ RowBox[{ @@ -105,7 +100,7 @@ Cell[BoxData[ InitializationCell->True, CellChangeTimes->{{3.6167931952908697`*^9, 3.616793207770255*^9}, { 3.743229365082172*^9, 3.743229372894492*^9}}, - CellLabel->"In[67]:=",ExpressionUUID->"74769596-3e6e-4ca2-8edd-d3dad7f9f8d1"], + CellLabel->"In[19]:=",ExpressionUUID->"74769596-3e6e-4ca2-8edd-d3dad7f9f8d1"], Cell[BoxData[ RowBox[{ @@ -117,7 +112,7 @@ Cell[BoxData[ InitializationCell->True, CellChangeTimes->{{3.6167931952908697`*^9, 3.616793207770255*^9}, { 3.7428781062377253`*^9, 3.74287811954315*^9}}, - CellLabel->"In[68]:=",ExpressionUUID->"1fff622e-e162-45b8-93d8-03e2f95f6a4a"], + CellLabel->"In[20]:=",ExpressionUUID->"1fff622e-e162-45b8-93d8-03e2f95f6a4a"], Cell[BoxData[ RowBox[{ @@ -182,7 +177,7 @@ Cell[BoxData[ CellChangeTimes->{ 3.617400433527934*^9, {3.6174039018984203`*^9, 3.617403963513486*^9}, { 3.617404074545025*^9, 3.6174041117104883`*^9}}, - CellLabel->"In[69]:=",ExpressionUUID->"7fc2e2a8-1267-4aa2-acf5-d2d12a58563c"], + CellLabel->"In[21]:=",ExpressionUUID->"7fc2e2a8-1267-4aa2-acf5-d2d12a58563c"], Cell[BoxData[ RowBox[{ @@ -192,7 +187,7 @@ Cell[BoxData[ RowBox[{"KroneckerDelta", "[", RowBox[{"a", ",", "b"}], "]"}]}], ";"}]], "Input", InitializationCell->True, - CellLabel->"In[70]:=",ExpressionUUID->"76897437-158e-48b2-bca0-c92679d71862"], + CellLabel->"In[22]:=",ExpressionUUID->"76897437-158e-48b2-bca0-c92679d71862"], Cell[BoxData[ RowBox[{ @@ -200,7 +195,7 @@ Cell[BoxData[ SubscriptBox["\[Delta]", "x_"], "=", RowBox[{"KroneckerDelta", "[", "x", "]"}]}], ";"}]], "Input", InitializationCell->True, - CellLabel->"In[71]:=",ExpressionUUID->"751041e2-0753-48c1-aa6c-9f69333e4db7"], + CellLabel->"In[23]:=",ExpressionUUID->"751041e2-0753-48c1-aa6c-9f69333e4db7"], Cell[BoxData[ RowBox[{ @@ -227,7 +222,7 @@ Cell[BoxData[ ";"}]], "Input", InitializationCell->True, CellChangeTimes->{3.726076349075821*^9, 3.742817932502624*^9}, - CellLabel->"In[72]:=",ExpressionUUID->"f13406bf-d041-4fbb-823f-f514d04fe27c"], + CellLabel->"In[24]:=",ExpressionUUID->"f13406bf-d041-4fbb-823f-f514d04fe27c"], Cell[BoxData[ RowBox[{ @@ -236,7 +231,7 @@ Cell[BoxData[ RowBox[{"Sort", "[", RowBox[{"Transpose", "[", "eigsys", "]"}], "]"}], "]"}]}]], "Input", InitializationCell->True, - CellLabel->"In[73]:=",ExpressionUUID->"183ae429-a997-4f0d-baef-2a20bbc5c8ff"], + CellLabel->"In[25]:=",ExpressionUUID->"183ae429-a997-4f0d-baef-2a20bbc5c8ff"], Cell[BoxData[ RowBox[{ @@ -289,7 +284,7 @@ Cell[BoxData[ RowBox[{"-", "m3"}]}]]}]}]}]}]], "Input", InitializationCell->True, CellChangeTimes->{{3.7432300298738956`*^9, 3.74323016561016*^9}}, - CellLabel->"In[74]:=",ExpressionUUID->"2fd619d6-5e78-47b6-adfc-2c3a75428669"] + CellLabel->"In[26]:=",ExpressionUUID->"2fd619d6-5e78-47b6-adfc-2c3a75428669"] }, Closed]], Cell[CellGroupData[{ @@ -2631,6 +2626,273 @@ Cell["Triplet P state", "Subsection", 3.742918347362217*^9}},ExpressionUUID->"c866a966-62d2-4aaa-be30-\ 188e454b7735"], +Cell[BoxData[ + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}]], "Input",ExpressionUUID->\ +"c4a884e6-15b7-471a-9826-860d9af553cf"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", "\[CapitalLambda]"], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{"2", + RowBox[{"\[Integral]", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[CapitalLambda]", "[", + RowBox[{ + SubscriptBox["\[CapitalOmega]", "1"], ",", + SubscriptBox["\[CapitalOmega]", "2"]}], "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t", + RowBox[{"=", + RowBox[{"2", + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "-", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", + SubscriptBox["\[Phi]", "2"]}], "]"}]}]}], ")"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", + "2"]}]}]}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t", + RowBox[{"=", + RowBox[{"2", + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], + RowBox[{"3", " ", + SqrtBox["5"]}]], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", + RowBox[{"3", "/", "2"}]]}], + RowBox[{"3", " ", + SqrtBox["5"]}]]}], "+", + RowBox[{ + FractionBox[ + RowBox[{"8", " ", "\[Pi]"}], "3"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], + FractionBox[ + RowBox[{"32", " ", + SuperscriptBox["\[Pi]", + RowBox[{"3", "/", "2"}]]}], "3"]}]}], + ")"}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\t", + RowBox[{"=", + RowBox[{ + FractionBox[ + RowBox[{"512", " ", + SuperscriptBox["\[Pi]", + RowBox[{"5", "/", "2"}]]}], "9"], + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}], "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", + SubscriptBox["\[Phi]", "1"]}], "]"}]}]}], ")"}]}]}]}]}], "Input", + CellChangeTimes->{{3.825573468131763*^9, 3.825573483409993*^9}, { + 3.8255735297534857`*^9, 3.825573547708323*^9}, {3.8255736418172197`*^9, + 3.825573733995967*^9}},ExpressionUUID->"ee948f7b-d70d-4f37-b367-\ +09ca445c478b"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SubscriptBox["\[Rho]", "\[Psi]"], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], "=", + RowBox[{ + RowBox[{"2", + RowBox[{"\[Integral]", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]", "[", "\[Gamma]", "]"}], "2"], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}], "=", + RowBox[{"2", + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"\[ScriptL]", "=", "0"}], "\[Infinity]"], + RowBox[{ + SubscriptBox["c", "\[ScriptL]"], + FractionBox[ + RowBox[{"4", "\[Pi]"}], + RowBox[{ + RowBox[{"2", "\[ScriptL]"}], "+", "1"}]], + RowBox[{ + UnderoverscriptBox["\[Sum]", + RowBox[{"m", "=", + RowBox[{"-", "\[ScriptL]"}]}], "\[ScriptL]"], + RowBox[{ + RowBox[{ + SubsuperscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}], "*"], "[", + SubscriptBox["\[CapitalOmega]", "1"], "]"}], + RowBox[{"\[Integral]", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"\[ScriptL]", ",", "m"}]], "[", + SubscriptBox["\[CapitalOmega]", "2"], "]"}], + RowBox[{"\[DifferentialD]", + SubscriptBox["\[CapitalOmega]", "2"]}]}]}]}]}]}]}]}]}]}]], "Input",\ + + CellChangeTimes->{ + 3.8255734696027603`*^9, {3.825573792746961*^9, + 3.8255737998234253`*^9}},ExpressionUUID->"141f30e2-0cbb-4f96-a17a-\ +38662c6cc740"], + Cell[BoxData[ RowBox[{ RowBox[{"\[CapitalPhi]", "[", @@ -3513,28 +3775,10 @@ Cell[BoxData[{ 3.743247418681962*^9}, {3.819389816415174*^9, 3.819389816573246*^9}, { 3.819442666471469*^9, 3.819442666582307*^9}, 3.8194494164767103`*^9, { 3.8195576801631603`*^9, 3.8195576803225803`*^9}, 3.819557945453573*^9}, - CellLabel-> - "In[114]:=",ExpressionUUID->"fc6fe6fa-c5e9-41cb-966e-1e14dcc26ff6"], - -Cell[BoxData["5.32527"], "Input",ExpressionUUID->"95d385a1-26ea-4e11-abe8-f06b598ba934"], + CellLabel->"In[14]:=",ExpressionUUID->"fc6fe6fa-c5e9-41cb-966e-1e14dcc26ff6"], Cell[CellGroupData[{ -Cell[BoxData[ - RowBox[{ - FractionBox["532527", "100000"], "//", "N"}]], "Input", - CellChangeTimes->{{3.819558050851481*^9, 3.819558051423642*^9}, - 3.819558963347075*^9}, - CellLabel-> - "In[152]:=",ExpressionUUID->"d3b8b61a-60ee-4c28-9248-265add0637aa"], - -Cell[BoxData["5.32527`"], "Output", - CellChangeTimes->{{3.8195580481905813`*^9, 3.819558051890355*^9}, - 3.819558963950197*^9}, - CellLabel-> - "Out[152]=",ExpressionUUID->"4f09a422-1bf6-4df7-8c91-f2c2c0cec522"] -}, Open ]], - Cell[BoxData[ RowBox[{ RowBox[{"With", "[", @@ -3596,14 +3840,109 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"\[ScriptL]", ",", "0", ",", "2"}], "}"}]}], "]"}]}], ";", "\[IndentingNewLine]", - RowBox[{"(*", + RowBox[{ + RowBox[{"n", "[", "\[Theta]_", "]"}], "=", RowBox[{ - RowBox[{"Print", "[", - RowBox[{"\"\\"", ",", - RowBox[{"N", "[", "R", "]"}]}], "]"}], ";", "\[IndentingNewLine]", - RowBox[{"Print", "[", - RowBox[{"\"\<\[Rho]: \>\"", ",", "\[Rho]"}], "]"}], ";"}], "*)"}], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + FractionBox[ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "0"}], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + "-", + RowBox[{"2", + FractionBox[ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "2", + "\[RightDoubleBracket]"}], "3"]}], "+", + FractionBox[ + RowBox[{ + "\[Rho]", "\[LeftDoubleBracket]", "3", + "\[RightDoubleBracket]"}], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "0"}], "]"}], "2"]}]}]}], ";", "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{"4", "\[Pi]", " ", + RowBox[{"n", "[", "\[Theta]", "]"}], + RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}]}], "]"}], + "]"}], ";", "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"NIntegrate", "[", + RowBox[{ + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", "0"}], "]"}], "-", + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", "0"}], "]"}]}], ")"}], + "2"], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "1"], "]"}], + RowBox[{"Sin", "[", + SubscriptBox["\[Theta]", "2"], "]"}]}], ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Theta]", "1"], ",", "0", ",", "\[Pi]"}], "}"}], + ",", + RowBox[{"{", + RowBox[{ + SubscriptBox["\[Theta]", "2"], ",", "0", ",", "\[Pi]"}], "}"}]}], + "]"}], "]"}], ";", "\[IndentingNewLine]", + RowBox[{"Print", "[", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "0"}], "]"}], "+", + RowBox[{ + FractionBox["1", "5"], + RowBox[{ + SubscriptBox["Y", + RowBox[{"2", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "0"}], "]"}]}]}], ")"}], ",", + RowBox[{"(", + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "0"}], "]"}], ")"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "\[Pi]"}], "}"}]}], "]"}], + "]"}], ";", "\[IndentingNewLine]", RowBox[{"{", RowBox[{ RowBox[{"N", "[", "R", "]"}], ",", @@ -3624,9 +3963,9 @@ Cell[BoxData[ "\[RightDoubleBracket]"}]}]}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]", RowBox[{"{", - RowBox[{"R", ",", - RowBox[{"-", "6"}], ",", - RowBox[{"-", "6"}], ",", "1"}], "}"}]}], "]"}]}]}], + RowBox[{"R", ",", "\[IndentingNewLine]", + RowBox[{"-", "5.4"}], ",", + RowBox[{"-", "5.4"}], ",", "1"}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}], ";"}]], "Input", CellChangeTimes->{ 3.7169719668102694`*^9, 3.725887849338797*^9, {3.725887899762218*^9, @@ -3725,47 +4064,307 @@ Cell[BoxData[ 3.819528593077222*^9}, {3.819557684697259*^9, 3.819557684824532*^9}, { 3.819557757600494*^9, 3.819557827756126*^9}, {3.8195579201973867`*^9, 3.819557947680461*^9}, {3.819557998562777*^9, 3.819558054993888*^9}, { - 3.819558966239147*^9, 3.8195589818925543`*^9}}, - CellLabel-> - "In[155]:=",ExpressionUUID->"a06ef68f-50cc-4e7f-bfb8-5863cadce9e2"], + 3.819558966239147*^9, 3.8195589818925543`*^9}, {3.825567110363276*^9, + 3.825567111200262*^9}, {3.825567162919621*^9, 3.825567271541833*^9}, { + 3.825567303042*^9, 3.825567359790016*^9}, {3.825567522151163*^9, + 3.8255676220698223`*^9}, {3.825567660465777*^9, 3.825567661591798*^9}, { + 3.82557148531474*^9, 3.8255717236852407`*^9}, {3.8255717707448053`*^9, + 3.825571826151437*^9}, {3.8255719551560507`*^9, 3.825572021842815*^9}, { + 3.825572061279435*^9, 3.8255720790918293`*^9}, {3.825572111175202*^9, + 3.825572270831332*^9}, {3.8255723051679153`*^9, 3.8255723083511963`*^9}, { + 3.8255723889006977`*^9, 3.825572526841219*^9}, {3.825573072160391*^9, + 3.825573100758876*^9}, {3.825573909551299*^9, 3.8255739375791807`*^9}}, + CellLabel->"In[20]:=",ExpressionUUID->"a06ef68f-50cc-4e7f-bfb8-5863cadce9e2"], Cell[CellGroupData[{ -Cell[BoxData[ - RowBox[{"\[Epsilon]", "//", "N"}]], "Input", +Cell[BoxData["0.`"], "Print", + CellChangeTimes->{ + 3.8255672096922817`*^9, {3.825567329431567*^9, 3.825567360544487*^9}, { + 3.825567529947542*^9, 3.825567535706521*^9}, {3.825567571012645*^9, + 3.8255676226274357`*^9}, 3.8255676621501913`*^9, {3.825571483354911*^9, + 3.82557148656466*^9}, {3.825571527257399*^9, 3.825571623797057*^9}, { + 3.825571668169786*^9, 3.825571724944263*^9}, {3.8255718168030024`*^9, + 3.825571826640697*^9}, {3.825571972720669*^9, 3.825572022262472*^9}, { + 3.825572071708784*^9, 3.8255722713061132`*^9}, {3.825572306100123*^9, + 3.825572308773279*^9}, {3.825572411777607*^9, 3.825572429967472*^9}, { + 3.825572460371621*^9, 3.82557252728852*^9}, {3.825573081360861*^9, + 3.825573101175577*^9}, {3.825573920939762*^9, 3.825573938285533*^9}}, CellLabel-> - "In[156]:=",ExpressionUUID->"d9c28d1c-e0d4-475d-a943-85dfdc0de6a8"], + "During evaluation of \ +In[20]:=",ExpressionUUID->"dff7aa97-e391-4343-b7b5-ad058233477b"], + +Cell[BoxData["0.6366197721494714`"], "Print", + CellChangeTimes->{ + 3.8255672096922817`*^9, {3.825567329431567*^9, 3.825567360544487*^9}, { + 3.825567529947542*^9, 3.825567535706521*^9}, {3.825567571012645*^9, + 3.8255676226274357`*^9}, 3.8255676621501913`*^9, {3.825571483354911*^9, + 3.82557148656466*^9}, {3.825571527257399*^9, 3.825571623797057*^9}, { + 3.825571668169786*^9, 3.825571724944263*^9}, {3.8255718168030024`*^9, + 3.825571826640697*^9}, {3.825571972720669*^9, 3.825572022262472*^9}, { + 3.825572071708784*^9, 3.8255722713061132`*^9}, {3.825572306100123*^9, + 3.825572308773279*^9}, {3.825572411777607*^9, 3.825572429967472*^9}, { + 3.825572460371621*^9, 3.82557252728852*^9}, {3.825573081360861*^9, + 3.825573101175577*^9}, {3.825573920939762*^9, 3.825573938355236*^9}}, + CellLabel-> + "During evaluation of \ +In[20]:=",ExpressionUUID->"c58a0ac4-c2ad-4924-9616-d98448a17d87"], Cell[BoxData[ - RowBox[{"{", - RowBox[{ - RowBox[{"-", "0.11923861623023102`"}], ",", - RowBox[{"-", "0.04256661564660531`"}], ",", "0.07567946858548855`", ",", - "0.2571857055739135`", ",", "2.328940057717434`"}], "}"}]], "Output", - CellChangeTimes->{{3.819558971303287*^9, 3.8195589829991493`*^9}}, + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJw12Xk8VN/7AHBbZpQta/Yo5aOSELI9N9n1FQqfhKQsqWxJZSmVrZTsSpZK +1kK2rJWE0J1pLMkdkZSlLNnNDPI7nz9+f83r/Zp75znLc849z1x5N19bdw42 +NrZodja2/z45326k/tjvb3DWRSSuYysdFH+90ZVNOgKGYec625FZL/eeIRJP +gvJw2KMPyGVL8HlziSd8FTs8+R55RMSL8SrRF76xfXn/BvmuRBtfSf1FSPwu +p1CDnKfklM1Wchmk7ZVIL5EbtWZUjz4OgRCHuYA8ZLpJRFNu4nUI1Al3f/Rf +PGVe5dCmG/C0tGcwDjlarTcgt/4WeLyfGwxHFtF5XE+tjITFgQF3f+QnB725 +GMXRYPX+4UVXZBVzjf/J598GzSRlshVyvfXfFIvHsWDUnrxNB/nzycSdmYn3 +gV+e5w/ff/1RV9H+0RIPX7hksxfl6HBZK+nr5aYE+Nkl39uPzAXOik/qk8Al +R4DIQe4wbGrfX5MMLGNSbiRygslOn47KFFAT5mG4I8tazb6aL04D8kkLdQXk +nzb2J2KKHsCbE+lSf2Xp8Nyufl06/yFg10Vj+5C1nSPNTB4/guKd5esxyLbn +JegPErNBLOYR1idDB15teJtq+hg43v97ugB5ptZ/8/eWxxBklcx3GfnV696q +S01PYEftK4YA8qGWx3+z6nPANU1gl6o0HXaYdlv/OvAMUuO2xS5I0WFj+4Yc +9ZpnoDIud7EamYZ7m7ZV5gJ3Gl+/NrJzj0b8bHE+DL+6yKssSQfM3nNYd3cB +DAlfLx6WoMP2vocaUUUFgLfO9z5E/t3/t08yvxCS/F3fcyJf/tEmb/T4Odwr +/h9XqzganzmnitTEUrBdILS4ROlwTzRdr5HvJUjHTjtnitChqyxSbr/tSxD4 +IIZrIJ/47TQi2/8SeK0lb7gI08HnxCb/uckyiBKxtcncTIdkfa+Yh4KV4KJg +lN/GRweCOHqO364Sfux+7myCLBsEVrceVsL9I+DSxEuH/BIxkQsKVTB4Msqg +ahMd6uRasjGNV6Cc9el6FA8dvrErVI851MAGy3GlL1yof1l86U4ZNaDDPpJ8 +ANlLhxnaOVQDqcG5/0vnpMNcAM2w/mwtfPVRyrPnQPnx8xo1LqQOxh9ZM+rW +CVBu7R/Zn90AHxKSLNVYBOi2WGw0vNgIslFpkgNTBAj25H3SSmqEU5bVSeLI +P4c5UvZUNEJ5qmKa9SQBcWz1chLzjcCZXqn/5jcBw7q79s8EvIOUoq0CMWME +xJRvcs0KaIK5jIiZz0ME9GbjVSz/ZhhzEN/l1EXA8xKlkJmEZgiXU7Pz6iQg +/HUENlrWDKm0m4IXaQT806/3sXO2GTLm6nQjqASEihUPFfi3wE7z/51L6SBg +2717mxz8WyFwztnjYhMBfsFWpyr82sBv8ddDuTICLHz0CsjxbVA68kWc6yW6 +3k35j3NpGzj+q6c/VoLaY84dRp5ugyNqwdcLXxCgL/HmgfO5dnB6a/dLpoCA +jTV7aCSPDrhrw7rfmkVA7iIvOJ3AgbVVTVEiloALNe5xHNtoYMr7ybHnJIHW +s81Wdg0amMe6dxm7EDBD6JWvG9HgREz2xyonAgJXhHtXPWjAWfnOKOE4AcEG +TTLLRTRQcFF10TxKQFSzbPGEWidwSOYkHjAh4DHty8cewy7AywRh5y4CesbN +efLdemD8udVY3Uwf3Nm7xPbqeB9IWws5aV7qA/9dbSmNuV9hUyG9caX/C7BO +nysZ8BkCAaWDh+9pfAG31/bW8R7D8CuEXP4+thdOz/Y0Nsb8BC8PWOHs+Ax3 +Vat986JGQXVqsyiJ/zNwNFZrRQSPA8VMlzRr0wOblS2p3x78hp3suNzPiG4w +yzbMmUmchP7H/VvrPnSB+B/c5Hr1NLjWPvK5zNYF6R/q2DnPzsAIxdhf0KQT +9GQOrm89MwtXTi2WWuXQYNeQ4M+wwDkIH86J/cBOg+ICIa+qgHmYyB/SEl+m +QsTntwc5L89Djez4jb45KjhxXJCyCZkHrR6vSxnTVNjo9IE6eWse6I4NzrtH +qeAhELp/e8o8eCtS7M5/psLWoBGOpOp5WB0SmrtQSYXkQzWZfqvzsGzRrRge +SIXQQefuXVEL8P2t3p6taxRYMNXPdL+zADdrA67mMilwvkzaMztuAeg5Qhl7 +lihwIqKfJZS2ADKePl4mfyigo3xcgZW/AFRWiHb6dwowLx3zb2tfgGabiDsf +WykQxGcp4M63CLFhTX4nkigwHaRMZG1eBFHXYkf9eAp4DPHk9Ikuwj9bz2kr +3KOAfUWb5mHZRRD/9LlrIYoC+4+buKjvXYSU1suPXgej9j07WMxuswh/OaoO +DLpRwF9P2zIreREucF0/f2o/Bdh8kq/ff7AI6voTvl1qFIjLnqkIz1iEZwnd +UiaqFCjiKJQ+/WwRjCITfPfvosBwm8T0zspFeLhzSlxDngLH7Fbiy7oXIUvG +Yb6MjwKaPm96m4WWIGrb8cmKcRyasyU3vRJbgpqFNMWQURxsO4MgX3IJhmO+ +Shj/xMFHY2/BbYUlqJfN2P/9Gw75rOyrVmpL8ILWbabzBYct0Tek+2yWQDJ3 +0tavFa2jbCO3ifgl6Hjw48qfPBwMlvUT96UswdS/jxpGn+Fww0qr6fLDJZD7 +9tbs+1McyGv/KHA9XQIxuUy9oSwcRB0FhqUrluDlxpSnG9JwUBWhn7L6vASH +77f/mI7G4eK57oRkYgncFkNmJaNweNWEv6MPLIFflLu1RQQO+v5v5T1Hl8Cs +5g9nRTgOFtRn368vL0H7rh3WL67i4B7je6pMYhlSWLsmDc7jUPDNK2FZZhk0 +srzMH3vjMKnp9k5fYRlw38p1rrM4BIwck+9QXgZhQ6urfe44hBvqfB/WXYYL +yYrF+SdxSF/lOiXisgzu90Wvjh3FgeaX7nr5Kbo/XiLsjwEOyvGCK4F5y/Cy +wWFjpz4Ot0qjUgKKlmH1Y/+9Kj0cNKcDOi6Uo/jsn65E6+CQec5S40zTMij4 +/h6x0sTB22OVZDO8DO9cqfbnVdB8RQY8tRpdhq0HBj3D9uAgkzuud/j3MrSw +Dl1M2I3i/+jxN51bhsP2K1eblHHQOlXcr8/BAKGX9v8z24kDl5NLqbICAxIy +dXR/bMXBJaTHXGkHA+a23d+0Hbk63eKnojIDNk7GEp5yKD6hKSGvxoCYbm1f +hgwOnfYCt8QNGfD9sHWUvhTqX1CkjKgJA86f/mqWKolDRMpKtZAFA4ZvBmyc +k8BBu2dsks+WAdfSTsaWb8Ehy6bRnsuNARK+UTEOYjgw/DRn2T0YEOxUZtom +ivIv/kXs+lkG/HXbQtJD3vDpQSPLnwGMZMXo3SI4nD/srzx7gwGJRYP39wnh +0HpurHk6kgE/ahKO1W3GQS7W+eTkbQZE7rglaYLc1W6ePJbAAG2B5CIPQRwO +mCr8HXjCgOJGr8GP/Dho5HTEfMhlwO9n26J9kFXWA4TLChmg6bIqLIKsUP1e +KaKMAXcVnemefDhIC5+vuFDFANppfhExZDFfEQOHWjQ+X/aqfeDFYdNO96PK +7xjAtZ1fWg2Z+xbfoHALA1yfTY9NbMKB7VuV11obA+wLox4UIC+kcl+j0Rjw +el66QBl5eq6EXNfDgAyHA6SZjTiMWzkk5fQxYCLU3LIGeYC7oCBoCLXn+dWb +Nsh9btbqrj8ZUG5efkkBuesN47X5OBr/LgGrJR4ccMknZuqTDPDpzdhEQW4N +Mu+WnmHAabXTJXnIjV2zztwLDLgjfF7zFnKdSvr4n2UGeC6+zXFDrrxjeJFY +YYD6U48lI+TS0d9rTesMGFLzVFFGLjJMinnByQRBgTZLIeRnWbrCqSQmSE3F +Wa2R0XyzfmRe38QEUlej5gTyA/u7SmcFmHB3sxvXV+TEco0KW2F0v1VQ9Sfk +u/wD+nriTMi7wmbdihzlHdmmKIW+7+SgvkW+0brnqIAcExpGru1rQA5V6B1g +KDChOelScD1y0LVrXsM7mDDJPVbwGtmPvmP+ozITCmq7GpqQvTU/hVWpMGHL +Ja1XHchnEi+Ts9WYwGkjnPIZ2WVaLilGkwk/Kk4f/4H8r0WbTIAOEwZtFTkX +kI/m+RWcMGBC675jiSTUXysOCXVjQybI5kxwyyKbubx7rWLCBEmzUVctZMO6 +s2ZbLJiQJWjw+CiynphQN7sVE4x0J5sDkDUD6pwnbJhgb/eLmoysSnUb77Fj +Al1nz5taZMWoirV8ZxT/lPthXjS/W4dPxCScYgJ5xHjiALKkAZdwiDsTVl8Z ++3oj8y8dU7K6wITe3YE7epDJtmvlWv5MCIq5fZwP5RdHSa6+/CUmHH8a62+O +vOy+ZLsQygSFH1LWHchz77IGBsKZoKEdKyaA8ndSxtTrQwQTRvML39kjD31O +C0u/i5xa0jKN3G58oADLYMI1dcrNg2i9XPlwTeX6YyZQRK1O5CIrmTdXvn7G +BLOjH9N5BdB8Hj7yTqeYCf0vjK1GkI2OutM13jAhkPh06y1arws9Ra4Xm5DN +aPEGaH3n2M+MlrUyoby9nfMdModjyLzKJyaEq4pI0YRR/rom8P4zhObXsHWj +ONpP/IZ7Ez1/oniFdofKkOXOSEvkjTPB4mnmkJU4Dtc88xW3zTJh+sczs2S0 +H+n5vDaQ4WAB7Xhwuynaz6pDfvlt3s4CDaMLbjbyOHisqSwfUWLBwEzOJ3kF +tN6vB4bF7WbByC/HrEXkwJvrtzftZ4GYg+PJ/O04qN0Wzdlggn5vccBLXQmH +ktSDn5meLHDqo7lO7UX5tSX6hPZ5FhT/w902r4oDXzr+PciPBeKT9++u7UP7 +W6bD9PwVFqg9CtwtpYH212cXSNO3WZAWseXtNW0ccsseHhh+zgLreyd/jR5E ++bxyQrmvlAVxPEfa+A6h/DGWlaJWsKDq4Wi8lhEODX1PV2vrWTBq9msgyQSH +7vXnbxM+suDVfpGTvpY4sFu9MT44wYJKtzN1ZXY4OP8etnmsvAI3X79NPIWe +jwoauYapKiuwJh+2aeQC2o/CPNXvqq3AuzNup8/5ov5vnhS5orMC3yQVS8MD +cIjVXvxyxGIFBtnGn1Ou4FAbRXJZP7sCuU0rwzOR6Pm+bbe3S+EKpCW4eh5H +z//4xFj7wuIVmDZq03VF54ONHBOGC2UrQJrlc/VG5we274VSd+pW4OJYX0pM +EcrHrJ2Uqo8rsGfkbe5kOXoeSm5T5ZteAV6qGdW2GbVHSHKpXm0VWnyP4Ym/ +cPhz4+owt9YqRDX1enBMovGa7aPa6K7C9i1pepemcXClpeWPHVqFhbm/qWfm +cTgcJ3pc2G4VQgMvzp9dw2Hbxs0N3pdXgcS/o4BfiAJd7OSbEg2r8CCBp65O +H53/ih+6WDeugvmnBO5bGAV4HHfpRjevguqh5X+tDlEAK7daWMBX4fCsAe+0 +GQVK3FI8aAOr4H+tN9XmGAVi3ytYRq+vwpqS0J2CcxR0jtMXWTRcA+vGpN3x +GRSoIl/Mo7WvwdM7CZ2iJCqMht6YekNZg4z08yedNlJhy+x9jeLONTB72u6c +y4fOv8SLptvEGtz99rXAQIQKRkWjg4a/1kBDmt8tTp4KXZaO4lXkv1AROfT8 +iR4VZuIOxjw0/QtPbi/2JaDz825RQW+3lr9gG6Ca5jVBhT9xSyLqvesgGy+1 +4/4GGmyLjt7r682GbS9a7wvJoMGwYz/dcIwNK/P2ZG/Q7wSzkW5mlQ87VqGa ++ucjoxOuBLh7iU2xY0KxHwsGS7vA6tUjC7EgDkxC3EzSPrQbple9QzmXODAf +Qek7Tfo98OTLjUqfi5xYfgrn7DtWD7C89F2vrnBi9+1a81+//wwyawkn/IO5 +sBpr9pDwK70wahrbQebagD2fCh0p2PcF3u/AQTZ2A7ajg/tpAPEFvMl5XPI8 +3BhdrbXnm0cfVD/erv8+gRvbtVLnoz3VB9vXjULeJXFjjepReRv+9EG8s3vt +2xRu7BRhX9iJ6jEvybz9DQ+5sd6vwO+x0AeSyTtVqp5wY44vW8zCV/ogNFpZ +Lr+MG3O4YSwbzEOAoY8qe2wnN7Zuq2MWvp0Aqq5ei+1mEkb33Bv51p6AOzWX +VkyESVgkZlqp8S8BpvtL9+mKkrCedNsnBah+bFRRyNomQcJ2KnyvuIvqywp5 +8uWFrSSsMVC3zNiNgAekHqVUVRJWGd7VGHyBgNPd5+4SR0iY+tjY8PRNArZa +5zZRbEjYawNHZd0IAr7ig4x3R0lYd52BYlQkAfatNu5FDiRsMlJBY0sMAWa1 +WgYhJ0kYK76lePc9VO9mc85I+5Kw3NNsFLE0Ahjej466xpEw/pOzpVOFBNwP +ziFdjydh53r/9VJ6TsCOO8/rMxNRPEfnuFOo3rYrrN/Wn0rCfHcMyn9C9Xj5 +WP+8XTYJs+7WdU6rIOD8Gelky5ck7KB5M72/gYAh58wezS4Stj/erkKNSsDl +C7kxdj0kLMwqPkznEwH8YcV6gb0kzMnL5DlGQ/V8xutnZXQSJpT4d69ZFwHp +9IHA3T9I2B674t5DvQQcc5AVVVggYXWjS45TAwS0WWfb8YmRMROLNx6kSQK8 +m0fekLaQsVejfus4Mp/2biUOSTJGqFf/kzBFgK1cLWtJhoz9sgE10T8E9E91 +ZQ8pkjHZ4yL8vHMETN/h/l2xn4wJG5e0VS4TEP/38NESLTJ2TP3HmdMMAtQD +khoKDpCxJdve+4JMAq4c33o/U5+M2W+xSvBgEcChpKMRbUzGumUZ+uxrBIi2 +XLjmaEfGKJocUrPsdKjRrhw75kDGHH9viI/hoIPjC5b1keNkLCzzcIIsJx2y +kqK3GTmTMfYsQW0TLjoouT1p2+NOxvz2RglFcNNBb71HiP0SGUt5NfG1diMd +BgOkQleCyJi/YuUGnU10uDF6amTxChlbsMiuqUFupUxX/w4lYyUKbg1lvHQ4 +kkF27okgY1qjh7UT+engdkAvPz+ZjH21DB7nFaLD2SnK4tdUMnbTubT+BrLf +k5NGQg/J2O7sjroF5Os8t76HZqL+CyrpfRamQwbRLmWbh8Y7FDcNF6VDzr0T +3tEFZCxmKTRoFLno4FRNQxEZezmwkWYhRofaQkH7naVkrHiPMSe/OB16rzrE +r1aTsRflfz2ubaHDwJ5fg/vqyNjk3VO/PiP//B68x7OBjCnQGlJ2SdBh3jyr +o7ORjD0rXTjXiSwoOcKV346uXy/bRJKigzg16OjXj2RM9Yx0/xFk2Zvkp5up +ZKx99XV3KvKe37sgtIuMlX+2xuSk6WBRF3DVpp+MtfYGc0nK0MHGh6staoCM +cTx1lTqG/K9CqljDNzT+lkOOd5E979RW7PhJxjI0zx5dRvYxsORwGiVj5wdt +eJVl6RA099U6YZyMFagmTTkiRziyTa9MkrFkyk+lauRY/kS9fX/ImO1q381h +5MSmbbEes2QsNXOKi1eODk+UTZU6F8lY2h6TG8eRCwb7grgZZIx+LSAkDPll +oneLLouM1ZHiM7OR37DuueX9JWO0ikvHB5FbSuTK+tl4sPAa5XkWMu5Wti7I +yYO9qS6qFN1Khx6xQ1YmG3gwwTtTmSrI/R09GSEkHoxImygxRh6+5jHxkocH +CyYyxxyRf6sxDoxu4sF0vqyZ+iDPjt6OkeLnwewLN9CuIzPSpb5YC/JgHIzS +6/eR162KFaOEeLAzK8v2mcjcnBBYL8KDZYQQdoXIfNW0phkxHqyZZh1a8d// +7efcNu+Q4MEmhx076pGl5BZOnpDiwRSUF6EJWaE7siRehgfzL5EZaEVWjhZf +a5HjwQZI3U/+e3+wT7fQckWeB/v/9wv/B3OE2a4= + "]]}, + Annotation[#, "Charting`Private`Tag$12780#1"]& ], + TagBox[ + {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJxTTMoPSmViYGAwAWIQzbyf69xj00K73NlOAdd5L9kH5UjemjFpvj2MP/FT +zOZpk9bD+dZHvbicig/A+QVVfombC07A+bk7UvuYlC/A+VdeeHIuT7oC53fp +f2PYFnkDzi/UPjH1wNI7cP6v5Ox1d/MewPlJe8MCJqQ9gvOTP145cKDjCZzf +Y7A9f1nbMzif6cB285aqF3C+oJb3ufszXsH5HvOdFn+Y9AbOF39/xq1++zs4 +f9bxXYzMmR/gfBtZx/8KKR/hfO0HAk9qSz7B+WtXCGVsLfoM59fci72s3fYF +4T8bC+95U74i/DffJen1hG9w/oWCWQnli77D+ZbuSv/uLvwB5590tVzhMOcn +nL9040zLR6t/wfmiyjpZcSt/w/mXGDmaJPf8gfO3chQvu3DyL5yvIyqQlXT0 +H5z/vu+biPG1/3C+cnu7fn4WgwOM/yjq9i2n5wi+x9PLP7fmMcL5FUWpGWJv +EXy/bbO9xMqY4Px3f7JqmL8h+AuvN27JK2aG839l2CZU/kbwZf9OjC6sYoHz +n7l3n+JgYYXzD6udsZfrRvCzOJaxKHKywfnbF6jYHp6I4J+ztjkaJMgO5//I +mh2c0IfgnwiYH8orxgHnJ1naLF8+BcH32lVUGXgbwTe0Xun9W5ETzgcAGZV9 +hQ== + "]]}, + Annotation[#, "Charting`Private`Tag$12780#2"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0.21901648978669475`}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange-> + NCache[{{0, Pi}, {0.21901648978669475`, 0.40825141787488534`}}, {{ + 0, 3.141592653589793}, {0.21901648978669475`, 0.40825141787488534`}}], + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Print", + CellChangeTimes->{ + 3.8255672096922817`*^9, {3.825567329431567*^9, 3.825567360544487*^9}, { + 3.825567529947542*^9, 3.825567535706521*^9}, {3.825567571012645*^9, + 3.8255676226274357`*^9}, 3.8255676621501913`*^9, {3.825571483354911*^9, + 3.82557148656466*^9}, {3.825571527257399*^9, 3.825571623797057*^9}, { + 3.825571668169786*^9, 3.825571724944263*^9}, {3.8255718168030024`*^9, + 3.825571826640697*^9}, {3.825571972720669*^9, 3.825572022262472*^9}, { + 3.825572071708784*^9, 3.8255722713061132`*^9}, {3.825572306100123*^9, + 3.825572308773279*^9}, {3.825572411777607*^9, 3.825572429967472*^9}, { + 3.825572460371621*^9, 3.82557252728852*^9}, {3.825573081360861*^9, + 3.825573101175577*^9}, {3.825573920939762*^9, 3.825573938432952*^9}}, CellLabel-> - "Out[156]=",ExpressionUUID->"6f5addd6-59da-4628-a07a-17d4fb9c1555"] + "During evaluation of \ +In[20]:=",ExpressionUUID->"3834555d-b2da-4c44-afd9-30f6b0f58ec3"] +}, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ - RowBox[{"\[Epsilon]", "//", "N"}]], "Input", - CellChangeTimes->{{3.819558944433036*^9, 3.819558948751487*^9}}, - CellLabel-> - "In[151]:=",ExpressionUUID->"29c459f6-a6e6-4acc-9582-7887f094b0fb"], + RowBox[{ + RowBox[{"c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], ".", + "f"}]], "Input", + CellLabel->"In[19]:=",ExpressionUUID->"1f97a01c-9972-4922-bceb-32c17a62dd77"], Cell[BoxData[ - RowBox[{"{", + RowBox[{ + RowBox[{"-", "1.`100."}], "-", RowBox[{ - RowBox[{"-", "0.12198371798649398`"}], ",", - RowBox[{"-", "0.0328730084464549`"}], ",", "0.12120709884911196`", ",", - "0.3577893263447133`", ",", "3.206404863798886`"}], "}"}]], "Output", - CellChangeTimes->{{3.81955894500921*^9, 3.819558949255376*^9}}, - CellLabel-> - "Out[151]=",ExpressionUUID->"a9435249-4dce-4236-b07a-182cf7caa43b"] + "0.6660896595288369837750595633814123143644527999298307832026914869308821862\ +45827286981907799313178903210290074453607`100.", " ", + RowBox[{"Sin", "[", + FractionBox["\[Theta]", "2"], "]"}]}], "+", + RowBox[{ + "0.1543019681579606815169353767709585338433194042746124159263784027280382150\ +081074927027021490868382888283122389272635`100.", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", + FractionBox["\[Theta]", "2"], "]"}], "2"]}], "-", + RowBox[{ + "0.0609437978689942788140198108196572164327823535140529733524034957007686231\ +53585618017326574353455327405494235393306`100.", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", + FractionBox["\[Theta]", "2"], "]"}], "3"]}], "+", + RowBox[{ + "0.0148466816826512856612160305412564672437907002971798279794449940508434954\ +922640856502501938014606571747890614151183`100.", " ", + SuperscriptBox[ + RowBox[{"Sin", "[", + FractionBox["\[Theta]", "2"], "]"}], "4"]}]}]], "Output", + CellChangeTimes->{3.8255671306013823`*^9}, + CellLabel->"Out[19]=",ExpressionUUID->"09dd10ea-6b66-4aae-8729-61fe9daa8cfe"] }, Open ]], +Cell[BoxData["\[IndentingNewLine]"], "Input", + CellChangeTimes->{ + 3.825567130724227*^9},ExpressionUUID->"57afc89b-9ca1-4df9-834b-\ +218a004d45c4"], + Cell[CellGroupData[{ Cell[BoxData[ @@ -8875,11 +9474,574 @@ EXyYe2H80wtdt31+meyw3aHp0fEbWg4nyvbNl/qc7DClvTXq8h9Nhz8rP17y 3.819450161688531*^9, 3.819450200201569*^9}}, CellLabel-> "Out[253]=",ExpressionUUID->"a8394bf7-c1fe-421f-ab00-3065601f65da"] -}, Open ]] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Psi]c", "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"}], + ".", "f"}]], "Input", + CellChangeTimes->{{3.8255671403095007`*^9, + 3.8255671407645397`*^9}},ExpressionUUID->"b5b12c32-af87-4895-806f-\ +bf157bb129aa"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"0", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], "2"]}], "+", + RowBox[{ + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + RowBox[{"2", + FractionBox[ + SubscriptBox["c", "1"], "3"]}], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}], + SuperscriptBox[ + RowBox[{ + SubscriptBox["Y", + RowBox[{"1", ",", "0"}]], "[", + RowBox[{"\[Theta]", ",", "\[Phi]"}], "]"}], "2"]}]}]], "Input", + CellChangeTimes->{{3.82556704003997*^9, 3.825567086674712*^9}}, + CellLabel->"In[16]:=",ExpressionUUID->"cc05efbd-961f-46db-b61a-58c996905985"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + SubscriptBox["c", "0"], "-", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], + RowBox[{"4", " ", "\[Pi]"}]], "+", + FractionBox[ + RowBox[{"3", " ", + SuperscriptBox[ + RowBox[{"Cos", "[", "\[Theta]", "]"}], "2"], " ", + RowBox[{"(", + RowBox[{ + SubscriptBox["c", "0"], "-", + FractionBox[ + RowBox[{"2", " ", + SubscriptBox["c", "1"]}], "3"], "+", + FractionBox[ + SubscriptBox["c", "2"], "5"]}], ")"}]}], + RowBox[{"4", " ", "\[Pi]"}]]}]], "Output", + CellChangeTimes->{3.825567086983945*^9}, + CellLabel->"Out[16]=",ExpressionUUID->"8fa408ca-cd50-43f5-b8e3-e8f3a0b3e9c1"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"\[CapitalGamma]", "[", + RowBox[{"1", ",", "2"}], "]"}], "=", + RowBox[{ + RowBox[{ + RowBox[{"\[Rho]", "[", "1", "]"}], + RowBox[{"\[Rho]", "[", "2", "]"}]}], "+", + RowBox[{ + SubscriptBox["\[CapitalGamma]", "xc"], "[", + RowBox[{"1", ",", "2"}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.8255726886967688`*^9, + 3.825572727248165*^9}},ExpressionUUID->"98d3c666-fed4-4e94-8773-\ +702f80e147f2"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox["\[Rho]", "hole"], "[", + RowBox[{"1", ",", "2"}], "]"}], "=", + FractionBox[ + RowBox[{"\[CapitalGamma]", "[", + RowBox[{"1", ",", "2"}], "]"}], + RowBox[{"\[Rho]", "[", "1", "]"}]]}]], "Input", + CellChangeTimes->{{3.825572744179343*^9, + 3.825572776821579*^9}},ExpressionUUID->"7760399b-0d77-4553-9ef6-\ +998865cceadc"] }, Closed]], Cell[CellGroupData[{ +Cell["Triplet P state at the HF level", "Subsection", + CellChangeTimes->{{3.826883274965623*^9, + 3.826883280731924*^9}},ExpressionUUID->"77b56f7c-700c-4596-b77a-\ +642cfae1f22b"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[Psi]1", "[", "\[Theta]_", "]"}], ":=", + RowBox[{ + RowBox[{"c0", " ", + RowBox[{ + SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+", + RowBox[{"c1", " ", + RowBox[{ + SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}], "+", + RowBox[{"c2", " ", + RowBox[{ + SubscriptBox["Y", "2"], "[", "\[Theta]", + "]"}]}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"\[Psi]2", "[", "\[Theta]_", "]"}], ":=", + RowBox[{ + RowBox[{"d0", " ", + RowBox[{ + SubscriptBox["Y", "0"], "[", "\[Theta]", "]"}]}], "+", + RowBox[{"d1", " ", + RowBox[{ + SubscriptBox["Y", "1"], "[", "\[Theta]", "]"}]}], "+", + RowBox[{"d2", " ", + RowBox[{ + SubscriptBox["Y", "2"], "[", "\[Theta]", "]"}]}]}]}]}], "Input", + CellChangeTimes->{{3.826883281550515*^9, 3.826883321281801*^9}, { + 3.826883364475748*^9, 3.826883399329731*^9}, {3.826941897113055*^9, + 3.8269419112901077`*^9}, {3.8269420327719173`*^9, 3.8269420591776114`*^9}, { + 3.826945478416676*^9, 3.826945480571836*^9}}, + CellLabel->"In[27]:=",ExpressionUUID->"ff6ab13d-cc50-4366-a995-d30ac2ee3ca0"], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"\[CapitalPsi]", "[", + RowBox[{"\[Theta]1_", ",", "\[Theta]2_"}], "]"}], ":=", + FractionBox[ + RowBox[{ + RowBox[{ + RowBox[{"\[Psi]1", "[", "\[Theta]1", "]"}], + RowBox[{"\[Psi]2", "[", "\[Theta]2", "]"}]}], "-", + RowBox[{ + RowBox[{"\[Psi]2", "[", "\[Theta]1", "]"}], + RowBox[{"\[Psi]1", "[", "\[Theta]2", "]"}]}]}], + SqrtBox["2"]]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{ + RowBox[{"\[Rho]", "[", "\[Theta]_", "]"}], "=", + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]1", "[", "\[Theta]", "]"}], "2"], "+", + SuperscriptBox[ + RowBox[{"\[Psi]2", "[", "\[Theta]", "]"}], "2"]}]}], ";"}]}], "Input", + CellChangeTimes->{{3.8268833612510433`*^9, 3.8268833829834423`*^9}, { + 3.826941878237331*^9, 3.8269418918905497`*^9}, {3.826942067494524*^9, + 3.826942073140197*^9}}, + CellLabel->"In[29]:=",ExpressionUUID->"a4227c53-c0ff-4d9f-b022-e8efa1078583"], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{"2", "\[Pi]", + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]1", "[", "\[Theta]", "]"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], "\[IndentingNewLine]", + RowBox[{"2", "\[Pi]", + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]2", "[", "\[Theta]", "]"}], "2"], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], "\[IndentingNewLine]", + RowBox[{"2", "\[Pi]", + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{"\[Psi]1", "[", "\[Theta]", "]"}], + RowBox[{"\[Psi]2", "[", "\[Theta]", "]"}], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}]}], "Input", + CellChangeTimes->{{3.826945009921417*^9, 3.826945025276917*^9}, { + 3.826945257382166*^9, 3.826945273747858*^9}}, + CellLabel->"In[50]:=",ExpressionUUID->"144d8b08-2cda-4c3f-aae7-56d78af3e9a6"], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox["c0", "2"], "+", + SuperscriptBox["c1", "2"], "+", + SuperscriptBox["c2", "2"]}]], "Output", + CellChangeTimes->{ + 3.826945029051764*^9, {3.826945262156535*^9, 3.826945275587694*^9}, + 3.826945487192642*^9}, + CellLabel->"Out[50]=",ExpressionUUID->"642969d1-aef0-4285-b9a4-87c9d9bf63f6"], + +Cell[BoxData[ + RowBox[{ + SuperscriptBox["d0", "2"], "+", + SuperscriptBox["d1", "2"], "+", + SuperscriptBox["d2", "2"]}]], "Output", + CellChangeTimes->{ + 3.826945029051764*^9, {3.826945262156535*^9, 3.826945275587694*^9}, + 3.8269454889686203`*^9}, + CellLabel->"Out[51]=",ExpressionUUID->"4cdccfc1-2d58-449f-93a2-676451209459"], + +Cell[BoxData[ + RowBox[{ + RowBox[{"c0", " ", "d0"}], "+", + RowBox[{"c1", " ", "d1"}], "+", + RowBox[{"c2", " ", "d2"}]}]], "Output", + CellChangeTimes->{ + 3.826945029051764*^9, {3.826945262156535*^9, 3.826945275587694*^9}, + 3.8269454919414597`*^9}, + CellLabel->"Out[52]=",ExpressionUUID->"c0175bb6-3cd5-4091-ae4d-707099e32fe5"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[{ + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", "\[Pi]"}], + RowBox[{"2", + SuperscriptBox["R", "2"]}]]}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{"\[Psi]1", "[", "\[Theta]", "]"}], + FractionBox["1", + RowBox[{"Sin", "[", "\[Theta]", "]"}]], + RowBox[{ + SubscriptBox["\[PartialD]", "\[Theta]"], + RowBox[{"(", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{ + SubscriptBox["\[PartialD]", "\[Theta]"], + RowBox[{"\[Psi]1", "[", "\[Theta]", "]"}]}]}], ")"}]}], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", "\[Pi]"}], + RowBox[{"2", + SuperscriptBox["R", "2"]}]]}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{"\[Psi]1", "[", "\[Theta]", "]"}], + FractionBox["1", + RowBox[{"Sin", "[", "\[Theta]", "]"}]], + RowBox[{ + SubscriptBox["\[PartialD]", "\[Theta]"], + RowBox[{"(", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{ + SubscriptBox["\[PartialD]", "\[Theta]"], + RowBox[{"\[Psi]2", "[", "\[Theta]", "]"}]}]}], ")"}]}], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"2", "\[Pi]"}], + RowBox[{"2", + SuperscriptBox["R", "2"]}]]}], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + RowBox[{"\[Psi]2", "[", "\[Theta]", "]"}], + FractionBox["1", + RowBox[{"Sin", "[", "\[Theta]", "]"}]], + RowBox[{ + SubscriptBox["\[PartialD]", "\[Theta]"], + RowBox[{"(", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{ + SubscriptBox["\[PartialD]", "\[Theta]"], + RowBox[{"\[Psi]2", "[", "\[Theta]", "]"}]}]}], ")"}]}], + RowBox[{"Sin", "[", "\[Theta]", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]"}]}]}]}]}], "Input", + CellChangeTimes->{{3.826945553009162*^9, 3.826945603785534*^9}, { + 3.826945649613883*^9, 3.826945742430129*^9}}, + CellLabel->"In[57]:=",ExpressionUUID->"4664053c-b02e-4c38-9051-008e3a7484da"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["c1", "2"], "+", + RowBox[{"3", " ", + SuperscriptBox["c2", "2"]}]}], + SuperscriptBox["R", "2"]]], "Output", + CellChangeTimes->{{3.826945698805016*^9, 3.826945743460265*^9}}, + CellLabel->"Out[57]=",ExpressionUUID->"812b16d7-2465-4555-a417-62a72e0d7088"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{"c1", " ", "d1"}], "+", + RowBox[{"3", " ", "c2", " ", "d2"}]}], + SuperscriptBox["R", "2"]]], "Output", + CellChangeTimes->{{3.826945698805016*^9, 3.826945715570993*^9}, + 3.82694574598569*^9}, + CellLabel->"Out[58]=",ExpressionUUID->"747a0953-8b4f-445a-a705-d4fa071a8bf4"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + SuperscriptBox["d1", "2"], "+", + RowBox[{"3", " ", + SuperscriptBox["d2", "2"]}]}], + SuperscriptBox["R", "2"]]], "Output", + CellChangeTimes->{{3.826945698805016*^9, 3.826945715570993*^9}, + 3.826945748040835*^9}, + CellLabel->"Out[59]=",ExpressionUUID->"4e3ae25a-39f5-4f15-ac55-cbc59ae732a0"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox[ + RowBox[{"\[Psi]1", "[", "\[Theta]1", "]"}], "2"], + SuperscriptBox[ + RowBox[{"\[Psi]2", "[", "\[Theta]2", "]"}], "2"]}], + SqrtBox[ + RowBox[{"2", "-", + RowBox[{"2", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], + RowBox[{"Sin", "[", "\[Theta]2", "]"}], + RowBox[{"Cos", "[", + RowBox[{"\[Phi]1", "-", "\[Phi]2"}], "]"}]}]}], ")"}]}]}]]], + RowBox[{"Sin", "[", "\[Theta]1", "]"}], + RowBox[{"Sin", "[", "\[Theta]2", "]"}], + RowBox[{"\[DifferentialD]", "\[Phi]2"}], + RowBox[{"\[DifferentialD]", "\[Theta]2"}], + RowBox[{"\[DifferentialD]", "\[Phi]1"}], + RowBox[{"\[DifferentialD]", "\[Theta]1"}]}]}]}]}]}]], "Input", + CellChangeTimes->{{3.82694577121167*^9, 3.8269458561657476`*^9}, { + 3.827111439551696*^9, 3.8271114504699163`*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"c5fe8672-d925-4b51-b434-9cc58193f061"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{3.8269458528174877`*^9, 3.826958279123844*^9, + 3.8271121223657837`*^9}, + CellLabel->"Out[31]=",ExpressionUUID->"8ea74885-dd75-4e3b-8bbd-d112e60e290c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", + RowBox[{"2", "\[Pi]"}]], + RowBox[{ + FractionBox[ + RowBox[{ + RowBox[{"\[Psi]1", "[", "\[Theta]1", "]"}], + RowBox[{"\[Psi]2", "[", "\[Theta]2", "]"}], + RowBox[{"\[Psi]1", "[", "\[Theta]2", "]"}], + RowBox[{"\[Psi]2", "[", "\[Theta]1", "]"}]}], + SqrtBox[ + RowBox[{"2", "-", + RowBox[{"2", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"Cos", "[", "\[Theta]1", "]"}], + RowBox[{"Cos", "[", "\[Theta]2", "]"}]}], "+", + RowBox[{ + RowBox[{"Sin", "[", "\[Theta]1", "]"}], + RowBox[{"Sin", "[", "\[Theta]2", "]"}], + RowBox[{"Cos", "[", + RowBox[{"\[Phi]1", "-", "\[Phi]2"}], "]"}]}]}], ")"}]}]}]]], + RowBox[{"Sin", "[", "\[Theta]1", "]"}], + RowBox[{"Sin", "[", "\[Theta]2", "]"}], + RowBox[{"\[DifferentialD]", "\[Phi]2"}], + RowBox[{"\[DifferentialD]", "\[Theta]2"}], + RowBox[{"\[DifferentialD]", "\[Phi]1"}], + RowBox[{"\[DifferentialD]", "\[Theta]1"}]}]}]}]}]}]], "Input", + CellChangeTimes->{{3.8271114746701517`*^9, 3.827111508856827*^9}}, + CellLabel->"In[32]:=",ExpressionUUID->"38b0fb40-e8c1-4987-9dec-130d1aa367ec"], + +Cell[BoxData["0"], "Output", + CellChangeTimes->{3.8271128533444567`*^9}, + CellLabel->"Out[32]=",ExpressionUUID->"f600affc-8f13-4f85-8d51-660e2eae2134"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SubsuperscriptBox["\[Integral]", "0", "\[Pi]"], + RowBox[{ + SuperscriptBox[ + RowBox[{"\[CapitalPsi]", "[", + RowBox[{"\[Theta]1", ",", "\[Theta]2"}], "]"}], "2"], + RowBox[{"Sin", "[", "\[Theta]1", "]"}], + RowBox[{"Sin", "[", "\[Theta]2", "]"}], + RowBox[{"\[DifferentialD]", "\[Theta]1"}], + RowBox[{"\[DifferentialD]", "\[Theta]2"}]}]}]}]], "Input", + CellChangeTimes->{{3.826944770847659*^9, 3.826944850978615*^9}}, + CellLabel->"In[53]:=",ExpressionUUID->"4775a23a-6b97-443b-b11f-d88e2157ab90"], + +Cell[BoxData[ + FractionBox[ + RowBox[{ + RowBox[{ + SuperscriptBox["c2", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["d0", "2"], "+", + SuperscriptBox["d1", "2"]}], ")"}]}], "-", + RowBox[{"2", " ", "c0", " ", "c2", " ", "d0", " ", "d2"}], "-", + RowBox[{"2", " ", "c1", " ", "d1", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"c0", " ", "d0"}], "+", + RowBox[{"c2", " ", "d2"}]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["c1", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["d0", "2"], "+", + SuperscriptBox["d2", "2"]}], ")"}]}], "+", + RowBox[{ + SuperscriptBox["c0", "2"], " ", + RowBox[{"(", + RowBox[{ + SuperscriptBox["d1", "2"], "+", + SuperscriptBox["d2", "2"]}], ")"}]}]}], + RowBox[{"4", " ", + SuperscriptBox["\[Pi]", "2"]}]]], "Output", + CellChangeTimes->{3.826944851353012*^9, 3.826944928497114*^9, + 3.826945587825163*^9}, + CellLabel->"Out[53]=",ExpressionUUID->"60b5e41d-78dc-41c7-ae5e-5268429f17bf"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + SuperscriptBox["d1", "2"], "+", + SuperscriptBox["d2", "2"], "-", + RowBox[{"2", " ", "c2", " ", + SqrtBox[ + RowBox[{"1", "-", + SuperscriptBox["c1", "2"], "-", + SuperscriptBox["c2", "2"]}]], " ", "d2", " ", + SqrtBox[ + RowBox[{"1", "-", + SuperscriptBox["d1", "2"], "-", + SuperscriptBox["d2", "2"]}]]}], "-", + RowBox[{ + SuperscriptBox["c1", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", + SuperscriptBox["d1", "2"]}], "+", + SuperscriptBox["d2", "2"]}], ")"}]}], "-", + RowBox[{ + SuperscriptBox["c2", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["d1", "2"], "+", + RowBox[{"2", " ", + SuperscriptBox["d2", "2"]}]}], ")"}]}], "-", + RowBox[{"2", " ", "c1", " ", "d1", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"c2", " ", "d2"}], "+", + RowBox[{ + SqrtBox[ + RowBox[{"1", "-", + SuperscriptBox["c1", "2"], "-", + SuperscriptBox["c2", "2"]}]], " ", + SqrtBox[ + RowBox[{"1", "-", + SuperscriptBox["d1", "2"], "-", + SuperscriptBox["d2", "2"]}]]}]}], ")"}]}]}], "/.", + RowBox[{"d1", "\[Rule]", + FractionBox[ + RowBox[{ + RowBox[{"c1", " ", "c2", " ", "d2"}], "+", + SqrtBox[ + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["c1", "2"], "+", + SuperscriptBox["c2", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["c2", "2"], "+", + SuperscriptBox["d2", "2"]}], ")"}]}]]}], + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["c2", "2"]}]]}]}], "//", "FullSimplify"}]], "Input", + CellChangeTimes->{{3.8269449794061537`*^9, 3.826944980975404*^9}, { + 3.8269450616584673`*^9, 3.826945076731687*^9}, {3.8269453084559803`*^9, + 3.8269453088059998`*^9}, {3.8269453406045713`*^9, 3.826945344178527*^9}}, + CellLabel->"In[44]:=",ExpressionUUID->"14adc592-f8b6-4352-82c0-db32e49cbd7f"], + +Cell[BoxData["$Aborted"], "Output", + CellChangeTimes->{3.8269453566867313`*^9}, + CellLabel->"Out[44]=",ExpressionUUID->"b187b26a-3a08-47ef-8eca-4dec291f552d"] +}, Open ]], + +Cell[BoxData["\[IndentingNewLine]"], "Input", + CellChangeTimes->{ + 3.82694530939857*^9},ExpressionUUID->"7c0ac722-3bce-4e90-9a73-f8d5a33531ce"], + +Cell[BoxData["\[IndentingNewLine]"], "Input", + CellChangeTimes->{ + 3.826945062791336*^9},ExpressionUUID->"e432e51b-f250-4897-8f6e-\ +36614ff6545f"], + +Cell[BoxData["\[IndentingNewLine]"], "Input", + CellChangeTimes->{ + 3.826944981356662*^9},ExpressionUUID->"c4ac53c0-eb08-4148-9c46-\ +91e0118b4ce1"] +}, Open ]], + +Cell[CellGroupData[{ + Cell["Singlet P state", "Subsection", CellChangeTimes->{{3.742903401180684*^9, 3.742903411063073*^9}},ExpressionUUID->"d406c2ba-4ab0-44d0-9b6f-\ @@ -11561,7 +12723,7 @@ Cell[BoxData[ CellLabel-> "Out[107]=",ExpressionUUID->"44916109-9e4c-44de-8ffc-11faec7bc38d"] }, Open ]] -}, Open ]], +}, Closed]], Cell[CellGroupData[{ @@ -14391,296 +15553,340 @@ CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ -Cell[558, 20, 129, 3, 30, "Input",ExpressionUUID->"51e960e2-2f64-41fc-8977-199523762b87"], Cell[CellGroupData[{ -Cell[712, 27, 157, 3, 98, "Title",ExpressionUUID->"f14a9b83-4155-4933-b4bd-86482283a3f0"], -Cell[872, 32, 575, 12, 68, "Input",ExpressionUUID->"f63df8ff-a805-43cf-b25e-970437446449", +Cell[580, 22, 157, 3, 98, "Title",ExpressionUUID->"f14a9b83-4155-4933-b4bd-86482283a3f0"], +Cell[740, 27, 575, 12, 68, "Input",ExpressionUUID->"f63df8ff-a805-43cf-b25e-970437446449", InitializationCell->True], -Cell[1450, 46, 594, 16, 46, "Input",ExpressionUUID->"06b69520-f042-4fc6-9314-22d2e79542d6", +Cell[1318, 41, 594, 16, 46, "Input",ExpressionUUID->"06b69520-f042-4fc6-9314-22d2e79542d6", InitializationCell->True], -Cell[2047, 64, 550, 16, 46, "Input",ExpressionUUID->"a8c11cd4-a9a5-4079-8595-5294b1fb94c7", +Cell[1915, 59, 550, 16, 46, "Input",ExpressionUUID->"a8c11cd4-a9a5-4079-8595-5294b1fb94c7", InitializationCell->True], -Cell[2600, 82, 485, 12, 49, "Input",ExpressionUUID->"e29c6d12-164d-461c-b102-761d687a35f0", +Cell[2468, 77, 485, 12, 49, "Input",ExpressionUUID->"e29c6d12-164d-461c-b102-761d687a35f0", InitializationCell->True], -Cell[3088, 96, 471, 11, 49, "Input",ExpressionUUID->"74769596-3e6e-4ca2-8edd-d3dad7f9f8d1", +Cell[2956, 91, 471, 11, 49, "Input",ExpressionUUID->"74769596-3e6e-4ca2-8edd-d3dad7f9f8d1", InitializationCell->True], -Cell[3562, 109, 440, 10, 49, "Input",ExpressionUUID->"1fff622e-e162-45b8-93d8-03e2f95f6a4a", +Cell[3430, 104, 440, 10, 49, "Input",ExpressionUUID->"1fff622e-e162-45b8-93d8-03e2f95f6a4a", InitializationCell->True], -Cell[4005, 121, 2203, 63, 69, "Input",ExpressionUUID->"7fc2e2a8-1267-4aa2-acf5-d2d12a58563c", +Cell[3873, 116, 2203, 63, 99, "Input",ExpressionUUID->"7fc2e2a8-1267-4aa2-acf5-d2d12a58563c", InitializationCell->True], -Cell[6211, 186, 297, 8, 49, "Input",ExpressionUUID->"76897437-158e-48b2-bca0-c92679d71862", +Cell[6079, 181, 297, 8, 49, "Input",ExpressionUUID->"76897437-158e-48b2-bca0-c92679d71862", InitializationCell->True], -Cell[6511, 196, 246, 6, 49, "Input",ExpressionUUID->"751041e2-0753-48c1-aa6c-9f69333e4db7", +Cell[6379, 191, 246, 6, 49, "Input",ExpressionUUID->"751041e2-0753-48c1-aa6c-9f69333e4db7", InitializationCell->True], -Cell[6760, 204, 879, 25, 49, "Input",ExpressionUUID->"f13406bf-d041-4fbb-823f-f514d04fe27c", +Cell[6628, 199, 879, 25, 49, "Input",ExpressionUUID->"f13406bf-d041-4fbb-823f-f514d04fe27c", InitializationCell->True], -Cell[7642, 231, 315, 7, 46, "Input",ExpressionUUID->"183ae429-a997-4f0d-baef-2a20bbc5c8ff", +Cell[7510, 226, 315, 7, 46, "Input",ExpressionUUID->"183ae429-a997-4f0d-baef-2a20bbc5c8ff", InitializationCell->True], -Cell[7960, 240, 1716, 51, 77, "Input",ExpressionUUID->"2fd619d6-5e78-47b6-adfc-2c3a75428669", +Cell[7828, 235, 1716, 51, 77, "Input",ExpressionUUID->"2fd619d6-5e78-47b6-adfc-2c3a75428669", InitializationCell->True] }, Closed]], Cell[CellGroupData[{ -Cell[9713, 296, 226, 4, 72, "Title",ExpressionUUID->"c626dffe-68a4-4be1-b83c-a98638c384be"], +Cell[9581, 291, 226, 4, 72, "Title",ExpressionUUID->"c626dffe-68a4-4be1-b83c-a98638c384be"], Cell[CellGroupData[{ -Cell[9964, 304, 161, 3, 67, "Section",ExpressionUUID->"e0a5c645-2143-460d-a4e6-085c89e142f8"], +Cell[9832, 299, 161, 3, 67, "Section",ExpressionUUID->"e0a5c645-2143-460d-a4e6-085c89e142f8"], Cell[CellGroupData[{ -Cell[10150, 311, 3716, 104, 118, "Input",ExpressionUUID->"18ee6744-3e3b-4677-9588-1803214665ac"], -Cell[13869, 417, 3605, 105, 98, "Output",ExpressionUUID->"cbca8ed1-5d8f-4e61-8033-cf95096b7059"] +Cell[10018, 306, 3716, 104, 118, "Input",ExpressionUUID->"18ee6744-3e3b-4677-9588-1803214665ac"], +Cell[13737, 412, 3605, 105, 98, "Output",ExpressionUUID->"cbca8ed1-5d8f-4e61-8033-cf95096b7059"] }, Open ]], Cell[CellGroupData[{ -Cell[17511, 527, 3842, 109, 125, "Input",ExpressionUUID->"ea189845-c47e-4753-ae12-0c29bb7fe966"], -Cell[21356, 638, 2907, 81, 119, "Output",ExpressionUUID->"92d6db72-9f08-4355-8160-14f066aceceb"] +Cell[17379, 522, 3842, 109, 125, "Input",ExpressionUUID->"ea189845-c47e-4753-ae12-0c29bb7fe966"], +Cell[21224, 633, 2907, 81, 119, "Output",ExpressionUUID->"92d6db72-9f08-4355-8160-14f066aceceb"] }, Open ]], Cell[CellGroupData[{ -Cell[24300, 724, 2154, 64, 63, "Input",ExpressionUUID->"c2d3be71-50b2-4d02-bc7c-fa8422bb9511"], -Cell[26457, 790, 943, 29, 56, "Output",ExpressionUUID->"3a86ae5d-84b5-4de4-bf01-e2f7182357aa"] +Cell[24168, 719, 2154, 64, 63, "Input",ExpressionUUID->"c2d3be71-50b2-4d02-bc7c-fa8422bb9511"], +Cell[26325, 785, 943, 29, 56, "Output",ExpressionUUID->"3a86ae5d-84b5-4de4-bf01-e2f7182357aa"] }, Open ]], Cell[CellGroupData[{ -Cell[27437, 824, 2113, 62, 63, "Input",ExpressionUUID->"6d246081-7c23-4031-b117-f6e9dbc0e0a0"], -Cell[29553, 888, 981, 24, 65, "Output",ExpressionUUID->"3f1ab4cb-673d-4ce6-aaea-91d682381bce"] +Cell[27305, 819, 2113, 62, 63, "Input",ExpressionUUID->"6d246081-7c23-4031-b117-f6e9dbc0e0a0"], +Cell[29421, 883, 981, 24, 65, "Output",ExpressionUUID->"3f1ab4cb-673d-4ce6-aaea-91d682381bce"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[30583, 918, 192, 3, 53, "Section",ExpressionUUID->"f857da23-6512-4a44-801c-0238416ec25a"], -Cell[30778, 923, 582, 11, 35, "Text",ExpressionUUID->"2556e3c0-3c07-46c8-a4f0-e0d5f873e557"], -Cell[31363, 936, 468, 14, 46, "Input",ExpressionUUID->"52f037c3-c011-4459-9ec6-6f496c768a58"], -Cell[31834, 952, 1494, 39, 67, "Input",ExpressionUUID->"e939f164-90ed-4275-8c20-a3c9b35f02a0"], -Cell[33331, 993, 1322, 35, 67, "Input",ExpressionUUID->"abec2db9-74cd-44ab-8e15-ec3c2d9acd58"], -Cell[34656, 1030, 1045, 31, 67, "Input",ExpressionUUID->"6245dfde-4373-46ac-8f56-97c43c57cefd"] +Cell[30451, 913, 192, 3, 53, "Section",ExpressionUUID->"f857da23-6512-4a44-801c-0238416ec25a"], +Cell[30646, 918, 582, 11, 35, "Text",ExpressionUUID->"2556e3c0-3c07-46c8-a4f0-e0d5f873e557"], +Cell[31231, 931, 468, 14, 46, "Input",ExpressionUUID->"52f037c3-c011-4459-9ec6-6f496c768a58"], +Cell[31702, 947, 1494, 39, 67, "Input",ExpressionUUID->"e939f164-90ed-4275-8c20-a3c9b35f02a0"], +Cell[33199, 988, 1322, 35, 67, "Input",ExpressionUUID->"abec2db9-74cd-44ab-8e15-ec3c2d9acd58"], +Cell[34524, 1025, 1045, 31, 67, "Input",ExpressionUUID->"6245dfde-4373-46ac-8f56-97c43c57cefd"] }, Closed]], Cell[CellGroupData[{ -Cell[35738, 1066, 697, 10, 53, "Section",ExpressionUUID->"d36161d9-7065-4d0c-9aa3-9e184ff60f78"], +Cell[35606, 1061, 697, 10, 53, "Section",ExpressionUUID->"d36161d9-7065-4d0c-9aa3-9e184ff60f78"], Cell[CellGroupData[{ -Cell[36460, 1080, 509, 8, 54, "Subsection",ExpressionUUID->"caba0f41-e4c2-48bd-b7f9-f49d444689e8"], -Cell[36972, 1090, 1902, 45, 53, "Input",ExpressionUUID->"19db6ad5-bc03-487e-a573-966ce5a1e931"], +Cell[36328, 1075, 509, 8, 54, "Subsection",ExpressionUUID->"caba0f41-e4c2-48bd-b7f9-f49d444689e8"], +Cell[36840, 1085, 1902, 45, 53, "Input",ExpressionUUID->"19db6ad5-bc03-487e-a573-966ce5a1e931"], Cell[CellGroupData[{ -Cell[38899, 1139, 1804, 46, 53, "Input",ExpressionUUID->"6cb4dcc6-ee3c-42a3-83e3-235f526f9182"], -Cell[40706, 1187, 280, 5, 34, "Output",ExpressionUUID->"7a5608ac-da7f-4146-9663-314f8a925eb7"] +Cell[38767, 1134, 1804, 46, 53, "Input",ExpressionUUID->"6cb4dcc6-ee3c-42a3-83e3-235f526f9182"], +Cell[40574, 1182, 280, 5, 34, "Output",ExpressionUUID->"7a5608ac-da7f-4146-9663-314f8a925eb7"] }, Open ]], -Cell[41001, 1195, 2101, 56, 49, "Input",ExpressionUUID->"4538602f-e656-4a1f-8b53-fef84aa71ecb"], -Cell[43105, 1253, 6017, 123, 282, "Input",ExpressionUUID->"1fc2dedb-8f1a-403e-a7e1-c8dbd76bc9e5"] +Cell[40869, 1190, 2101, 56, 49, "Input",ExpressionUUID->"4538602f-e656-4a1f-8b53-fef84aa71ecb"], +Cell[42973, 1248, 6017, 123, 282, "Input",ExpressionUUID->"1fc2dedb-8f1a-403e-a7e1-c8dbd76bc9e5"] }, Closed]], Cell[CellGroupData[{ -Cell[49159, 1381, 490, 7, 38, "Subsection",ExpressionUUID->"bdb8d3b4-c988-408c-865f-6a4aaefec0cc"], +Cell[49027, 1376, 490, 7, 38, "Subsection",ExpressionUUID->"bdb8d3b4-c988-408c-865f-6a4aaefec0cc"], Cell[CellGroupData[{ -Cell[49674, 1392, 9360, 179, 332, "Input",ExpressionUUID->"fd4d7d77-fd44-443b-a877-600297ee2a20"], -Cell[59037, 1573, 1753, 31, 196, "Print",ExpressionUUID->"eddb80e0-8314-4b81-a073-134184dae11a"], -Cell[60793, 1606, 711, 14, 37, "Output",ExpressionUUID->"77e73b0a-4204-439b-880c-363ddd8df3f0"], -Cell[61507, 1622, 1780, 45, 242, "Output",ExpressionUUID->"e954db0b-9de5-4b95-884f-97be0d9ee069"] +Cell[49542, 1387, 9360, 179, 332, "Input",ExpressionUUID->"fd4d7d77-fd44-443b-a877-600297ee2a20"], +Cell[58905, 1568, 1753, 31, 196, "Print",ExpressionUUID->"eddb80e0-8314-4b81-a073-134184dae11a"], +Cell[60661, 1601, 711, 14, 37, "Output",ExpressionUUID->"77e73b0a-4204-439b-880c-363ddd8df3f0"], +Cell[61375, 1617, 1780, 45, 242, "Output",ExpressionUUID->"e954db0b-9de5-4b95-884f-97be0d9ee069"] }, Open ]], -Cell[63302, 1670, 248, 5, 30, "Input",ExpressionUUID->"2a334965-e048-4730-b8d2-934066eee580"], -Cell[63553, 1677, 370, 12, 48, "Input",ExpressionUUID->"7e0bdb5b-809c-478e-a3d8-bbaf3faf9a2a"], -Cell[63926, 1691, 670, 19, 45, "Input",ExpressionUUID->"efa3f2c4-c56a-4f0d-a231-57f12b695850"], -Cell[64599, 1712, 419, 12, 54, "Input",ExpressionUUID->"6d2eae8e-6c4d-48f2-a1b2-4de4ecc2600b"], -Cell[65021, 1726, 499, 14, 48, "Input",ExpressionUUID->"ae82bc8b-92a9-43b2-ac92-6cd163b82739"], -Cell[65523, 1742, 1953, 45, 98, "Input",ExpressionUUID->"87275d0e-03a0-4d3c-9d6f-87d7d86f1997"], +Cell[63170, 1665, 248, 5, 30, "Input",ExpressionUUID->"2a334965-e048-4730-b8d2-934066eee580"], +Cell[63421, 1672, 370, 12, 48, "Input",ExpressionUUID->"7e0bdb5b-809c-478e-a3d8-bbaf3faf9a2a"], +Cell[63794, 1686, 670, 19, 45, "Input",ExpressionUUID->"efa3f2c4-c56a-4f0d-a231-57f12b695850"], +Cell[64467, 1707, 419, 12, 54, "Input",ExpressionUUID->"6d2eae8e-6c4d-48f2-a1b2-4de4ecc2600b"], +Cell[64889, 1721, 499, 14, 48, "Input",ExpressionUUID->"ae82bc8b-92a9-43b2-ac92-6cd163b82739"], +Cell[65391, 1737, 1953, 45, 98, "Input",ExpressionUUID->"87275d0e-03a0-4d3c-9d6f-87d7d86f1997"], Cell[CellGroupData[{ -Cell[67501, 1791, 3013, 81, 63, "Input",ExpressionUUID->"3a93abe4-2ad3-486e-8c6e-7fdc2391862f"], -Cell[70517, 1874, 1192, 22, 34, "Output",ExpressionUUID->"3f0af36f-5a14-4009-9228-7f92279f21fd"] +Cell[67369, 1786, 3013, 81, 63, "Input",ExpressionUUID->"3a93abe4-2ad3-486e-8c6e-7fdc2391862f"], +Cell[70385, 1869, 1192, 22, 34, "Output",ExpressionUUID->"3f0af36f-5a14-4009-9228-7f92279f21fd"] }, Open ]], Cell[CellGroupData[{ -Cell[71746, 1901, 8927, 172, 325, "Input",ExpressionUUID->"d1b1610f-85af-4346-ac50-e489107603e8"], -Cell[80676, 2075, 2691, 64, 56, "Output",ExpressionUUID->"d46330e7-34f6-4fd6-87c7-9d62e37f39f0"], -Cell[83370, 2141, 2830, 58, 240, "Output",ExpressionUUID->"a1eff725-6cd6-4766-9c48-e4596ad8fcd8"] +Cell[71614, 1896, 8927, 172, 325, "Input",ExpressionUUID->"d1b1610f-85af-4346-ac50-e489107603e8"], +Cell[80544, 2070, 2691, 64, 56, "Output",ExpressionUUID->"d46330e7-34f6-4fd6-87c7-9d62e37f39f0"], +Cell[83238, 2136, 2830, 58, 240, "Output",ExpressionUUID->"a1eff725-6cd6-4766-9c48-e4596ad8fcd8"] }, Open ]], Cell[CellGroupData[{ -Cell[86237, 2204, 2391, 67, 205, "Input",ExpressionUUID->"312998b8-f34f-4d8f-ada8-529ce8e4fc92"], -Cell[88631, 2273, 1880, 62, 77, "Output",ExpressionUUID->"732834ed-bb17-43bb-807d-6b18ef0060a2"] +Cell[86105, 2199, 2391, 67, 205, "Input",ExpressionUUID->"312998b8-f34f-4d8f-ada8-529ce8e4fc92"], +Cell[88499, 2268, 1880, 62, 77, "Output",ExpressionUUID->"732834ed-bb17-43bb-807d-6b18ef0060a2"] }, Open ]], Cell[CellGroupData[{ -Cell[90548, 2340, 6643, 173, 162, "Input",ExpressionUUID->"2016af84-5098-4a00-a783-f0d93f8c9ba3"], -Cell[97194, 2515, 1495, 25, 60, "Output",ExpressionUUID->"bd9eb2f7-582b-4a68-9544-172d9b5d206c"], -Cell[98692, 2542, 815, 13, 34, "Output",ExpressionUUID->"202780ab-b52d-489c-a92e-1b0fd0915e99"] +Cell[90416, 2335, 6643, 173, 162, "Input",ExpressionUUID->"2016af84-5098-4a00-a783-f0d93f8c9ba3"], +Cell[97062, 2510, 1495, 25, 60, "Output",ExpressionUUID->"bd9eb2f7-582b-4a68-9544-172d9b5d206c"], +Cell[98560, 2537, 815, 13, 34, "Output",ExpressionUUID->"202780ab-b52d-489c-a92e-1b0fd0915e99"] }, Open ]], Cell[CellGroupData[{ -Cell[99544, 2560, 1857, 44, 140, "Input",ExpressionUUID->"30e5f6ef-f847-4642-bbeb-30c280b77e0b"], -Cell[101404, 2606, 767, 15, 60, "Output",ExpressionUUID->"5e69b9d6-c0fe-4adf-b5a6-d354021c664b"] +Cell[99412, 2555, 1857, 44, 140, "Input",ExpressionUUID->"30e5f6ef-f847-4642-bbeb-30c280b77e0b"], +Cell[101272, 2601, 767, 15, 60, "Output",ExpressionUUID->"5e69b9d6-c0fe-4adf-b5a6-d354021c664b"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[102220, 2627, 212, 4, 38, "Subsection",ExpressionUUID->"c866a966-62d2-4aaa-be30-188e454b7735"], -Cell[102435, 2633, 1505, 42, 54, "Input",ExpressionUUID->"5f15e614-bd85-47be-b20b-e346fe08a2c7"], -Cell[103943, 2677, 1820, 52, 56, "Input",ExpressionUUID->"95762630-81b3-4910-890e-f8cbb4b3594c"], -Cell[105766, 2731, 4914, 151, 102, "Input",ExpressionUUID->"d65bd25c-ca2f-407d-9b79-7092dc14020a"], +Cell[102088, 2622, 212, 4, 38, "Subsection",ExpressionUUID->"c866a966-62d2-4aaa-be30-188e454b7735"], +Cell[102303, 2628, 1830, 66, 53, "Input",ExpressionUUID->"c4a884e6-15b7-471a-9826-860d9af553cf"], +Cell[104136, 2696, 4796, 151, 190, "Input",ExpressionUUID->"ee948f7b-d70d-4f37-b367-09ca445c478b"], +Cell[108935, 2849, 1464, 44, 56, "Input",ExpressionUUID->"141f30e2-0cbb-4f96-a17a-38662c6cc740"], +Cell[110402, 2895, 1505, 42, 54, "Input",ExpressionUUID->"5f15e614-bd85-47be-b20b-e346fe08a2c7"], +Cell[111910, 2939, 1820, 52, 56, "Input",ExpressionUUID->"95762630-81b3-4910-890e-f8cbb4b3594c"], +Cell[113733, 2993, 4914, 151, 102, "Input",ExpressionUUID->"d65bd25c-ca2f-407d-9b79-7092dc14020a"], Cell[CellGroupData[{ -Cell[110705, 2886, 3637, 118, 99, "Input",ExpressionUUID->"86c4c204-12d5-4cc4-91f3-4ef38f2f1176"], -Cell[114345, 3006, 403, 6, 34, "Output",ExpressionUUID->"a2be3453-5dee-4d23-b728-7cbc223eac21"], -Cell[114751, 3014, 405, 6, 34, "Output",ExpressionUUID->"f9680827-b5a0-43a4-8fce-6d063ed22fc4"] +Cell[118672, 3148, 3637, 118, 99, "Input",ExpressionUUID->"86c4c204-12d5-4cc4-91f3-4ef38f2f1176"], +Cell[122312, 3268, 403, 6, 34, "Output",ExpressionUUID->"a2be3453-5dee-4d23-b728-7cbc223eac21"], +Cell[122718, 3276, 405, 6, 34, "Output",ExpressionUUID->"f9680827-b5a0-43a4-8fce-6d063ed22fc4"] }, Open ]], -Cell[115171, 3023, 2969, 102, 101, "Input",ExpressionUUID->"ffcbeb9c-6e95-4df6-bb5b-328b41b21992"], +Cell[123138, 3285, 2969, 102, 101, "Input",ExpressionUUID->"ffcbeb9c-6e95-4df6-bb5b-328b41b21992"], Cell[CellGroupData[{ -Cell[118165, 3129, 2044, 57, 48, "Input",ExpressionUUID->"61ee86cb-074d-4ac7-9f61-c1c6b64052ea"], -Cell[120212, 3188, 453, 12, 49, "Output",ExpressionUUID->"c480bc7f-ce40-4eee-b55d-3f73c76d3e72"] +Cell[126132, 3391, 2044, 57, 48, "Input",ExpressionUUID->"61ee86cb-074d-4ac7-9f61-c1c6b64052ea"], +Cell[128179, 3450, 453, 12, 49, "Output",ExpressionUUID->"c480bc7f-ce40-4eee-b55d-3f73c76d3e72"] }, Open ]], Cell[CellGroupData[{ -Cell[120702, 3205, 819, 26, 48, "Input",ExpressionUUID->"b6e55c8f-0333-4b09-aed9-bd0241fab7b8"], -Cell[121524, 3233, 552, 16, 49, "Output",ExpressionUUID->"dacdb030-75e3-4580-b198-bc005365a6e5"] +Cell[128669, 3467, 819, 26, 48, "Input",ExpressionUUID->"b6e55c8f-0333-4b09-aed9-bd0241fab7b8"], +Cell[129491, 3495, 552, 16, 49, "Output",ExpressionUUID->"dacdb030-75e3-4580-b198-bc005365a6e5"] }, Open ]], -Cell[122091, 3252, 1773, 53, 51, "Input",ExpressionUUID->"db51f6a7-4690-40c2-af32-a6f7eab9b126"], -Cell[123867, 3307, 468, 15, 48, "Input",ExpressionUUID->"67e833cb-794e-46bf-aaaa-f7fedec74084"], +Cell[130058, 3514, 1773, 53, 51, "Input",ExpressionUUID->"db51f6a7-4690-40c2-af32-a6f7eab9b126"], +Cell[131834, 3569, 468, 15, 48, "Input",ExpressionUUID->"67e833cb-794e-46bf-aaaa-f7fedec74084"], Cell[CellGroupData[{ -Cell[124360, 3326, 385, 12, 48, "Input",ExpressionUUID->"3ade0751-2e40-483d-aa9f-7c6decd096ba"], -Cell[124748, 3340, 303, 9, 34, "Output",ExpressionUUID->"e43011ca-1485-4c14-8ef5-e3e5c2853e54"] +Cell[132327, 3588, 385, 12, 48, "Input",ExpressionUUID->"3ade0751-2e40-483d-aa9f-7c6decd096ba"], +Cell[132715, 3602, 303, 9, 34, "Output",ExpressionUUID->"e43011ca-1485-4c14-8ef5-e3e5c2853e54"] }, Open ]], Cell[CellGroupData[{ -Cell[125088, 3354, 607, 20, 48, "Input",ExpressionUUID->"1f77c8a4-02f2-4a43-9353-2c6dc0e607c1"], -Cell[125698, 3376, 305, 9, 34, "Output",ExpressionUUID->"8b84c089-d48f-4520-a0df-2c902ca82399"] +Cell[133055, 3616, 607, 20, 48, "Input",ExpressionUUID->"1f77c8a4-02f2-4a43-9353-2c6dc0e607c1"], +Cell[133665, 3638, 305, 9, 34, "Output",ExpressionUUID->"8b84c089-d48f-4520-a0df-2c902ca82399"] }, Open ]], -Cell[126018, 3388, 4939, 128, 182, "Input",ExpressionUUID->"fc6fe6fa-c5e9-41cb-966e-1e14dcc26ff6"], -Cell[130960, 3518, 88, 0, 30, "Input",ExpressionUUID->"95d385a1-26ea-4e11-abe8-f06b598ba934"], +Cell[133985, 3650, 4935, 127, 182, "Input",ExpressionUUID->"fc6fe6fa-c5e9-41cb-966e-1e14dcc26ff6"], Cell[CellGroupData[{ -Cell[131073, 3522, 256, 6, 48, "Input",ExpressionUUID->"d3b8b61a-60ee-4c28-9248-265add0637aa"], -Cell[131332, 3530, 212, 4, 34, "Output",ExpressionUUID->"4f09a422-1bf6-4df7-8c91-f2c2c0cec522"] -}, Open ]], -Cell[131559, 3537, 10692, 192, 282, "Input",ExpressionUUID->"a06ef68f-50cc-4e7f-bfb8-5863cadce9e2"], +Cell[138945, 3781, 14908, 295, 388, "Input",ExpressionUUID->"a06ef68f-50cc-4e7f-bfb8-5863cadce9e2"], Cell[CellGroupData[{ -Cell[142276, 3733, 142, 3, 30, "Input",ExpressionUUID->"d9c28d1c-e0d4-475d-a943-85dfdc0de6a8"], -Cell[142421, 3738, 388, 8, 34, "Output",ExpressionUUID->"6f5addd6-59da-4628-a07a-17d4fb9c1555"] +Cell[153878, 4080, 889, 14, 24, "Print",ExpressionUUID->"dff7aa97-e391-4343-b7b5-ad058233477b"], +Cell[154770, 4096, 905, 14, 24, "Print",ExpressionUUID->"c58a0ac4-c2ad-4924-9616-d98448a17d87"], +Cell[155678, 4112, 11392, 208, 227, "Print",ExpressionUUID->"3834555d-b2da-4c44-afd9-30f6b0f58ec3"] +}, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[142846, 3751, 208, 4, 30, "Input",ExpressionUUID->"29c459f6-a6e6-4acc-9582-7887f094b0fb"], -Cell[143057, 3757, 384, 8, 34, "Output",ExpressionUUID->"a9435249-4dce-4236-b07a-182cf7caa43b"] +Cell[167119, 4326, 198, 4, 30, "Input",ExpressionUUID->"1f97a01c-9972-4922-bceb-32c17a62dd77"], +Cell[167320, 4332, 1146, 27, 181, "Output",ExpressionUUID->"09dd10ea-6b66-4aae-8729-61fe9daa8cfe"] +}, Open ]], +Cell[168481, 4362, 147, 3, 52, "Input",ExpressionUUID->"57afc89b-9ca1-4df9-834b-218a004d45c4"], +Cell[CellGroupData[{ +Cell[168653, 4369, 418, 12, 30, "Input",ExpressionUUID->"2438edc6-221c-4b60-bf8b-3d70d6ff12bb"], +Cell[169074, 4383, 597, 18, 48, "Output",ExpressionUUID->"c9bd8e93-a480-4036-a458-76653945c9c3"] }, Open ]], Cell[CellGroupData[{ -Cell[143478, 3770, 418, 12, 30, "Input",ExpressionUUID->"2438edc6-221c-4b60-bf8b-3d70d6ff12bb"], -Cell[143899, 3784, 597, 18, 48, "Output",ExpressionUUID->"c9bd8e93-a480-4036-a458-76653945c9c3"] +Cell[169708, 4406, 875, 18, 30, "Input",ExpressionUUID->"75603725-0506-477c-b0bd-726fd243172d"], +Cell[170586, 4426, 8010, 152, 367, "Output",ExpressionUUID->"dde512e3-daf4-47ad-a682-cc46fac9e729"] }, Open ]], Cell[CellGroupData[{ -Cell[144533, 3807, 875, 18, 30, "Input",ExpressionUUID->"75603725-0506-477c-b0bd-726fd243172d"], -Cell[145411, 3827, 8010, 152, 367, "Output",ExpressionUUID->"dde512e3-daf4-47ad-a682-cc46fac9e729"] +Cell[178633, 4583, 3545, 82, 220, "Input",ExpressionUUID->"6619aa61-41df-4561-afa2-5b697e931325"], +Cell[182181, 4667, 273958, 4808, 318, "Output",ExpressionUUID->"a8394bf7-c1fe-421f-ab00-3065601f65da"] +}, Open ]], +Cell[456154, 9478, 255, 6, 30, "Input",ExpressionUUID->"b5b12c32-af87-4895-806f-bf157bb129aa"], +Cell[CellGroupData[{ +Cell[456434, 9488, 850, 28, 46, "Input",ExpressionUUID->"cc05efbd-961f-46db-b61a-58c996905985"], +Cell[457287, 9518, 685, 22, 59, "Output",ExpressionUUID->"8fa408ca-cd50-43f5-b8e3-e8f3a0b3e9c1"] +}, Open ]], +Cell[457987, 9543, 448, 13, 30, "Input",ExpressionUUID->"98d3c666-fed4-4e94-8773-702f80e147f2"], +Cell[458438, 9558, 383, 11, 49, "Input",ExpressionUUID->"7760399b-0d77-4553-9ef6-998865cceadc"] +}, Closed]], +Cell[CellGroupData[{ +Cell[458858, 9574, 179, 3, 38, "Subsection",ExpressionUUID->"77b56f7c-700c-4596-b77a-642cfae1f22b"], +Cell[459040, 9579, 1125, 30, 52, "Input",ExpressionUUID->"ff6ab13d-cc50-4366-a995-d30ac2ee3ca0"], +Cell[460168, 9611, 935, 24, 77, "Input",ExpressionUUID->"a4227c53-c0ff-4d9f-b022-e8efa1078583"], +Cell[CellGroupData[{ +Cell[461128, 9639, 1098, 27, 121, "Input",ExpressionUUID->"144d8b08-2cda-4c3f-aae7-56d78af3e9a6"], +Cell[462229, 9668, 331, 8, 34, "Output",ExpressionUUID->"642969d1-aef0-4285-b9a4-87c9d9bf63f6"], +Cell[462563, 9678, 333, 8, 34, "Output",ExpressionUUID->"4cdccfc1-2d58-449f-93a2-676451209459"], +Cell[462899, 9688, 333, 8, 34, "Output",ExpressionUUID->"c0175bb6-3cd5-4091-ae4d-707099e32fe5"] }, Open ]], Cell[CellGroupData[{ -Cell[153458, 3984, 3545, 82, 220, "Input",ExpressionUUID->"6619aa61-41df-4561-afa2-5b697e931325"], -Cell[157006, 4068, 273958, 4808, 318, "Output",ExpressionUUID->"a8394bf7-c1fe-421f-ab00-3065601f65da"] +Cell[463269, 9701, 2322, 69, 133, "Input",ExpressionUUID->"4664053c-b02e-4c38-9051-008e3a7484da"], +Cell[465594, 9772, 317, 8, 54, "Output",ExpressionUUID->"812b16d7-2465-4555-a417-62a72e0d7088"], +Cell[465914, 9782, 327, 8, 52, "Output",ExpressionUUID->"747a0953-8b4f-445a-a705-d4fa071a8bf4"], +Cell[466244, 9792, 343, 9, 54, "Output",ExpressionUUID->"4e3ae25a-39f5-4f15-ac55-cbc59ae732a0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[466624, 9806, 1521, 39, 57, "Input",ExpressionUUID->"c5fe8672-d925-4b51-b434-9cc58193f061"], +Cell[468148, 9847, 200, 3, 34, "Output",ExpressionUUID->"8ea74885-dd75-4e3b-8bbd-d112e60e290c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[468385, 9855, 1515, 38, 54, "Input",ExpressionUUID->"38b0fb40-e8c1-4987-9dec-130d1aa367ec"], +Cell[469903, 9895, 151, 2, 34, "Output",ExpressionUUID->"f600affc-8f13-4f85-8d51-660e2eae2134"] +}, Open ]], +Cell[CellGroupData[{ +Cell[470091, 9902, 612, 14, 45, "Input",ExpressionUUID->"4775a23a-6b97-443b-b11f-d88e2157ab90"], +Cell[470706, 9918, 1014, 31, 57, "Output",ExpressionUUID->"60b5e41d-78dc-41c7-ae5e-5268429f17bf"] +}, Open ]], +Cell[CellGroupData[{ +Cell[471757, 9954, 2208, 66, 93, "Input",ExpressionUUID->"14adc592-f8b6-4352-82c0-db32e49cbd7f"], +Cell[473968, 10022, 158, 2, 34, "Output",ExpressionUUID->"b187b26a-3a08-47ef-8eca-4dec291f552d"] +}, Open ]], +Cell[474141, 10027, 144, 2, 52, "Input",ExpressionUUID->"7c0ac722-3bce-4e90-9a73-f8d5a33531ce"], +Cell[474288, 10031, 147, 3, 52, "Input",ExpressionUUID->"e432e51b-f250-4897-8f6e-36614ff6545f"], +Cell[474438, 10036, 147, 3, 52, "Input",ExpressionUUID->"c4ac53c0-eb08-4148-9c46-91e0118b4ce1"] +}, Open ]], +Cell[CellGroupData[{ +Cell[474622, 10044, 163, 3, 54, "Subsection",ExpressionUUID->"d406c2ba-4ab0-44d0-9b6f-c0c1db6c1acf"], +Cell[474788, 10049, 1505, 42, 54, "Input",ExpressionUUID->"5964132e-935a-46a6-b153-12b5727d94a0"], +Cell[476296, 10093, 1820, 52, 56, "Input",ExpressionUUID->"9e3ef216-9ad2-4adb-b9e7-96392657d2b3"], +Cell[478119, 10147, 4737, 148, 102, "Input",ExpressionUUID->"fd5e482a-7176-4bda-b608-c9d284776293"], +Cell[CellGroupData[{ +Cell[482881, 10299, 3814, 120, 99, "Input",ExpressionUUID->"d44672a8-904c-49d5-a749-404599638355"], +Cell[486698, 10421, 617, 9, 34, "Output",ExpressionUUID->"f95cdf80-034d-490c-9052-1ab0cd6440d3"], +Cell[487318, 10432, 617, 9, 34, "Output",ExpressionUUID->"1b714e96-da79-4d94-a1ba-aad82b46c1b7"] +}, Open ]], +Cell[487950, 10444, 3409, 116, 101, "Input",ExpressionUUID->"47e6ea8d-fe96-432b-bc8f-37af178f58c4"], +Cell[CellGroupData[{ +Cell[491384, 10564, 3501, 118, 101, "Input",ExpressionUUID->"41ad596d-10ce-4e99-baba-2ce47459342c"], +Cell[494888, 10684, 179, 3, 34, "Output",ExpressionUUID->"564d55f1-fbb5-4701-bf39-19b29e089fa9"] +}, Open ]], +Cell[CellGroupData[{ +Cell[495104, 10692, 4888, 165, 151, "Input",ExpressionUUID->"0539ebc8-55d1-4e61-8059-2b873a109fd0"], +Cell[499995, 10859, 1039, 31, 34, "Output",ExpressionUUID->"eb2da5a6-57c0-4846-bf3e-a339f3051de0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[501071, 10895, 6113, 200, 164, "Input",ExpressionUUID->"ba29c20b-dea9-41b8-b3d4-fc57943bb3a3"], +Cell[507187, 11097, 469, 7, 34, "Output",ExpressionUUID->"a45ecd9f-4177-4783-8c1c-5a81ef2ad1df"] +}, Open ]], +Cell[CellGroupData[{ +Cell[507693, 11109, 5193, 175, 154, "Input",ExpressionUUID->"5f1d575c-4c3c-4bde-8f8f-240d45244a88"], +Cell[512889, 11286, 206, 3, 34, "Output",ExpressionUUID->"1f981ff0-2415-481e-9272-8f05a9125627"] +}, Open ]], +Cell[CellGroupData[{ +Cell[513132, 11294, 2662, 88, 101, "Input",ExpressionUUID->"d0f32758-1361-44ee-bb02-8950288c60b3"], +Cell[515797, 11384, 957, 29, 34, "Output",ExpressionUUID->"55173617-34ac-4fdc-9406-99bf575c07a4"] +}, Open ]], +Cell[CellGroupData[{ +Cell[516791, 11418, 3501, 117, 101, "Input",ExpressionUUID->"c1307343-2cfb-4e0b-83cc-02e91fb1c0ed"], +Cell[520295, 11537, 176, 2, 34, "Output",ExpressionUUID->"3b48e172-c35e-4179-ad01-d64d2ba564df"] +}, Open ]], +Cell[CellGroupData[{ +Cell[520508, 11544, 3554, 119, 101, "Input",ExpressionUUID->"318015e8-2886-4487-be95-e7f69ff7a94c"], +Cell[524065, 11665, 156, 3, 34, "Output",ExpressionUUID->"3c0943dd-d696-48fb-95bf-e076fa93c9b0"] +}, Open ]], +Cell[524236, 11671, 3033, 103, 101, "Input",ExpressionUUID->"b4079bea-4a03-45f8-9706-9190d1a1a2fd"], +Cell[CellGroupData[{ +Cell[527294, 11778, 1956, 55, 48, "Input",ExpressionUUID->"523e901d-07d6-4226-ab0a-a0f8b4022ef8"], +Cell[529253, 11835, 422, 11, 49, "Output",ExpressionUUID->"cdd496d7-6f57-4d4b-9410-784a9d2ec602"] +}, Open ]], +Cell[CellGroupData[{ +Cell[529712, 11851, 696, 24, 48, "Input",ExpressionUUID->"a2621bef-7c52-4cc5-b04b-4a41d784cd3d"], +Cell[530411, 11877, 482, 15, 49, "Output",ExpressionUUID->"47b658d6-e43b-40a5-bd62-147a938a1d86"] +}, Open ]], +Cell[CellGroupData[{ +Cell[530930, 11897, 581, 19, 48, "Input",ExpressionUUID->"ab059271-ba95-494b-97be-904cc891c23e"], +Cell[531514, 11918, 371, 11, 51, "Output",ExpressionUUID->"8f57ea33-6026-4373-bdf2-c97365a6aff0"] +}, Open ]], +Cell[CellGroupData[{ +Cell[531922, 11934, 452, 12, 30, "Input",ExpressionUUID->"1423d03d-0009-4a98-923c-6616c220bc62"], +Cell[532377, 11948, 7116, 137, 239, "Output",ExpressionUUID->"a9257c0c-b5e1-4c1f-b935-f11312fc5f0c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[539530, 12090, 558, 16, 48, "Input",ExpressionUUID->"7d937c46-315c-4127-85c4-712b14bc01aa"], +Cell[540091, 12108, 402, 12, 49, "Output",ExpressionUUID->"cd9d35dd-d570-4a5a-8d26-67dfbe5a07bb"] +}, Open ]], +Cell[540508, 12123, 513, 17, 48, "Input",ExpressionUUID->"a2ac8ff2-1cae-41e1-a20b-4fbb997dec08"], +Cell[CellGroupData[{ +Cell[541046, 12144, 448, 14, 46, "Input",ExpressionUUID->"2f20c949-180a-497c-b460-fc41151522d8"], +Cell[541497, 12160, 275, 8, 49, "Output",ExpressionUUID->"0b25d327-e92b-4494-a4e0-91dc831b2739"] +}, Open ]], +Cell[541787, 12171, 191, 6, 48, "Input",ExpressionUUID->"939751eb-557e-4570-ac5e-0177a1ac50cf"], +Cell[541981, 12179, 1875, 54, 51, "Input",ExpressionUUID->"7f39c9ab-32fa-41ee-a84c-0db48d3fd4ca"], +Cell[543859, 12235, 468, 15, 48, "Input",ExpressionUUID->"59da42ed-948c-40cc-9a75-afe1a8b88822"], +Cell[544330, 12252, 4909, 127, 182, "Input",ExpressionUUID->"47cbd7eb-4244-4a5a-b725-eb6c2ae63c11"], +Cell[CellGroupData[{ +Cell[549264, 12383, 9467, 180, 304, "Input",ExpressionUUID->"54cba639-78de-41b7-b09f-3fb5cc912380"], +Cell[558734, 12565, 3821, 95, 182, "Output",ExpressionUUID->"278ca01a-9bd3-4962-aa4f-fe7918d70fe0"], +Cell[562558, 12662, 2875, 61, 249, "Output",ExpressionUUID->"44916109-9e4c-44de-8ffc-11faec7bc38d"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[431013, 8882, 163, 3, 38, "Subsection",ExpressionUUID->"d406c2ba-4ab0-44d0-9b6f-c0c1db6c1acf"], -Cell[431179, 8887, 1505, 42, 54, "Input",ExpressionUUID->"5964132e-935a-46a6-b153-12b5727d94a0"], -Cell[432687, 8931, 1820, 52, 56, "Input",ExpressionUUID->"9e3ef216-9ad2-4adb-b9e7-96392657d2b3"], -Cell[434510, 8985, 4737, 148, 102, "Input",ExpressionUUID->"fd5e482a-7176-4bda-b608-c9d284776293"], +Cell[565482, 12729, 304, 9, 38, "Subsection",ExpressionUUID->"c3267724-2a1e-46ae-a70a-24dbe2bc9597"], Cell[CellGroupData[{ -Cell[439272, 9137, 3814, 120, 99, "Input",ExpressionUUID->"d44672a8-904c-49d5-a749-404599638355"], -Cell[443089, 9259, 617, 9, 34, "Output",ExpressionUUID->"f95cdf80-034d-490c-9052-1ab0cd6440d3"], -Cell[443709, 9270, 617, 9, 34, "Output",ExpressionUUID->"1b714e96-da79-4d94-a1ba-aad82b46c1b7"] -}, Open ]], -Cell[444341, 9282, 3409, 116, 101, "Input",ExpressionUUID->"47e6ea8d-fe96-432b-bc8f-37af178f58c4"], -Cell[CellGroupData[{ -Cell[447775, 9402, 3501, 118, 101, "Input",ExpressionUUID->"41ad596d-10ce-4e99-baba-2ce47459342c"], -Cell[451279, 9522, 179, 3, 34, "Output",ExpressionUUID->"564d55f1-fbb5-4701-bf39-19b29e089fa9"] +Cell[565811, 12742, 9486, 298, 329, "Input",ExpressionUUID->"093b63ec-d5d7-429c-a6ae-daee424561d5"], +Cell[575300, 13042, 759, 11, 34, "Output",ExpressionUUID->"c8bc8a1a-7edb-4bf3-8401-c89b58f107f2"], +Cell[576062, 13055, 759, 11, 34, "Output",ExpressionUUID->"f48a9ecf-9fbe-47d9-ae87-f8b5af6c5e0b"], +Cell[576824, 13068, 759, 11, 34, "Output",ExpressionUUID->"ec1755b9-8f51-47c9-9a0f-1629807636d1"], +Cell[577586, 13081, 809, 13, 34, "Output",ExpressionUUID->"de84db82-7bcd-4321-be05-acdd32c5a02c"], +Cell[578398, 13096, 759, 11, 34, "Output",ExpressionUUID->"e6a683e2-6c11-4e7d-802c-2b921896631b"] }, Open ]], Cell[CellGroupData[{ -Cell[451495, 9530, 4888, 165, 151, "Input",ExpressionUUID->"0539ebc8-55d1-4e61-8059-2b873a109fd0"], -Cell[456386, 9697, 1039, 31, 34, "Output",ExpressionUUID->"eb2da5a6-57c0-4846-bf3e-a339f3051de0"] -}, Open ]], -Cell[CellGroupData[{ -Cell[457462, 9733, 6113, 200, 164, "Input",ExpressionUUID->"ba29c20b-dea9-41b8-b3d4-fc57943bb3a3"], -Cell[463578, 9935, 469, 7, 34, "Output",ExpressionUUID->"a45ecd9f-4177-4783-8c1c-5a81ef2ad1df"] -}, Open ]], -Cell[CellGroupData[{ -Cell[464084, 9947, 5193, 175, 154, "Input",ExpressionUUID->"5f1d575c-4c3c-4bde-8f8f-240d45244a88"], -Cell[469280, 10124, 206, 3, 34, "Output",ExpressionUUID->"1f981ff0-2415-481e-9272-8f05a9125627"] -}, Open ]], -Cell[CellGroupData[{ -Cell[469523, 10132, 2662, 88, 101, "Input",ExpressionUUID->"d0f32758-1361-44ee-bb02-8950288c60b3"], -Cell[472188, 10222, 957, 29, 34, "Output",ExpressionUUID->"55173617-34ac-4fdc-9406-99bf575c07a4"] -}, Open ]], -Cell[CellGroupData[{ -Cell[473182, 10256, 3501, 117, 101, "Input",ExpressionUUID->"c1307343-2cfb-4e0b-83cc-02e91fb1c0ed"], -Cell[476686, 10375, 176, 2, 34, "Output",ExpressionUUID->"3b48e172-c35e-4179-ad01-d64d2ba564df"] -}, Open ]], -Cell[CellGroupData[{ -Cell[476899, 10382, 3554, 119, 101, "Input",ExpressionUUID->"318015e8-2886-4487-be95-e7f69ff7a94c"], -Cell[480456, 10503, 156, 3, 34, "Output",ExpressionUUID->"3c0943dd-d696-48fb-95bf-e076fa93c9b0"] -}, Open ]], -Cell[480627, 10509, 3033, 103, 101, "Input",ExpressionUUID->"b4079bea-4a03-45f8-9706-9190d1a1a2fd"], -Cell[CellGroupData[{ -Cell[483685, 10616, 1956, 55, 48, "Input",ExpressionUUID->"523e901d-07d6-4226-ab0a-a0f8b4022ef8"], -Cell[485644, 10673, 422, 11, 49, "Output",ExpressionUUID->"cdd496d7-6f57-4d4b-9410-784a9d2ec602"] -}, Open ]], -Cell[CellGroupData[{ -Cell[486103, 10689, 696, 24, 48, "Input",ExpressionUUID->"a2621bef-7c52-4cc5-b04b-4a41d784cd3d"], -Cell[486802, 10715, 482, 15, 49, "Output",ExpressionUUID->"47b658d6-e43b-40a5-bd62-147a938a1d86"] -}, Open ]], -Cell[CellGroupData[{ -Cell[487321, 10735, 581, 19, 48, "Input",ExpressionUUID->"ab059271-ba95-494b-97be-904cc891c23e"], -Cell[487905, 10756, 371, 11, 51, "Output",ExpressionUUID->"8f57ea33-6026-4373-bdf2-c97365a6aff0"] -}, Open ]], -Cell[CellGroupData[{ -Cell[488313, 10772, 452, 12, 30, "Input",ExpressionUUID->"1423d03d-0009-4a98-923c-6616c220bc62"], -Cell[488768, 10786, 7116, 137, 239, "Output",ExpressionUUID->"a9257c0c-b5e1-4c1f-b935-f11312fc5f0c"] -}, Open ]], -Cell[CellGroupData[{ -Cell[495921, 10928, 558, 16, 48, "Input",ExpressionUUID->"7d937c46-315c-4127-85c4-712b14bc01aa"], -Cell[496482, 10946, 402, 12, 49, "Output",ExpressionUUID->"cd9d35dd-d570-4a5a-8d26-67dfbe5a07bb"] -}, Open ]], -Cell[496899, 10961, 513, 17, 48, "Input",ExpressionUUID->"a2ac8ff2-1cae-41e1-a20b-4fbb997dec08"], -Cell[CellGroupData[{ -Cell[497437, 10982, 448, 14, 46, "Input",ExpressionUUID->"2f20c949-180a-497c-b460-fc41151522d8"], -Cell[497888, 10998, 275, 8, 49, "Output",ExpressionUUID->"0b25d327-e92b-4494-a4e0-91dc831b2739"] -}, Open ]], -Cell[498178, 11009, 191, 6, 48, "Input",ExpressionUUID->"939751eb-557e-4570-ac5e-0177a1ac50cf"], -Cell[498372, 11017, 1875, 54, 51, "Input",ExpressionUUID->"7f39c9ab-32fa-41ee-a84c-0db48d3fd4ca"], -Cell[500250, 11073, 468, 15, 48, "Input",ExpressionUUID->"59da42ed-948c-40cc-9a75-afe1a8b88822"], -Cell[500721, 11090, 4909, 127, 182, "Input",ExpressionUUID->"47cbd7eb-4244-4a5a-b725-eb6c2ae63c11"], -Cell[CellGroupData[{ -Cell[505655, 11221, 9467, 180, 304, "Input",ExpressionUUID->"54cba639-78de-41b7-b09f-3fb5cc912380"], -Cell[515125, 11403, 3821, 95, 182, "Output",ExpressionUUID->"278ca01a-9bd3-4962-aa4f-fe7918d70fe0"], -Cell[518949, 11500, 2875, 61, 249, "Output",ExpressionUUID->"44916109-9e4c-44de-8ffc-11faec7bc38d"] -}, Open ]] -}, Open ]], -Cell[CellGroupData[{ -Cell[521873, 11567, 304, 9, 54, "Subsection",ExpressionUUID->"c3267724-2a1e-46ae-a70a-24dbe2bc9597"], -Cell[CellGroupData[{ -Cell[522202, 11580, 9486, 298, 329, "Input",ExpressionUUID->"093b63ec-d5d7-429c-a6ae-daee424561d5"], -Cell[531691, 11880, 759, 11, 34, "Output",ExpressionUUID->"c8bc8a1a-7edb-4bf3-8401-c89b58f107f2"], -Cell[532453, 11893, 759, 11, 34, "Output",ExpressionUUID->"f48a9ecf-9fbe-47d9-ae87-f8b5af6c5e0b"], -Cell[533215, 11906, 759, 11, 34, "Output",ExpressionUUID->"ec1755b9-8f51-47c9-9a0f-1629807636d1"], -Cell[533977, 11919, 809, 13, 34, "Output",ExpressionUUID->"de84db82-7bcd-4321-be05-acdd32c5a02c"], -Cell[534789, 11934, 759, 11, 34, "Output",ExpressionUUID->"e6a683e2-6c11-4e7d-802c-2b921896631b"] -}, Open ]], -Cell[CellGroupData[{ -Cell[535585, 11950, 5317, 162, 97, "Input",ExpressionUUID->"5ce35750-7da9-4ff5-b83f-0ae5f5377437"], -Cell[540905, 12114, 156, 3, 34, "Output",ExpressionUUID->"7fb01024-0558-4c4e-bc04-f537ce36e159"] +Cell[579194, 13112, 5317, 162, 97, "Input",ExpressionUUID->"5ce35750-7da9-4ff5-b83f-0ae5f5377437"], +Cell[584514, 13276, 156, 3, 34, "Output",ExpressionUUID->"7fb01024-0558-4c4e-bc04-f537ce36e159"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[541110, 12123, 357, 9, 38, "Subsection",ExpressionUUID->"59690161-1c60-4593-a2e7-c717480798c8"], +Cell[584719, 13285, 357, 9, 38, "Subsection",ExpressionUUID->"59690161-1c60-4593-a2e7-c717480798c8"], Cell[CellGroupData[{ -Cell[541492, 12136, 12034, 380, 331, "Input",ExpressionUUID->"83dd638d-a3d9-4eac-9812-c6a4cf31efb2"], -Cell[553529, 12518, 209, 4, 34, "Output",ExpressionUUID->"b4e381d7-4a23-4e07-981a-8f2086d6ecb0"], -Cell[553741, 12524, 210, 4, 34, "Output",ExpressionUUID->"c0f052e7-e375-40fb-9cda-e30d1e386bf6"], -Cell[553954, 12530, 210, 4, 34, "Output",ExpressionUUID->"0bae4c27-c7b9-457a-8a0b-94924bb3d300"], -Cell[554167, 12536, 260, 6, 34, "Output",ExpressionUUID->"c64341aa-bf6d-4dfd-8f07-5440230a7974"], -Cell[554430, 12544, 210, 4, 34, "Output",ExpressionUUID->"55d747c3-742f-4a1c-84a2-fde40e88cc5e"] +Cell[585101, 13298, 12034, 380, 331, "Input",ExpressionUUID->"83dd638d-a3d9-4eac-9812-c6a4cf31efb2"], +Cell[597138, 13680, 209, 4, 34, "Output",ExpressionUUID->"b4e381d7-4a23-4e07-981a-8f2086d6ecb0"], +Cell[597350, 13686, 210, 4, 34, "Output",ExpressionUUID->"c0f052e7-e375-40fb-9cda-e30d1e386bf6"], +Cell[597563, 13692, 210, 4, 34, "Output",ExpressionUUID->"0bae4c27-c7b9-457a-8a0b-94924bb3d300"], +Cell[597776, 13698, 260, 6, 34, "Output",ExpressionUUID->"c64341aa-bf6d-4dfd-8f07-5440230a7974"], +Cell[598039, 13706, 210, 4, 34, "Output",ExpressionUUID->"55d747c3-742f-4a1c-84a2-fde40e88cc5e"] }, Open ]], Cell[CellGroupData[{ -Cell[554677, 12553, 15052, 468, 347, "Input",ExpressionUUID->"e4ec2f88-e321-4297-8368-7cf33b0e5d5e"], -Cell[569732, 13023, 3774, 117, 61, "Output",ExpressionUUID->"468a3fca-bc22-4dbe-ba2e-d09f5efde874"] +Cell[598286, 13715, 15052, 468, 347, "Input",ExpressionUUID->"e4ec2f88-e321-4297-8368-7cf33b0e5d5e"], +Cell[613341, 14185, 3774, 117, 61, "Output",ExpressionUUID->"468a3fca-bc22-4dbe-ba2e-d09f5efde874"] }, Open ]] }, Closed]], Cell[CellGroupData[{ -Cell[573555, 13146, 238, 4, 38, "Subsection",ExpressionUUID->"eac4bda2-189e-42f0-81dc-51e5ebbd2f4a"], -Cell[573796, 13152, 1505, 42, 54, "Input",ExpressionUUID->"17b135d5-7e41-4643-b4bb-f3eea5ce1e51"], -Cell[575304, 13196, 1851, 52, 56, "Input",ExpressionUUID->"14802bea-9955-4893-8c9c-a17bac458ece"], -Cell[577158, 13250, 5028, 155, 151, "Input",ExpressionUUID->"d3a6ec1b-6a01-430d-947f-8f0e2ffa4abc"], +Cell[617164, 14308, 238, 4, 38, "Subsection",ExpressionUUID->"eac4bda2-189e-42f0-81dc-51e5ebbd2f4a"], +Cell[617405, 14314, 1505, 42, 54, "Input",ExpressionUUID->"17b135d5-7e41-4643-b4bb-f3eea5ce1e51"], +Cell[618913, 14358, 1851, 52, 56, "Input",ExpressionUUID->"14802bea-9955-4893-8c9c-a17bac458ece"], +Cell[620767, 14412, 5028, 155, 151, "Input",ExpressionUUID->"d3a6ec1b-6a01-430d-947f-8f0e2ffa4abc"], Cell[CellGroupData[{ -Cell[582211, 13409, 12016, 360, 415, "Input",ExpressionUUID->"9bfbd342-26ab-4960-b0c1-6d30bc401946"], -Cell[594230, 13771, 842, 13, 34, "Output",ExpressionUUID->"bad42b6b-febc-423c-b781-8e8f634645b2"], -Cell[595075, 13786, 842, 13, 34, "Output",ExpressionUUID->"08268186-e6a0-4d08-92db-7368a97e5b15"], -Cell[595920, 13801, 838, 12, 34, "Output",ExpressionUUID->"14e5cd70-74bd-402b-9647-758b00e98438"], -Cell[596761, 13815, 844, 13, 34, "Output",ExpressionUUID->"a1021d01-c1ea-43ff-815d-85bf1860cda5"], -Cell[597608, 13830, 842, 13, 34, "Output",ExpressionUUID->"a6228c72-c3ab-4a4b-a7dd-114c74203722"], -Cell[598453, 13845, 842, 13, 34, "Output",ExpressionUUID->"449b7df1-0d75-4d67-925c-350cdef9600b"] +Cell[625820, 14571, 12016, 360, 415, "Input",ExpressionUUID->"9bfbd342-26ab-4960-b0c1-6d30bc401946"], +Cell[637839, 14933, 842, 13, 34, "Output",ExpressionUUID->"bad42b6b-febc-423c-b781-8e8f634645b2"], +Cell[638684, 14948, 842, 13, 34, "Output",ExpressionUUID->"08268186-e6a0-4d08-92db-7368a97e5b15"], +Cell[639529, 14963, 838, 12, 34, "Output",ExpressionUUID->"14e5cd70-74bd-402b-9647-758b00e98438"], +Cell[640370, 14977, 844, 13, 34, "Output",ExpressionUUID->"a1021d01-c1ea-43ff-815d-85bf1860cda5"], +Cell[641217, 14992, 842, 13, 34, "Output",ExpressionUUID->"a6228c72-c3ab-4a4b-a7dd-114c74203722"], +Cell[642062, 15007, 842, 13, 34, "Output",ExpressionUUID->"449b7df1-0d75-4d67-925c-350cdef9600b"] }, Open ]], Cell[CellGroupData[{ -Cell[599332, 13863, 3780, 122, 98, "Input",ExpressionUUID->"f27d4a85-2a37-4803-a443-435791839d08"], -Cell[603115, 13987, 211, 4, 34, "Output",ExpressionUUID->"2dc3a301-69c8-4267-acd1-185a7e3220d5"] +Cell[642941, 15025, 3780, 122, 98, "Input",ExpressionUUID->"f27d4a85-2a37-4803-a443-435791839d08"], +Cell[646724, 15149, 211, 4, 34, "Output",ExpressionUUID->"2dc3a301-69c8-4267-acd1-185a7e3220d5"] }, Open ]], -Cell[603341, 13994, 3620, 91, 172, "Input",ExpressionUUID->"17d3180a-586b-41af-a83f-6e20a124c592"], +Cell[646950, 15156, 3620, 91, 172, "Input",ExpressionUUID->"17d3180a-586b-41af-a83f-6e20a124c592"], Cell[CellGroupData[{ -Cell[606986, 14089, 9840, 189, 283, "Input",ExpressionUUID->"e8a12bd0-24b7-41d6-8141-13207367f442"], -Cell[616829, 14280, 4442, 90, 525, "Output",ExpressionUUID->"6cf12868-5980-4ee9-9f5e-473067fd4e9d"] +Cell[650595, 15251, 9840, 189, 283, "Input",ExpressionUUID->"e8a12bd0-24b7-41d6-8141-13207367f442"], +Cell[660438, 15442, 4442, 90, 525, "Output",ExpressionUUID->"6cf12868-5980-4ee9-9f5e-473067fd4e9d"] }, Open ]] }, Closed]] }, Open ]] diff --git a/TrUEGs.tex b/TrUEGs.tex index cbfb229..a746469 100644 --- a/TrUEGs.tex +++ b/TrUEGs.tex @@ -65,7 +65,7 @@ Indeed, apart from very few exceptions, most density-functional approximations a Thanks to the construction of exchange-correlation LDA functionals \cite{Slater_1951,Vosko_1980,Perdew_1981,Perdew_1992,Chachiyo_2016} which can be loosely seen as a one-to-one mapping between a given value of the electron density and the exchange-correlation energy of the UEG, one can then straightforwardly compute, within KS-DFT, the electronic ground-state energy and properties of any molecules or materials with, nonetheless, a certain degree of approximation inherently associated with the approximate nature of the exchange-correlation LDA functional. One can also access excited states via the time-dependent version of DFT. \cite{Runge_1984,Casida_1995,Petersilka_1996,UllrichBook} -As commonly done, the LDA can be refined by adding up new ingredients, such as the gradient of the density $\nabla \rho$ [which defines the generalized gradient approximation (GGA)], \cite{Perdew_1986,Becke_1988,Lee_1988,Perdew_1996} the kinetic energy density $\tau$ (meta-GGA), \cite{Becke_1988b,Sun_2015} exact Hartree-Fock exchange (yielding the so-called hybrid functionals), \cite{Becke_1993a,Becke_1993b,Adamo_1999} and others. +As commonly done, the LDA can be refined by adding up new ingredients, such as the gradient of the density $\nabla \rho$ [which defines the generalized gradient approximation (GGA)], \cite{Perdew_1986,Becke_1988,Lee_1988,Perdew_1996} the kinetic energy density $\tau$ (meta-GGA), \cite{Becke_1988b,Sun_2015} exact Hartree-Fock (HF) exchange (yielding the so-called hybrid functionals), \cite{Becke_1993a,Becke_1993b,Adamo_1999} and others. Each of these quantities defines a new rung of the well-known Jacob ladder of DFT \cite{Perdew_2001} that is supposed to bring electronic structure theory calculations from the evil Hartree world to the chemical accuracy heaven. The UEG, also known as jellium in some context, \cite{Loos_2016} is a hypothetical infinite substance where an infinite number of electrons ``bathe'' in a (uniform) positively charged jelly of infinite volume. \cite{ParrBook,Loos_2016} @@ -78,7 +78,7 @@ In the following, this paradigm is named the infinite UEG (IUEG) for obvious rea %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Recently, it has been shown that one can create finite UEGs (FUEGs) by placing a finite number of electrons onto the surface of a sphere of radius $R$. \cite{Tempere_2002,Tempere_2007,Seidl_2007,Loos_2009a,Loos_2009c,Loos_2010e,Loos_2011b,Gill_2012,Loos_2018b} Of course, FUEGs only appear for well-defined electron numbers and electronic states. \cite{Rogers_2016,Rogers_2017} -In particular, the spin-unpolarized ground state of $n$ electrons on a sphere has a homogeneous density for $n = 2(L+1)^2$ (where $L \in \mathbb{N}$) for any $R$ values, and this holds also within the Hartree-Fock approximation. \cite{Loos_2011b} +In particular, the spin-unpolarized ground state of $n$ electrons on a sphere has a homogeneous density for $n = 2(L+1)^2$ (where $L \in \mathbb{N}$) for any $R$ values, and this holds also within the HF approximation. \cite{Loos_2011b} This property comes from the addition theorem of the spherical harmonics \cite{NISTbook} $Y_{\ell m}(\bm{\Omega})$ (which are the spatial orbitals of the system in this particular case): \begin{equation} \sum_{\ell=0}^L \sum_{m=-\ell}^{+\ell} Y_{\ell m}^*(\bm{\Omega}) Y_{\ell m}(\bm{\Omega}) = \frac{(L+1)^2}{2\pi^2} @@ -201,6 +201,11 @@ For certain $R$ values, the attractive effect stemming from the spatial part of In higher-energy excited states, the same-spin electrons are further away as compared to the ground state due to the larger number of nodes in the excited-state wave functions. Therefore, the magnitude of the attractive effect has to be larger to compensate it, which corresponds to more negative values of $R$. +While for the IUEG and FUEGs, the density is uniform independently of the level of theory, \ie, the system has homogeneous density within the exact theory but also within the HF approximation (unless the spin and/or spatial symmetry is broken \cite{Fukutome_1981,Stuber_2003,VignaleBook}), the value of $R_\text{UEG}$ is, \textit{a priori}, highly dependent of the level of theory for TUEGs. +Indeed, it is very unlikely that the exact theory and the HF approximation provide the same value of $R_\text{UEG}$ as the uniformity stems from the competition between Fermi effects originating from the antisymmetric nature of the wave function (which are well described at the HF level) and correlation effects (which are absent, by definition, at the HF level). +Actually, it is even possible for a system to be a TUEG within the exact treatment and being non-uniform for any $R$ values at the HF level. + + %\titou{What about the nodes? Dyson orbitals? Cf Paola's paper.} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%