diff --git a/HF/Loos-TCCM_HF.tex b/HF/Loos-TCCM_HF.tex index 814d0b2..6d5e793 100644 --- a/HF/Loos-TCCM_HF.tex +++ b/HF/Loos-TCCM_HF.tex @@ -330,23 +330,23 @@ \begin{frame}{Antisymmetry} \begin{block}{Problem:} - \violet{\textit{``Show that, for a system of two fermions, the wave function vanishes when they are at the same point in space''}} + \violet{\textit{``Show that, for a system of two fermions, the wave function vanishes when they are at the same point in spin-space''}} \end{block} \pause \begin{block}{Solution} \blue{Indistinguishable} particles means \begin{equation} - \boxed{\abs{\Psi(x_1,x_2)}^2 = \abs{\Psi(x_2,x_1)}^2 \Rightarrow \Psi(x_1,x_2) = \alert{\pm} \Psi(x_2,x_1)} + \boxed{\abs{\Psi(\bx_1,\bx_2)}^2 = \abs{\Psi(\bx_2,\bx_1)}^2 \Rightarrow \Psi(\bx_1,\bx_2) = \alert{\pm} \Psi(\bx_2,\bx_1)} \end{equation} \\ \bigskip \pause - \violet{Bosons} mean \violet{$\Psi(x_1,x_2) = \Psi(x_2,x_1)$} and \orange{Fermions} mean \orange{$\Psi(x_1,x_2) = -\Psi(x_2,x_1)$} + \violet{Bosons} mean \violet{$\Psi(\bx_1,\bx_2) = \Psi(\bx_2,\bx_1)$} and \orange{Fermions} mean \orange{$\Psi(\bx_1,\bx_2) = -\Psi(\bx_2,\bx_1)$} \\ \bigskip - Let's put them at the same spot, i.e. \blue{$x = x_1 = x_2$} + Let's put them at the same spot, i.e. \blue{$\bx = \bx_1 = \bx_2$} \begin{equation} - \text{\violet{For Fermions, }} \Psi(x,x) = - \Psi(x,x) \quad \Rightarrow \quad \boxed{\Psi(x,x) = 0} + \text{\violet{For Fermions, }} \Psi(\bx,\bx) = - \Psi(\bx,\bx) \qq{$\Rightarrow$} \boxed{\Psi(\bx,\bx) = 0} \end{equation} \alert{The wave function vanishes! $\quad \Rightarrow \quad$ This is called the Fermi hole!} \end{block} @@ -354,29 +354,29 @@ \begin{frame}{Antisymmetry (Take 2)} \begin{block}{Problem:} - \violet{\textit{``Given two one-electron functions $\chi_1(x)$ and $\chi_2(x)$, could you construct a two-electron (fermionic) wave function $\Psi(x_1,x_2)$?''}} + \violet{\textit{``Given two one-electron functions $\chi_1(\bx)$ and $\chi_2(\bx)$, could you construct a two-electron (fermionic) wave function $\Psi(\bx_1,\bx_2)$?''}} \end{block} \pause \begin{block}{Solution} A possible solution is \begin{equation} - \Psi(x_1,x_2) = \chi_1(x_1) \chi_2(x_2) - \chi_1(x_2) \chi_2(x_1) + \Psi(\bx_1,\bx_2) = \chi_1(\bx_1) \chi_2(\bx_2) - \chi_1(\bx_2) \chi_2(\bx_1) \end{equation} This has been popularized by \blue{Slater}: \begin{equation} \boxed{ - \Psi(x_1,x_2) = + \Psi(\bx_1,\bx_2) = \begin{vmatrix} - \chi_1(x_1) & \chi_2(x_1) \\ - \chi_1(x_2) & \chi_2(x_2) \\ + \chi_1(\bx_1) & \chi_2(\bx_1) \\ + \chi_1(\bx_2) & \chi_2(\bx_2) \\ \end{vmatrix} - = \chi_1(x_1) \chi_2(x_2) - \chi_1(x_2) \chi_2(x_1) + = \chi_1(\bx_1) \chi_2(\bx_2) - \chi_1(\bx_2) \chi_2(\bx_1) } \end{equation} \alert{This is called a Slater determinant!} \\ \bigskip - A wave function of the form \green{$\Psi(x_1,x_2) = \chi_1(x_1) \chi_2(x_2)$} is called a \green{Hartree product} + A wave function of the form \green{$\Psi(\bx_1,\bx_2) = \chi_1(\bx_1) \chi_2(\bx_2)$} is called a \green{Hartree product} \end{block} \end{frame} @@ -562,34 +562,34 @@ \begin{itemize} \item \orange{Coulomb operator} \begin{equation} - \cJ_{\green{i}}(\blue{1}) \ket{ \chi_{\purple{j}}(\red{2}) } - = \mel{ \chi_{\green{i}}(\blue{1}) }{ r_{\blue{1}\red{2}}^{-1} }{ \chi_{\green{i}}(\blue{1}) } \ket{ \chi_{\purple{j}}(\red{2}) } - = \qty[ \int d\blue{\bx_1} \chi_{\green{i}}^*(\blue{\bx_1}) r_{\blue{1}\red{2}}^{-1} \chi_{\green{i}}(\blue{\bx_1}) ] \ket{ \chi_{\purple{j}}(\red{\bx_2}) } + \cJ_{\green{j}}(\blue{1}) \ket{ \chi_{\purple{i}}(\blue{1}) } + = \mel{ \chi_{\green{j}}(\red{2}) }{ r_{\blue{1}\red{2}}^{-1} }{ \chi_{\green{j}}(\red{2}) } \ket{ \chi_{\purple{i}}(\blue{1}) } + = \qty[ \int d\red{\bx_2} \chi_{\green{j}}^*(\red{\bx_2}) r_{\blue{1}\red{2}}^{-1} \chi_{\green{j}}(\red{\bx_2}) ] \ket{ \chi_{\purple{i}}(\blue{\bx_1}) } \end{equation} \item \orange{Coulomb matrix elements} \begin{equation} \begin{split} - \cJ_{\green{i}\purple{j}} - & = \mel{\chi_{\purple{j}}(\red{2})}{\cJ_{\green{i}}(\blue{1})}{\chi_{\purple{j}}(\red{2})} - = \mel{ \chi_{\green{i}}(\blue{1}) \chi_{\purple{j}}(\red{2}) }{r_{\blue{1}\red{2}}^{-1}}{ \chi_{\green{i}}(\blue{1}) \chi_{\purple{j}}(\red{2})} + \cJ_{\purple{i}\green{j}} + & = \mel{\chi_{\purple{i}}(\blue{1})}{\cJ_{\green{j}}(\blue{1})}{\chi_{\purple{i}}(\blue{1})} + = \mel{ \chi_{\purple{i}}(\blue{1}) \chi_{\green{j}}(\red{2}) }{r_{\blue{1}\red{2}}^{-1}}{ \chi_{\purple{i}}(\blue{1}) \chi_{\green{j}}(\red{2})} \\ - & = \iint \chi_{\green{i}}^*(\blue{\bx_1}) \chi_{\purple{j}}^*(\red{\bx_2}) r_{\blue{1}\red{2}}^{-1} \chi_{\green{i}}(\blue{\bx_1}) \chi_{\green{i}}(\red{\bx_2}) d\blue{\bx_1} d\red{\bx_2} + & = \iint \chi_{\purple{i}}^*(\blue{\bx_1}) \chi_{\green{j}}^*(\red{\bx_2}) r_{\blue{1}\red{2}}^{-1} \chi_{\purple{i}}(\blue{\bx_1}) \chi_{\green{j}}(\red{\bx_2}) d\blue{\bx_1} d\red{\bx_2} \end{split} \end{equation} \item \violet{(non-local) Exchange operator} \begin{equation} - \cK_{\green{i}}(\blue{1}) \ket{ \chi_{\purple{j}}(\red{2}) } - = \mel{ \chi_{\green{i}}(\blue{1}) }{ r_{\blue{1}\red{2}}^{-1} }{ \chi_{\purple{j}}(\blue{1}) } \ket{ \chi_{\green{i}}(\red{2}) } - = \qty[ \int \chi_{\green{i}}^*(\blue{\bx_1}) r_{\blue{1}\red{2}}^{-1} \chi_{\purple{j}}(\blue{\bx_1}) d\blue{\bx_1} ] \ket{ \chi_{\green{i}}(\red{\bx_2}) } + \cK_{\green{j}}(\blue{1}) \ket{ \chi_{\purple{i}}(\blue{1}) } + = \mel{ \chi_{\green{j}}(\red{2}) }{ r_{\blue{1}\red{2}}^{-1} }{ \chi_{\purple{i}}(\red{2}) } \ket{ \chi_{\green{j}}(\blue{1}) } + = \qty[ \int d\red{\bx_2} \chi_{\green{j}}^*(\red{\bx_2}) r_{\blue{1}\red{2}}^{-1} \chi_{\purple{i}}(\red{\bx_2}) ] \ket{ \chi_{\green{j}}(\blue{\bx_2}) } \end{equation} \item \violet{Exchange matrix elements} \begin{equation} \begin{split} \cK_{\green{i}\purple{j}} - & = \mel{\chi_{\purple{j}}(\red{2})}{\cK_{\green{i}}(\blue{1})}{\chi_{\purple{j}}(\red{2})} - = \mel{ \chi_{\green{i}}(\blue{1}) \chi_{\purple{j}}(\red{2})}{ r_{\blue{1}\red{2}}^{-1} }{ \chi_{\purple{j}}(\blue{1}) \chi_{\green{i}}(\red{2}) } - \\ - & = \iint \chi_{\green{i}}^*(\blue{\bx_1}) \chi_{\purple{j}}^*(\red{\bx_2}) r_{\blue{1}\red{2}}^{-1} \chi_{\purple{j}}(\blue{\bx_1}) \chi_{\green{i}}(\red{\bx_2}) d\blue{\bx_1} d\red{\bx_2} + & = \mel{\chi_{\purple{i}}(\blue{1})}{\cK_{\green{j}}(\blue{1})}{\chi_{\purple{i}}(\blue{1})} + = \mel{ \chi_{\purple{i}}(\blue{1}) \chi_{\green{j}}(\red{2}) }{r_{\blue{1}\red{2}}^{-1}}{ \chi_{\green{j}}(\blue{1}) \chi_{\purple{i}}(\red{2})} + \\ + & = \iint \chi_{\purple{i}}^*(\blue{\bx_1}) \chi_{\green{j}}^*(\red{\bx_2}) r_{\blue{1}\red{2}}^{-1} \chi_{\green{j}}(\blue{\bx_1}) \chi_{\purple{i}}(\red{\bx_2}) d\blue{\bx_1} d\red{\bx_2} \end{split} \end{equation} \end{itemize} @@ -634,19 +634,27 @@ \end{frame} \begin{frame}{Permutation symmetry} - \begin{block}{Permutation symmetry in physicist notation} + \begin{block}{Permutation symmetry in physicts' notations} \begin{equation} \braket{ij}{kl} = \braket{\chi_i \chi_j}{\chi_k \chi_l} = \iint \chi_i^*(\bx_1) \chi_j^*(\bx_2) \frac{1}{r_{12}} \chi_k(\bx_1) \chi_l(\bx_2) d\bx_1 d\bx_2 \end{equation} - \begin{align} - \qq*{\red{Complex-valued integrals:}} & - \braket{ij}{kl} = \braket{ji}{lk} = \braket{kl}{ij}^* - \\ - \qq*{\green{Real-valued integrals:}} & - \braket{ij}{kl} = \braket{ji}{kl} = \braket{ij}{lk} = \braket{ji}{lk} = \braket{kl}{ij} = \braket{lk}{ij} = \braket{kl}{ji} = \braket{lk}{ji} - \end{align} + \begin{equation} + \qq*{\red{Complex-valued integrals:}} + \braket{ij}{kl} = \braket{ji}{lk} = \braket{kl}{ij}^* = \braket{lk}{ji}^* + \end{equation} + \end{block} + \begin{block}{Permutation symmetry in chemists' notations} + \begin{equation} + [ij|kl] + = [\chi_i \chi_j|\chi_k \chi_l] + = \iint \chi_i^*(\bx_1) \chi_j(\bx_1) \frac{1}{r_{12}} \chi_k^*(\bx_2) \chi_l(\bx_2) d\bx_1 d\bx_2 + \end{equation} + \begin{equation} + \qq*{\green{Real-valued integrals:}} + [ij|kl] = [ji|kl] = [ij|lk] = [ji|lk] = [kl|ij] = [lk|ij] = [kl|ji] = [lk|ji] + \end{equation} \end{block} \end{frame} @@ -664,7 +672,7 @@ \end{block} \begin{block}{\orange{Case 2 = differ by one spinorbital}: $\ket{K} = \ket{\ldots m n \ldots}$ and $\ket{L} = \ket{\ldots p n \ldots}$} \begin{equation} - \mel{K}{\cO_1}{L} = \sum_m \mel{m}{h}{p} + \mel{K}{\cO_1}{L} = \mel{m}{h}{p} \end{equation} \end{block} \begin{block}{\red{Case 3 = differ by two spinorbitals}: $\ket{K} = \ket{\ldots m n \ldots}$ and $\ket{L} = \ket{\ldots p q \ldots}$}