\documentclass[aspectratio=169,9pt,compress]{beamer} % *********** % * PACKAGE * % *********** \usepackage{amsmath,amssymb,amsfonts,pgfpages,graphicx,subfigure,xcolor,bm,multirow,microtype,wasysym,tabularx,amscd,pgfgantt,mhchem,physics,libertine,mathpazo} \usetheme{Warsaw} \usecolortheme{seahorse} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=cyan, filecolor=magenta, urlcolor=cyan, citecolor=purple } \urlstyle{same} % *********** % * PACKAGE * % *********** % energies \newcommand{\Ec}{E_\text{c}} \newcommand{\EHF}{E_\text{HF}} % bold symbols \newcommand{\br}{\boldsymbol{r}} \newcommand{\bx}{\boldsymbol{x}} \newcommand{\bs}{\boldsymbol{s}} \newcommand{\bR}{\boldsymbol{R}} \newcommand{\bo}{\boldsymbol{o}} \newcommand{\bA}{\boldsymbol{A}} \newcommand{\bB}{\boldsymbol{B}} \newcommand{\bC}{\boldsymbol{C}} \newcommand{\bE}{\boldsymbol{E}} \newcommand{\bG}{\boldsymbol{G}} \newcommand{\bJ}{\boldsymbol{J}} \newcommand{\bK}{\boldsymbol{K}} \newcommand{\bP}{\boldsymbol{P}} \newcommand{\bI}{\boldsymbol{I}} \newcommand{\bU}{\boldsymbol{U}} \newcommand{\bO}{\boldsymbol{O}} \newcommand{\bS}{\boldsymbol{S}} \newcommand{\bT}{\boldsymbol{T}} \newcommand{\bF}{\boldsymbol{F}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bV}{\boldsymbol{V}} \newcommand{\bX}{\boldsymbol{X}} % hat symbols \newcommand{\hH}{\Hat{H}} \newcommand{\hh}{\Hat{h}} \newcommand{\hT}{\Hat{T}} \newcommand{\hV}{\Hat{V}} \newcommand{\hO}{\Hat{O}} % curly symbols \newcommand{\cO}{\mathcal{O}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cP}{\mathcal{P}} % colors and others \newcommand{\mc}{\multicolumn} \definecolor{darkgreen}{RGB}{0, 180, 0} \newcommand{\purple}[1]{\textcolor{purple}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\green}[1]{\textcolor{darkgreen}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\violet}[1]{\textcolor{violet}{#1}} \newcommand{\pub}[1]{\small \textcolor{purple}{#1}} % shortcuts \newcommand{\si}{\sigma} \newcommand{\la}{\lambda} \newcommand{\mycirc}[1][black]{\Large\textcolor{#1}{\ensuremath\bullet}} % ************* % * HEAD DATA * % ************* \title[The HF approximation]{ \LARGE The Hartree--Fock Approximation } \author[PF Loos]{Pierre-Fran\c{c}ois LOOS} \date{TCCM 2021} \institute[CNRS@LCPQ]{ Laboratoire de Chimie et Physique Quantiques (UMR 5626),\\ Universit\'e de Toulouse, CNRS, UPS, Toulouse, France. } \titlegraphic{ \vspace{0.2\textheight} \includegraphics[height=0.05\textwidth]{fig/UPS} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/ERC} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/LCPQ} \hspace{0.2\textwidth} \includegraphics[height=0.05\textwidth]{fig/CNRS} } \begin{document} %----------------------------------------------------- %%% TITLE %%% %----------------------------------------------------- \begin{frame} \titlepage \end{frame} %%% SLIDE X %%% \begin{frame}{How to perform a HF calculation in practice?} \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{The SCF algorithm for Hartree-Fock (HF) calculations (p.~146)} \begin{enumerate} \item \orange{Specify molecule} $\{\bR_A\}$ and $\{Z_A\}$ and \violet{basis set} $\{\phi_\mu\}$ \item Calculate integrals $S_{\mu \nu}$, $H_{\mu \nu}$ and $\braket{\mu \nu}{\lambda \sigma}$ \item Diagonalize $\bS$ and compute $\bX = \bS^{-1/2}$ \item Obtain \alert{guess density matrix} for $\bP$ \begin{enumerate} \item[1.] Calculate $\bJ$ and $\bK$, then $\bF = \bH + \bJ + \bK$ \item[2.] Compute $\bF' = \bX^\dag \cdot \bF \cdot \bX$ \item[3.] Diagonalize $\bF'$ to obtain $\bC'$ and $\bE$ \item[4.] Calculate $\bC= \bX \cdot \bC'$ \item[5.] Form a \blue{new density matrix} $\bP = \bC \cdot \bC^\dag$ \item[6.] \alert{Am I converged?} If not go back to 1. \end{enumerate} \item Calculate stuff that you want, like $\EHF$ for example \end{enumerate} \end{block} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{fig/Szabo} \end{column} \end{columns} \end{frame} \begin{frame}{Szabo's and Ostlund's book} \begin{center} \includegraphics[width=\textwidth]{fig/amazon} \end{center} \end{frame} %----------------------------------------------------- \section{The electronic problem} %----------------------------------------------------- %----------------------------------------------------- \subsection{Motivations} %----------------------------------------------------- \begin{frame}{Motivations \& Assumptions} \begin{itemize} \item We consider the \violet{time-independent} Schr\"odinger equation \bigskip \item HF is an \alert{ab initio method}, i.e., there's no parameter \bigskip \item We don't care about \violet{relativistic effects} \bigskip \item HF is an \blue{independent-particle model}, i.e., the motion of one electron \violet{is considered to be independent of the dynamics of all other electrons} \orange{$\Rightarrow$ interactions are taken into account in an average fashion} \bigskip \item \purple{HF is the starting point of pretty much anything!} \end{itemize} \end{frame} %----------------------------------------------------- \subsection{Born-Oppenheimer} %----------------------------------------------------- \begin{frame}{The Hamiltonian} In the \alert{Schr\"odinger equation} \begin{equation} \cH \Phi(\{\br_i\},\{\bR_A\}) = \cE \Phi(\{\br_i\},\{\bR_A\}) \end{equation} the \violet{total Hamiltonian} is \begin{equation} \boxed{ \cH = \green{\cT_\text{n}} + \blue{\cT_\text{e}} + \orange{\cV_\text{ne}} + \alert{\cV_\text{ee}} + \violet{\cV_\text{nn}} } \end{equation} \begin{block}{What are all these terms?} \begin{itemize} \item \green{$\cT_\text{n}$} is the \green{kinetic energy of the nuclei} \bigskip \item \blue{$\cT_\text{e}$} is the \blue{kinetic energy of the electrons} \bigskip \item \orange{$\cV_\text{ne}$} is the \orange{Coulomb attraction between nuclei and electrons} \bigskip \item \alert{$\cV_\text{ee}$} is the \alert{Coulomb repulsion between electrons} \bigskip \item \violet{$\cV_\text{nn}$} is the \violet{Coulomb repulsion between nuclei} \end{itemize} \end{block} \end{frame} \begin{frame}{The Hamiltonian (Take 2)} \begin{columns} \begin{column}{0.4\textwidth} \begin{block}{In atomic units ($m = e = \hbar = 1$)} \begin{subequations} \begin{align} & \green{\cT_\text{n}} = - \sum_{A=1}^{M} \frac{\nabla_A^2}{2 M_A} \\ & \blue{\cT_\text{e}} = - \sum_{i=1}^{N} \frac{\nabla_i^2}{2} \\ & \orange{\cV_\text{ne}} = - \sum_{A=1}^{M} \sum_{i=1}^N \frac{Z_A}{r_{iA}} \\ & \alert{\cV_\text{ee}} = \sum_{i0} + \underbrace{(\alert{J_{12}} - \orange{J_{11}})}_{<0} - \alert{K_{12}} \end{split} \end{equation*} \end{block} \end{frame} \begin{frame}{HF Energy of Atoms} \begin{block}{Problem: HF energy of the \ce{Li} atom} \violet{``Find the HF energy of the \ce{Li} atom in terms of the spatial MOs''} \end{block} \pause \begin{block}{Solution:} $$ \chi_1 = \alpha \, \psi_1 \qquad \chi_2 = \beta \, \psi_1 \qquad \chi_3 = \alpha \, \psi_2 \qquad \chi_4 = \beta \, \psi_2$$ \begin{equation*} E_\text{HF} = 2 h_1 + h_2 + J_{11} + 2J_{12} - K_{12} \end{equation*} \end{block} \pause \begin{block}{Problem: HF energy of the \ce{B} atom} \violet{``Find the HF energy of the \ce{B} atom' in terms of the spatial MOs'} \end{block} \pause \begin{block}{Solution:} $$ E_\text{HF} =2h_1 + 2h_2 + h_3 + J_{11} + 4J_{12} + J_{22} - 2K_{12} + 2J_{13} + 2J_{23} - K_{13} - K_{23}$$ \end{block} \end{frame} %----------------------------------------------------- \subsection{Spin to spatial} %----------------------------------------------------- \begin{frame}{From spin to spatial orbitals} \begin{columns} \begin{column}{0.6\textwidth} \begin{block}{Two-electron example: \ce{H2} in minimal basis} In the spin orbital basis, we have \begin{equation*} \begin{split} \EHF & = \mel{\chi_1}{h}{\chi_1} + \mel{\chi_2}{h}{\chi_2} + \braket{\chi_1 \chi_2}{\chi_1 \chi_2} - \braket{\chi_1 \chi_2}{\chi_2 \chi_1} \\ & = [\chi_1|h|\chi_1] + [\chi_2|h|\chi_2] + [\chi_1 \chi_1|\chi_2 \chi_2] - [\chi_1 \chi_2|\chi_2 \chi_1] \end{split} \end{equation*} Spin to spatial transformation: \begin{align*} \chi_1(\bx) & \equiv \psi_1(\bx) = \psi_1(\br) \alpha(\omega) \\ \chi_2(\bx) & \equiv \Bar{\psi}_1(\bx) = \psi_1(\br) \beta(\omega) \end{align*} \begin{equation*} \EHF = [\psi_1|h|\psi_1] + [\Bar{\psi}_1|h|\Bar{\psi}_1] + [\psi_1 \psi_1 | \Bar{\psi}_1 \Bar{\psi}_1] - [\psi_1 \Bar{\psi_1} | \Bar{\psi}_1 \psi_1] \end{equation*} Therefore, in the spatial orbital basis, we have \begin{equation*} \EHF = 2(\psi_1|h|\psi_1) + (\psi_1 \psi_1|\psi_1 \psi_1) = 2(1|h|1) + (11|11) \end{equation*} \end{block} \end{column} \begin{column}{0.4\textwidth} \begin{center} \includegraphics[width=\textwidth]{fig/H2} \end{center} \end{column} \end{columns} \end{frame} \begin{frame}{From spin to spatial orbitals (Take 2)} \begin{block}{One-electron terms} \begin{equation*} \begin{split} [\chi_1|h|\chi_1] & = \int \chi_1^*(\bx) h(\br) \chi_1(\bx) d\bx \\ & = \int \alpha^*(\omega) \psi_1^*(\br) h(\br) \alpha(\omega) \psi_1(\br) d\omega d\br \\ & = \underbrace{\qty[ \int \alpha^*(\omega) \alpha(\omega) d\omega]}_{=1} \underbrace{\qty[ \int \psi_1^*(\br) h(\br) \psi_1(\br) d\br ]}_{(\psi_1|h|\psi_1)} \end{split} \end{equation*} \begin{equation*} \begin{split} [\chi_2|h|\chi_2] & = \int \chi_2^*(\bx) h(\br) \chi_2(\bx) d\bx \\ & = \int \beta^*(\omega) \psi_1^*(\br) h(\br) \beta(\omega) \psi_1(\br) d\omega d\br \\ & = \underbrace{\qty[ \int \beta^*(\omega) \beta(\omega) d\omega]}_{=1} \underbrace{\qty[ \int \psi_1^*(\br) h(\br) \psi_1(\br) d\br ]}_{(\psi_1|h|\psi_1)} \end{split} \end{equation*} \end{block} \end{frame} \begin{frame}{From spin to spatial orbitals (Take 3)} \begin{block}{Two-electron terms} \begin{equation*} \begin{split} [\chi_1 \chi_1|\chi_2 \chi_2] & = \iint \chi_1^*(\bx_1) \chi_1(\bx_1) r_{12}^{-1} \chi_2^*(\bx_2) \chi_2(\bx_2) d\bx_1 d\bx_2 \\ & = \iint \alpha^*(\omega_1) \psi_1^*(\br_1) \alpha(\omega_1) \psi_1(\br_1) r_{12}^{-1} \beta^*(\omega_2) \psi_1^*(\br_2) \beta(\omega_2) \psi_1(\br_2) d\omega_1 d\br_1 d\omega_2 d\br_2 \\ & = \underbrace{\qty[ \int \alpha^*(\omega_1) \alpha(\omega_1) d\omega_1]}_{=1} \underbrace{\qty[ \int \beta^*(\omega_2) \beta(\omega_2) d\omega_2]}_{=1} \underbrace{\qty[ \iint \psi_1^*(\br_1) \psi_1(\br_1) r_{12}^{-1} \psi_1^*(\br_2) \psi_1(\br_2) d\br_1 d\br_2 ]}_{(\psi_1 \psi_1|\psi_1 \psi_1)} \end{split} \end{equation*} \begin{equation*} \begin{split} [\chi_1 \chi_2|\chi_2 \chi_1] & = \iint \chi_1^*(\bx_1) \chi_2(\bx_1) r_{12}^{-1} \chi_2^*(\bx_2) \chi_1(\bx_2) d\bx_1 d\bx_2 \\ & = \iint \alpha^*(\omega_1) \psi_1^*(\br_1) \beta(\omega_1) \psi_1(\br_1) r_{12}^{-1} \beta^*(\omega_2) \psi_1^*(\br_2) \alpha(\omega_2) \psi_1(\br_2) d\omega_1 d\br_1 d\omega_2 d\br_2 \\ & = \underbrace{\qty[ \int \alpha^*(\omega_1) \beta(\omega_1) d\omega_1]}_{=0} \underbrace{\qty[ \int \beta^*(\omega_2) \alpha(\omega_2) d\omega_2]}_{=0} \underbrace{\qty[ \iint \psi_1^*(\br_1) \psi_1(\br_1) r_{12}^{-1} \psi_1^*(\br_2) \psi_1(\br_2) d\br_1 d\br_2 ]}_{(\psi_1 \psi_1|\psi_1 \psi_1)} \end{split} \end{equation*} \end{block} \end{frame} \begin{frame}{From spin to spatial orbitals (Take 4)} \begin{block}{General expression} \begin{equation} \EHF = \sum_a^N [a|h|a] + \frac{1}{2} \sum_a^N \sum_b^N \qty( [aa|bb] - [ab|ba] ) = 2 \sum_a^{N/2} (a|h|a) + \sum_a^{N/2} \sum_b^{N/2} \qty[ 2(aa|bb) - (ab|ba) ] \end{equation} \end{block} \begin{block}{One- and two-electron terms} \small \begin{equation} \sum_a^N [a|h|a] = \sum_a^{N/2} [a|h|a] + \sum_a^{N/2} [\Bar{a}|h|\Bar{a}] = 2 \sum_a^{N/2} [a|h|a] \end{equation} \begin{equation} \begin{split} \frac{1}{2} \sum_a^N \sum_b^N \qty( [aa|bb] - [ab|ba] ) & = \frac{1}{2} \Bigg\{ \sum_a^{N/2} \sum_b^{N/2} \qty( [aa|bb] - [ab|ba] ) + \sum_a^{N/2} \sum_b^{N/2} \qty( [aa|\Bar{b}\Bar{b}] - [a\Bar{b}|\Bar{b}a] ) \\ & \qquad + \sum_a^{N/2} \sum_b^{N/2} \qty( [\Bar{a}\Bar{a}|bb] - [\Bar{a}b|b\Bar{a}] ) + \sum_a^{N/2} \sum_b^{N/2} \qty( [\Bar{a}\Bar{a}|\Bar{b}\Bar{b}] - [\Bar{a}\Bar{b}|\Bar{b}\Bar{a}] ) \Bigg\} \\ & = \sum_a^{N/2} \sum_b^{N/2} \qty[ 2(aa|bb) - (ab|ba) ] \end{split} \end{equation} \end{block} \end{frame} %----------------------------------------------------- \subsection{Fock matrix} %----------------------------------------------------- \begin{frame}{The Fock matrix} Using the \alert{variational principle}, one can show that, to minimise the energy, the MOs need to diagonalise the \alert{one-electron} \blue{Fock operator} \begin{equation*} \boxed{ f(1) = h(1) + \underbrace{\sum_a^N [\cJ_a(1) - \cK_a(1)]}_{\nu^\text{HF}(1) \text{ = \blue{Hartree-Fock potential}}}} \end{equation*} For a \orange{closed-shell system} (i.e. two electrons in each orbital) \begin{equation*} f(1) = h(1) + \sum_a^{N/2} [2 J_a(1) - K_a(1)] \quad \text{\alert{(closed shell)}} \end{equation*} These orbitals are called \orange{canonical molecular orbitals} (= eigenvectors): \begin{equation*} \boxed{f(1)\,\psi_i(1) = \varepsilon_i \, \psi_i(1)} \end{equation*} and $\varepsilon_i$ are called the \violet{MO energies} (= eigenvalues) \end{frame} \begin{frame}{Fock matrix elements in the MO basis} \begin{block}{Problem:} \violet{`` Find the expression of the matrix elements $f_{ij} = \mel{\chi_i}{f}{\chi_j}$''} \end{block} \pause \begin{block}{Solution:} \begin{equation*} \begin{split} \mel{\chi_i}{f}{\chi_j} & = \mel{\chi_i}{h + \sum_a \qty( \cJ_a - \cK_a)}{\chi_j} \\ & = \mel{\chi_i}{h}{\chi_j} + \sum_a \qty( \mel{\chi_i}{\cJ_a}{\chi_j} - \mel{\chi_i}{\cK_a}{\chi_j} ) \\ & = \mel{i}{h}{j} + \sum_a \qty[ \braket{ia}{ja} - \braket{ia}{aj} ] \\ & = \mel{i}{h}{j} + \sum_a \mel{ia}{}{ja} \end{split} \end{equation*} \end{block} \end{frame} \begin{frame}{MO energies in the MO basis} \begin{block}{Problem:} \violet{`` Deduce the expression of $\varepsilon_i$''} \end{block} \pause \begin{block}{Solution:} \begin{align*} f \ket{\chi_i} = \varepsilon_i \ket{\chi_i} & \Rightarrow \quad \mel{\chi_i}{f}{\chi_i} = \varepsilon_i \braket{\chi_i}{\chi_i} = \varepsilon_i \\ & \Rightarrow \quad \varepsilon_i = \mel{i}{h}{i} + \sum_a \qty[ \braket{ia}{ia} - \braket{ia}{ai} ] \\ & \Rightarrow \quad \varepsilon_i = \mel{i}{h}{i} + \sum_a \mel{ia}{}{ia} \end{align*} \end{block} \end{frame} %----------------------------------------------------- \subsection{Variational principle} %----------------------------------------------------- \begin{frame}{The variational principle} \begin{block}{Problem} \violet{\textit{``Let's suppose we know all the functions such as $\hH \varphi_i = E_i \varphi_i$, with $E_0 < E_1 < \ldots $ and $\braket{ \varphi_i }{ \varphi_j } = \delta_{ij}$. Show that, for any normalized $\Psi$, we have $ E = \mel{ \Psi }{ \hH }{ \Psi } \ge E_0$''}} \pause \end{block} \begin{block}{Solution} We expand $\Psi$ in a \alert{clever basis} \begin{equation*} \Psi = \sum_{i}^\infty c_i \,\varphi_i \qq{with} \sum_{i}^\infty c_i^2 = 1 \end{equation*} \pause \begin{equation*} \begin{split} E & = \mel{ \Psi }{ \hH }{ \Psi } = \mel{ \sum_i c_i \varphi_i }{ \hH }{ \sum_j c_j \varphi_j } = \sum_{ij} c_i c_j \mel{ \varphi_i }{ \hH }{ \varphi_j } \\ & = \sum_{ij} c_i c_j E_j \braket{ \varphi_i }{ \varphi_j } = \sum_{ij} c_i c_j E_j \delta_{ij} = \sum_{i} c_i^2 E_i \ge E_0 \sum_{i} c_i^2 = E_0 \end{split} \end{equation*} \end{block} \end{frame} %----------------------------------------------------- \subsection{Koopmans} %----------------------------------------------------- \begin{frame}{Koopmans' theorem} \begin{block}{Ground-state energy of the $N$-electron system} \begin{equation} {}^{N} E_0 = \sum_{a} h_a + \frac{1}{2} \sum_{ab} \mel{ab}{}{ab} \end{equation} \end{block} \begin{block}{Energy of the $(N-1)$-electron system (cation)} \begin{equation} {}^{N-1}E_c = \sum_{a \neq c} h_a + \frac{1}{2} \sum_{a \neq c} \sum_{b \neq c} \mel{ab}{}{ab} \end{equation} \end{block} \begin{block}{Ionization potential (IP)} \begin{equation} \begin{split} \text{IP} & = {}^{N-1}E_c - {}^{N} E_0 \\ & = - \mel{c}{h}{c} - \frac{1}{2} \sum_{a} \mel{ac}{}{ac} - \frac{1}{2} \sum_{b} \mel{cb}{}{cb} \\ & = - \mel{c}{h}{c} - \sum_{a} \mel{ac}{}{ac} = - \varepsilon_c \end{split} \end{equation} \end{block} \end{frame} \begin{frame}{Koopmans' theorem for electron affinity (EA)} \begin{block}{Problem:} \violet{``Show that Koopmans' theorem applies to electron affinities''} \end{block} \pause \begin{block}{Solution:} \begin{equation} \begin{split} \text{EA} & = {}^{N}E_0 - {}^{N+1} E^r \\ & = - \mel{r}{h}{r} - \sum_{a} \mel{ra}{}{ra} \\ & = - \varepsilon_r \end{split} \end{equation} \end{block} \end{frame} %----------------------------------------------------- \section{Roothaan-Hall equations} %----------------------------------------------------- %----------------------------------------------------- \subsection{Basis set approximation} %----------------------------------------------------- \begin{frame}{Roothaan-Hall equations: introduction of a basis} \begin{block}{Expansion in a basis} $$ \psi_i(\br) = \sum_\mu^K C_{\mu i} \phi_{\mu}(\br) \qquad \equiv \qquad \ket{i} = \sum_\mu^K C_{\mu i} \ket{\mu}$$ \alert{\bf $K$ AOs gives $K$ MOs:} \blue{$N/2$ are occupied MOs} and \orange{$K-N/2$ are vacant/virtual MOs} \end{block} \begin{block}{Roothaan-Hall equations} \begin{equation*} \begin{split} f \ket{i} = \varepsilon_i \ket{i} & \quad \Rightarrow \quad f \sum_{\nu} C_{\nu i} \ket{\nu} = \varepsilon_i \sum_{\nu} C_{\nu i} \ket{\nu} \\ & \quad \Rightarrow \quad \mel{ \mu }{ f \sum_{\nu} C_{\nu i} }{ \nu } = \varepsilon_i \mel{ \mu }{ \sum_{\nu} C_{\nu i} }{ \nu } \\ & \quad \Rightarrow \quad \sum_{\nu} C_{\nu i} \mel{ \mu }{ f }{ \nu } = \sum_{\nu} C_{\nu i} \varepsilon_i \braket{ \mu }{ \nu } \\ & \quad \Rightarrow \quad \boxed{\alert{\sum_{\nu} F_{\mu \nu} C_{\nu i} = \sum_{\nu} S_{\mu \nu} C_{\nu i} \varepsilon_i }} \end{split} \end{equation*} \end{block} \end{frame} \begin{frame}{Introduction of a basis (Take 2)} \begin{block}{Matrix form of the Roothaan-Hall equations} \begin{align} \bF \cdot \bC & = \bS \cdot \bC \cdot \bE & & \Leftrightarrow & \bF^\prime \cdot \bC^\prime & = \bC^\prime \cdot \bE \\ \bF' & = \bX^\dag \cdot \bF \cdot \bX & \bC & = \bX \cdot \bC' & \bX^\dag \cdot \bS \cdot \bX & = \bI \end{align} \begin{itemize} \item \violet{Fock matrix} $ F_{\mu\nu} = \mel{ \mu }{ f }{ \nu }$ and \blue{Overlap matrix} $S_{\mu\nu} = \braket{ \mu }{ \nu }$ \item We need to determine the \orange{coefficient matrix} $\bC$ and the \purple{orbital energies} $\bE$ \end{itemize} \begin{align} \bC & = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1K} \\ C_{21} & C_{22} & \cdots & C_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ C_{K1} & C_{K2} & \cdots & C_{KK} \\ \end{pmatrix} & \bE & = \begin{pmatrix} \varepsilon_{1} & 0 & \cdots & 0 \\ 0 & \varepsilon_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \varepsilon_{K} \\ \end{pmatrix} \end{align} \end{block} \begin{block}{Self-consistent field (SCF) procedure} \begin{equation} \bF(\bC) \cdot \bC = \bS \cdot \bC \cdot \bE \qq{\alert{\bf How do we solve these HF equations?}} \end{equation} \end{block} \end{frame} %----------------------------------------------------- \subsection{Fock matrix} %----------------------------------------------------- \begin{frame}{Expression of the Fock matrix} \begin{block}{Problem:} \violet{\textit{``Find the expression of the Fock matrix in terms of the one- and two-electron integrals''}} \end{block} \pause \begin{block}{Solution:} \begin{equation*} \begin{split} F_{\mu \nu} & = \mel{\mu}{h + \sum_a^N (\cJ_a - \cK_a)}{\nu} = H_{\mu \nu} + \sum_a^N \mel{\mu}{\cJ_a - \cK_a}{\nu} \\ & = H_{\mu \nu} + \sum_a^N (\mel{ \mu \chi_a }{ r_{12}^{-1} }{ \nu \chi_a } - \mel{ \mu \chi_a }{ r_{12}^{-1} }{ \chi_a \nu }) \\ & = H_{\mu \nu} + \sum_a^N \sum_{\lambda \sigma} C_{\lambda a} C_{\sigma a} (\mel{ \mu \lambda }{ r_{12}^{-1} }{ \nu \sigma } - \mel{ \mu \lambda }{ r_{12}^{-1} }{ \sigma \nu }) \\ & = H_{\mu \nu} + \sum_{\lambda \sigma} \alert{P_{\lambda \sigma}} (\braket{ \mu \lambda }{ \nu \sigma } - \braket{ \mu \lambda }{ \sigma \nu }) = H_{\mu \nu} + \sum_{\lambda \sigma} \alert{P_{\lambda \sigma}} \mel{ \mu \lambda }{}{ \nu \sigma } = H_{\mu \nu} + G_{\mu \nu} \end{split} \end{equation*} \begin{equation*} F_{\mu \nu} = H_{\mu \nu} + \sum_{\lambda \sigma} P_{\lambda \sigma} (\langle \mu \lambda | \nu \sigma \rangle - \frac{1}{2} \langle \mu \lambda | \sigma \nu \rangle) \quad \text{\alert{(closed shell)}} \end{equation*} \end{block} \end{frame} %----------------------------------------------------- \subsection{Density matrix \& Integrals} %----------------------------------------------------- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}{One- and two-electron integrals (Appendix A)} \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{One-electron integrals: overlap \& core Hamiltonian} \begin{equation} S_{\mu\nu} = \braket{\mu}{\nu} = \int \phi_\mu^*(\orange{\br}) \phi_\nu(\orange{\br}) d\orange{\br} \end{equation} \begin{equation} H_{\mu\nu} = \mel{\mu}{\hH^\text{c}}{\nu} = \int \phi_\mu^*(\orange{\br}) \hH^\text{c}(\orange{\br}) \phi_\nu(\orange{\br}) d\orange{\br} \end{equation} \end{block} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{fig/SBG} \end{column} \end{columns} \begin{block}{Chemist/Mulliken notation for two-electron integrals} \begin{equation} ( \mu \nu | \lambda \sigma ) = \iint \phi_\mu^*(\alert{\br_1}) \phi_\nu(\alert{\br_1}) \frac{1}{r_{12}} \phi_\lambda^*(\blue{\br_2}) \phi_\sigma(\blue{\br_2}) d\red{\br_1} d\blue{\br_2} \end{equation} \begin{equation} ( \mu \blue{\nu} \orange{||} \lambda \red{\sigma} ) = ( \mu \blue{\nu} | \lambda \red{\sigma} ) - ( \mu \red{\sigma} | \lambda \blue{\nu} ) \end{equation} \end{block} \begin{block}{Physicist/Dirac notation for two-electron integrals} \begin{equation} \langle \mu \nu | \lambda \sigma \rangle = \iint \phi_\mu^*(\alert{\br_1}) \phi_\nu^*(\blue{\br_2}) \frac{1}{r_{12}} \phi_\lambda(\alert{\br_1}) \phi_\sigma(\blue{\br_2}) d\red{\br_1} d\blue{\br_2} \end{equation} \begin{equation} \langle \mu \nu \orange{||} \blue{\lambda} \red{\sigma} \rangle = \langle \mu \nu | \blue{\lambda} \red{\sigma} \rangle - \langle \mu \nu | \red{\sigma} \blue{\lambda} \rangle \end{equation} \end{block} \end{frame} \begin{frame}{Computation of the Fock matrix and energy} \begin{block}{Density matrix (closed-shell system)} \begin{equation} P_{\red{\mu \nu}} = 2 \sum_{a}^{N/2} C_{\red{\mu} a} C_{\red{\nu} a} \qqtext{or} \boxed{\bP = 2 \, \bC \cdot \bC^{\dag}} \end{equation} \end{block} \begin{block}{Fock matrix in the AO basis (closed-shell system)} \begin{equation} F_{\red{\mu\nu}} = H_{\red{\mu\nu}} + \underbrace{\sum_{\blue{\la \si}} P_{\blue{\la\si}} (\red{\mu\nu}|\blue{\la\si})}_{J_{\red{\mu \nu}} = \text{ Coulomb}} \underbrace{ - \frac{1}{2} \sum_{\blue{\la \si}} P_{\blue{\la\si}} (\red{\mu}\blue{\si}|\blue{\la}\red{\nu})}_{K_{\red{\mu \nu}} = \text{ exchange}} \end{equation} \end{block} \begin{block}{HF energy in the AO basis (closed-shell system)} \begin{equation} E_\text{HF} = \sum_{\red{\mu \nu}} P_{\red{\mu \nu}} H_{\red{\mu \nu}} + \frac{1}{2} \sum_{\red{\mu \nu} \blue{\la\si}} P_{\red{\mu \nu}} \qty[ (\red{\mu \nu} | \blue{\lambda \sigma}) - \frac{1}{2} (\red{\mu} \blue{\sigma} | \red{\lambda} \blue{\nu}) ] P_{\blue{\lambda\sigma}} \qqtext{or} \boxed{E_\text{HF} = \frac{1}{2} \text{Tr}{\qty[\bP \cdot (\bH + \bF)]}} \end{equation} \end{block} \end{frame} %----------------------------------------------------- \subsection{HF energy} %----------------------------------------------------- \begin{frame}{Expression of the HF energy } \begin{block}{Problem:} \violet{\textit{``Find the expression of the HF energy in terms of the one- and two-electron integrals''}} \end{block} \pause \begin{block}{Solution:} \begin{equation*} \begin{split} E_\text{HF} & = \sum_a^N h_a + \frac{1}{2} \sum_{ab}^N (\cJ_{ab} - \cK_{ab}) \quad \alert{\text{(cf few slides ago)}} \\ & = \sum_a^N \mel{ \sum_\mu C_{\mu a} \phi_\mu }{ h }{ \sum_\nu C_{\nu a} \phi_\nu } + \frac{1}{2} \sum_{ab}^N \mel{ \qty(\sum_\mu C_{\mu a} \phi_\mu) \qty(\sum_\lambda C_{\lambda b} \phi_\lambda)} {} { \qty(\sum_\nu C_{\nu a} \phi_\nu) \qty(\sum_\sigma C_{\sigma b} \phi_\sigma)} \\ & = \sum_{\mu \nu} P_{\mu \nu} \qty[ H_{\mu \nu} + \frac{1}{2} \sum_{\lambda \sigma} P_{\lambda \sigma} \mel{ \mu \lambda }{}{ \nu \sigma } ] \end{split} \end{equation*} \end{block} \end{frame} %----------------------------------------------------- \subsection{SCF} %----------------------------------------------------- \begin{frame}{How to perform a HF calculation in practice?} \begin{block}{The SCF algorithm} \begin{enumerate} \item \orange{Specify molecule} $\{\bR_A\}$ and $\{Z_A\}$ and \violet{basis set} $\{\phi_\mu\}$ \item Calculate integrals $S_{\mu \nu}$, $H_{\mu \nu}$ and $\braket{ \mu \nu }{ \lambda \sigma }$ \item Diagonalize $\bS$ and compute $\bX$ \item Obtain \alert{guess density matrix} for $\bP$ \begin{enumerate} \item[1.] Calculate $\bG$ and then $\bF = \bH + \bG$ \item[2.] Compute $\bF' = \bX^\dag \cdot \bF \cdot \bX$ \item[3.] Diagonalize $\bF'$ to obtain $\bC'$ and $\bE$ \item[4.] Calculate $\bC= \bX \cdot \bC'$ \item[5.] Form a \blue{new density matrix} $\bP = \bC \cdot \bC^\dag$ \item[6.] \alert{Am I converged?} If not go back to 1. \end{enumerate} \item Calculate stuff that you want, like $\EHF$ for example \end{enumerate} \end{block} \end{frame} \begin{frame}{Orthogonalization matrix} \red{\bf We are looking for a matrix in order to orthogonalize the AO basis, i.e.~$\bX^\dag \cdot \bS \cdot \bX = \bI$} \\ \bigskip \begin{columns} \begin{column}{0.7\textwidth} \begin{block}{Symmetric (or L\"owdin) orthogonalization} \begin{equation} \text{$\bX =\bS^{-1/2} = \bU \cdot \bs^{-1/2} \cdot \bU^\dag$ is one solution...} \end{equation} \purple{\bf Is it working?} \begin{equation} \bX^\dag \cdot \bS \cdot \bX = \bS^{-1/2} \cdot \bS \cdot \bS^{-1/2} = \bS^{-1/2} \cdot \bS \cdot \bS^{-1/2} = \bI \quad \green{\checkmark} \end{equation} \end{block} \begin{block}{Canonical orthogonalization} \begin{equation} \text{$\bX =\bU \cdot \bs^{-1/2}$ is another solution (when you have linear dependencies)...} \end{equation} \purple{\bf Is it working?} \begin{equation} \bX^\dag \cdot \bS \cdot \bX = \bs^{-1/2} \cdot \underbrace{\bU^{\dag} \cdot \bS \cdot \bU}_{\bs} \cdot \bs^{-1/2} = \bI \quad \green{\checkmark} \end{equation} \end{block} \end{column} \begin{column}{0.3\textwidth} \includegraphics[width=\textwidth]{fig/ortho} \end{column} \end{columns} \end{frame} \begin{frame}{How to obtain a good guess for the MOs or density matrix?} \begin{block}{Possible initial density matrix} \begin{enumerate} \bigskip \item We can set \purple{$\bP = \mathbf{0}$ $\Rightarrow$ $\bF = \bH$} (\orange{core Hamiltonian approximation}):\\ $\Rightarrow$ Usually a poor guess but easy to implement \bigskip \item Use \alert{EHT or semi-empirical methods}:\\ $\Rightarrow$ Out of fashion \bigskip \item Using \violet{tabulated atomic densities}:\\ $\Rightarrow$ ``SAD'' guess in QChem \bigskip \item \blue{Read the MOs of a previous calculation:}\\ $\Rightarrow$ Very common and very useful \bigskip \end{enumerate} \end{block} \end{frame} \begin{frame}{How do I know I have converged (or not)?} \begin{block}{Convergence in SCF calculations} \begin{enumerate} \bigskip \item You can check the \orange{energy and/or the density matrix}:\\ $\Rightarrow$ The energy/density \textbf{should not} change at convergence \bigskip \item You can check the commutator \alert{$\bF \cdot \bP \cdot \bS - \bS \cdot \bP \cdot \bF$}:\\ $\Rightarrow$ At convergence, we have \alert{$\bF \cdot \bP \cdot \bS - \bS \cdot \bP \cdot \bF = \mathbf{0}$} \bigskip \item The \violet{DIIS (direct inversion in the iterative subspace) method} is usually used to speed up convergence:\\ $\Rightarrow$ \blue{Extrapolation of the Fock matrix} using previous iterations $$ \bF_{m+1} = \sum_{i=m-k}^{m} c_i \, \bF_i $$ \bigskip \end{enumerate} \end{block} \end{frame} %----------------------------------------------------- \subsection{Properties} %----------------------------------------------------- \begin{frame}{Dipole moments} \begin{block}{Classical vs Quantum} \begin{equation} \boldsymbol{\mu} = (\mu_x,\mu_y,\mu_z) = \underbrace{\green{\sum_i q_i \br_i}}_{\text{\green{classical definition}}} \end{equation} \begin{equation} \boldsymbol{\mu} = (\mu_x,\mu_y,\mu_z) = \underbrace{\red{\mel{\Psi_0}{- \sum_i^N \br_i}{\Psi_0}}}_{\text{\red{electrons}}} + \underbrace{\blue{\sum_A^M Z_A \bR_A}}_{\text{\blue{nuclei}}} = \red{- \sum_{\mu \nu} P_{\mu\nu} (\nu|\br|\mu)} + \blue{\sum_A^M Z_A \bR_A} \end{equation} \end{block} \begin{block}{Vector components} \begin{equation} \mu_x = \red{- \sum_{\mu \nu} P_{\mu\nu} (\nu|x|\mu)} + \blue{\sum_A^M Z_A X_A} \qq{with} \underbrace{(\nu|x|\mu)}_{\text{one-electron integrals}} = \int \phi_\nu^*(\br) \,x\, \phi_\mu(\br) d\br \end{equation} \end{block} \end{frame} \begin{frame}{Charge analysis} \begin{block}{Electron density} \begin{equation} \rho(\br) = \sum_{\mu\nu} \phi_\mu(\br) P_{\mu\nu} \phi_\nu(\br) \qq{with} \int \rho(\br) d\br = N \qq{$\Rightarrow$} N = \sum_{\mu\nu} P_{\mu\nu} S_{\nu\mu} = \sum_\mu (\bP \cdot \bS)_{\mu\mu} = \Tr(\bP \cdot \bS) \end{equation} \end{block} \begin{block}{Mulliken population analysis} Assuming that the basis functions are atom-centered \begin{equation} \underbrace{\blue{q_A^\text{Mulliken}}}_{\text{net charge on $A$}} = Z_A - \sum_{\mu \in A} (\bP \cdot \bS)_{\mu\mu} \end{equation} \end{block} \begin{block}{L{\"o}wdin population analysis} Because $\Tr(\bA \cdot \bB) = \Tr(\bB \cdot \bA)$, we have, for any $\alpha$, $N = \sum_{\mu} (\bS^{\alpha} \cdot \bP \cdot \bS^{1-\alpha})_{\mu\mu}$ \begin{equation} \qq*{For \red{$\alpha = 1/2$}, we get:} N = \sum_{\mu} (\bS^{1/2} \cdot \bP \cdot \bS^{1/2})_{\mu\mu} \qq{$\Rightarrow$} \red{q_A^\text{L{\"o}wdin}} = Z_A - \sum_{\mu \in A} (\bS^{1/2} \cdot \bP \cdot \bS^{1/2})_{\mu\mu} \end{equation} \end{block} \end{frame} %----------------------------------------------------- \section{Unrestricted HF} %----------------------------------------------------- %----------------------------------------------------- \subsection{UHF} %----------------------------------------------------- \begin{frame}{Unrestricted HF (UHF)} \begin{block}{How to model open-shell systems?} \begin{itemize} \item RHF is made to describe \alert{closed-shell systems} and we have used \orange{restricted spin orbitals}: \begin{equation*} \chi_i^\text{RHF}(\bx) = \begin{cases} \alpha(\omega) \, \psi_i(\br) \\ \beta(\omega) \, \psi_i(\br) \end{cases} \end{equation*} \item It does {\bf not} describe \alert{open-shell systems} \item For open-shell systems we can use \violet{unrestricted spin orbitals} \begin{equation*} \chi_i^\text{UHF}(\bx) = \begin{cases} \alpha(\omega) \, \orange{\psi_i^\alpha(\br)} \\ \beta(\omega) \, \red{\psi_i^\beta(\br)} \end{cases} \end{equation*} \ \item RHF = \orange{Restricted} Hartree-Fock $\leftrightarrow$ \blue{Roothaan-Hall equations} \item UHF = \red{Unrestricted} Hartree-Fock $\leftrightarrow$ \violet{Pople-Nesbet equations} \item \blue{Restricted Open-shell Hartree-Fock (ROHF)} do exist but we won't talk about it \end{itemize} \end{block} \end{frame} \begin{frame}{RHF, ROHF and UHF} \center \includegraphics[width=0.4\textwidth]{fig/RHF_UHF} \begin{itemize} \item RHF = \orange{Restricted} Hartree-Fock \item UHF = \red{Unrestricted} Hartree-Fock \item ROHF = \blue{Restricted Open-shell} Hartree-Fock \end{itemize} \end{frame} %----------------------------------------------------- %\subsection{UHF wave function} %----------------------------------------------------- %\begin{frame}{The UHF wave function} % \begin{block}{Slater determinants for UHF} % \small % \begin{equation*} % \Psi_\text{UHF}%(\br_1,\ldots,\br_N) % = % \underbrace{ % \frac{1}{\sqrt{N^\alpha!}} % \begin{vmatrix} % \psi_1^\alpha(\br_1) & \cdots & \psi_{N^\alpha}^\alpha(\br_1) \\ % \vdots & \ddots & \vdots \\ % \psi_1^\alpha(\br_{N^\alpha}) & \cdots & \psi_{N^\alpha}^\alpha(\br_{N^\alpha}) \\ % \end{vmatrix} % }_{\orange{\Psi^\alpha(\br_1,\ldots,\br_{N^\alpha}) }} % \underbrace{ % \frac{1}{\sqrt{N^\beta!}} % \begin{vmatrix} % \psi_1^\beta(\br_{N^\alpha+1}) & \cdots & \psi_{N^\beta}^\beta(\br_{N^\alpha+1}) \\ % \vdots & \ddots & \vdots \\ % \psi_1^\beta(\br_{N}) & \cdots & \psi_{N^\beta}^\beta(\br_{N}) \\ % \end{vmatrix} % }_{\alert{\Psi^\beta(\br_{N^\alpha+1},\ldots,\br_{N}) }} % \end{equation*} % \normalsize % \begin{itemize} % \item The UHF wave function is \violet{a product of two determinants} % \begin{itemize} % \item One for the \orange{spin-up electrons} $\orange{\Psi^\alpha(\br_1,\ldots,\br_{N^\alpha}) }$ % \item One for the \alert{spin-down electrons} $\alert{\Psi^\beta(\br_{N^\alpha+1},\ldots,\br_{N}) }$ % \end{itemize} % \item The \alert{Pauli exclusion principle} only requires the \blue{wave function to be antisymmetric wrt the exchange of two same-spin electrons} % \end{itemize} % \end{block} %\end{frame} %----------------------------------------------------- \subsection{UHF equations} %----------------------------------------------------- \begin{frame}{Unrestricted Hartree-Fock equations} \begin{block}{UHF equations for unrestricted spin orbitals} \bigskip \violet{To minimize the UHF energy}, the unrestricted spin orbitals must be eigenvalues of the \blue{$\alpha$ and $\beta$ Fock operators}: \begin{align} & \boxed{ \orange{f^\alpha(1) \, \psi_i^\alpha(1) = \varepsilon_i^\alpha \, \psi_j^\alpha(1)} } & & \boxed{ \alert{f^\beta(1) \, \psi_i^\beta(1) = \varepsilon_i^\beta \, \psi_j^\beta(1)} } \end{align} where \begin{align} \orange{f^\alpha(1)} & = h(1) + \sum_{a}^{N^\alpha} [ \orange{J_a^\alpha(1) - K_a^\alpha(1)} ] + \sum_{a}^{N^\beta} \alert{J_a^\beta(1)} \\ \alert{f^\beta(1)} & = h(1) + \sum_{a}^{N^\beta} [ \alert{J_a^\beta(1) - K_a^\beta(1)} ] + \sum_{a}^{N^\alpha} \orange{J_a^\alpha(1)} \end{align} The \blue{Coulomb} and \violet{Exchange} operators are \begin{align} \blue{J_i^\sigma(1)} & = \int \psi_i^\sigma(2) r_{12}^{-1} \psi_i^\sigma(2) d\br_2 & \violet{K_i^\sigma(1)} \psi_j^\sigma(1) & = \qty[ \int \psi_i^\sigma(2) r_{12}^{-1} \psi_j^\sigma(2) d\br_2 ] \psi_i^\sigma(1) \end{align} \end{block} \end{frame} \begin{frame}{Unrestricted Hartree-Fock equations (Take 2)} \begin{block}{UHF energy} \bigskip The UHF energy is composed by three contributions: \begin{equation} E_\text{UHF} = \orange{E_\text{UHF}^{\alpha\alpha}} + \red{E_\text{UHF}^{\beta\beta}} + \violet{E_\text{UHF}^{\alpha\beta}} \end{equation} which yields \begin{equation} \small \boxed{ E_\text{UHF} = \orange{\sum_{a}^{N^\alpha} h_i^\alpha + \frac{1}{2} \sum_{ab}^{N^\alpha} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha})} + \red{\sum_{a}^{N^\beta} h_a^\beta + \frac{1}{2} \sum_{ab}^{N^\beta} (J_{ab}^{\beta\beta} - K_{ab}^{\beta\beta})} + \violet{\sum_{a}^{N^\alpha} \sum_{b}^{N^\beta} J_{ab}^{\alpha\beta}} } \end{equation} The matrix elements are given by \begin{align} h_i^\sigma & = \mel{ \psi_i^\sigma }{ h }{ \psi_i^\sigma } & J_{ij}^{\sigma\sigma'} & = \braket{ \psi_i^\sigma \psi_j^{\sigma'} }{ \psi_i^\sigma \psi_j^{\sigma'} } & K_{ij}^{\sigma\sigma} & = \braket{ \psi_i^\sigma \psi_j^\sigma }{ \psi_j^\sigma \psi_j^\sigma } \end{align} Note that \blue{$K_{ij}^{\alpha\beta} = 0$} $\Leftrightarrow$ \alert{there is no exchange between opposite-spin electrons} \end{block} \end{frame} \begin{frame}{UHF energy of the \ce{Li} atom} \begin{block}{Problem} \violet{\textit{``Write down the UHF energy of the doublet state of the lithium atom''}} \end{block} \pause \begin{block}{Solution} % The UHF wave function for the doublet state of \ce{Li} is % \begin{equation*} % \Psi_\text{UHF}(\br_1,\br_2,\br_3) % = \frac{1}{\sqrt{2}} % \begin{vmatrix} % \psi_1^\alpha(\br_1) & \psi_2^\alpha(\br_1) \\ % \psi_1^\alpha(\br_2) & \psi_2^\alpha(\br_2) \\ % \end{vmatrix} % \psi_1^\beta(\br_3) % \end{equation*} % while the corresponding energy is \begin{equation*} E_\text{UHF} = h_1^\alpha + h_1^\beta + h_2^\alpha + J_{12}^{\alpha\alpha} - K_{12}^{\alpha\alpha} + J_{11}^{\alpha\beta} + J_{21}^{\alpha\beta} \end{equation*} \end{block} \end{frame} %----------------------------------------------------- \subsection{Pople-Nesbet} %----------------------------------------------------- \begin{frame}{The Pople-Nesbet Equations} \small \begin{block}{Expansion of the unrestricted spin orbitals in a basis} \begin{align} \psi_i^\alpha (\br) & = \sum_{\mu=1}^K \blue{C_{\mu i}^\alpha} \, \phi_{\mu} (\br) & \psi_i^\beta (\br) & = \sum_{\mu=1}^K \violet{C_{\mu i}^\beta} \, \phi_{\mu} (\br) \end{align} \end{block} \begin{block}{The Pople-Nesbet equations} \begin{align} \orange{\bF^\alpha} \cdot \blue{\bC^\alpha} & = \bS \cdot \blue{\bC^\alpha} \cdot \bE^\alpha & \red{\bF^\beta} \cdot \violet{\bC^\beta} & = \bS \cdot \violet{\bC^\beta} \cdot \bE^\beta \end{align} \begin{gather} \orange{F_{\mu \nu}^\alpha} = H_{\mu \nu} + \sum_{\lambda \sigma} \blue{P_{\lambda \sigma}^\alpha} [ (\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu) ] + \sum_{\lambda \sigma} \violet{P_{\lambda \sigma}^\beta} (\mu \nu | \sigma \lambda) \\ \red{F_{\mu \nu}^\beta} = H_{\mu \nu} + \sum_{\lambda \sigma} \violet{P_{\lambda \sigma}^\beta} [ (\mu \nu | \sigma \lambda) - (\mu \lambda | \sigma \nu) ] + \sum_{\lambda \sigma} \blue{P_{\lambda \sigma}^\alpha} (\mu \nu | \sigma \lambda) \end{gather} $\orange{\bF^\alpha}$ and $\red{\bF^\beta}$ are both functions of $\blue{\bC^\alpha}$ and $\violet{\bC^\beta}$ $\Rightarrow$ \alert{There's a coupling between $\alpha$ and $\beta$ MOs!} \end{block} \end{frame} \begin{frame}{Unrestricted Density Matrices} \begin{block}{Spin-up and spin-down density matrices} \begin{align} &\boxed{ \orange{P_{\mu \nu}^\alpha} = \sum_{a=1}^{N^\alpha} C_{\mu a}^\alpha C_{\nu a}^\alpha \quad \Leftrightarrow \quad \orange{\bP^\alpha} } & &\boxed{ \alert{P_{\mu \nu}^\beta} = \sum_{ a=1}^{N^\beta} C_{\mu a}^\beta C_{\nu a}^\beta \quad \Leftrightarrow \quad \alert{\bP^\beta} } \end{align} \end{block} \begin{block}{Properties of the density $(\sigma = \alpha \text{ or } \beta)$} \begin{align} \rho^\sigma(\br) & = \sum_{\mu \nu} \phi_{\mu}(\br) P_{\mu \nu}^\sigma \phi_{\nu}(\br) & \int \rho^\sigma(\br) d\br & = N^\sigma \end{align} \end{block} \begin{block}{Total and Spin density matrices} \begin{align} \underbrace{\blue{\bP^\text{T}}}_{\blue{\text{Charge density}}} & = \orange{\bP^\alpha} + \alert{\bP^\beta} & \underbrace{\violet{\bP^\text{S}}}_{\violet{\text{Spin density}}} & = \orange{\bP^\alpha} - \alert{\bP^\beta} \end{align} \end{block} \end{frame} %----------------------------------------------------- \subsection{SCF for UHF} %----------------------------------------------------- \begin{frame}{How to perform a UHF calculation in practice?} \begin{block}{The SCF algorithm} \begin{enumerate} \item \orange{Specify molecule} $\{\bR_A\}$ and $\{Z_A\}$ and \violet{basis set} $\{\phi_\mu\}$ \alert{(same as RHF)} \item Calculate integrals $S_{\mu \nu}$, $H_{\mu \nu}$ and $\braket{ \mu \nu }{ \lambda \sigma }$ \alert{(same as RHF)} \item Diagonalize $\bS$ and compute $\bX$ \alert{(same as RHF)} \item Obtain \alert{guess density matrix} for $\bP^\alpha$ and $\bP^\beta$ \begin{enumerate} \item[1a.] Calculate $\bG^\alpha$ and then $\bF^\alpha = \bH + \bG^\alpha$ \item[1b.] Calculate $\bG^\beta$ and then $\bF^\beta = \bH + \bG^\beta$ \item[2.] Compute $(\bF^\alpha)' = \bX^\dag \cdot \bF^\alpha \cdot \bX$ and $(\bF^\beta)' = \bX^\dag \cdot \bF^\beta \cdot \bX$ \item[3a.] Diagonalize $(\bF^\alpha)'$ to obtain $(\bC^\alpha)'$ and $\bE^\alpha$ \item[3b.] Diagonalize $(\bF^\beta)'$ to obtain $(\bC^\beta)'$ and $\bE^\beta$ \item[4.] Calculate $\bC^\alpha= \bX \cdot (\bC^\alpha)'$ and $\bC^\beta= \bX \cdot (\bC^\beta)'$ \item[5.] Form the new \blue{new density matrix} $\bP^\alpha$ and $\bP^\beta$, and compute $\bP^\text{T} = \bP^\alpha + \bP^\beta$ \item[6.] \alert{Am I converged?} If not go back to 1. \end{enumerate} \item Calculate stuff that you want, like $E_\text{UHF}$ for example \end{enumerate} \end{block} \end{frame} %----------------------------------------------------- \section{Books} %----------------------------------------------------- \begin{frame}{Good books} \begin{columns} \begin{column}{0.7\textwidth} \begin{itemize} \item Introduction to Computational Chemistry (Jensen) \\ \vspace{1cm} \item Essentials of Computational Chemistry (Cramer) \\ \vspace{1cm} \item Modern Quantum Chemistry (Szabo \& Ostlund) \\ \vspace{1cm} \item Molecular Electronic Structure Theory (Helgaker, Jorgensen \& Olsen) \\ \vspace{1cm} \end{itemize} \end{column} \begin{column}{0.3\textwidth} \centering \includegraphics[height=0.3\textwidth]{fig/Jensen} \\ \bigskip \includegraphics[height=0.3\textwidth]{fig/Cramer} \\ \bigskip \includegraphics[height=0.3\textwidth]{fig/Szabo} \\ \bigskip \includegraphics[height=0.3\textwidth]{fig/Helgaker} \end{column} \end{columns} \end{frame} \end{document}