From 47c395aa99c8f55ab979c0319fe523dd40ee05af Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Sun, 29 Aug 2021 22:33:08 +0200 Subject: [PATCH] minor corrections --- HF/Loos-TCCM_HF.tex | 166 +++++++++++++++++++++++++------------------- 1 file changed, 96 insertions(+), 70 deletions(-) diff --git a/HF/Loos-TCCM_HF.tex b/HF/Loos-TCCM_HF.tex index 9be9445..c5d3309 100644 --- a/HF/Loos-TCCM_HF.tex +++ b/HF/Loos-TCCM_HF.tex @@ -162,11 +162,10 @@ \bigskip \item We don't care about \violet{relativistic effects} \bigskip - \item HF is an \blue{independent-particle model} + \item HF is an \blue{independent-particle model}, i.e., + the motion of one electron \violet{is considered to be independent of the dynamics of all other electrons} \orange{$\Rightarrow$ interactions are taken into account in an average fashion} \bigskip - \item the motion of one electron \violet{is considered to be independent of the dynamics of all other electrons} - \bigskip \item \purple{HF is the starting point of pretty much anything!} \end{itemize} \end{frame} @@ -202,7 +201,7 @@ \begin{frame}{The Hamiltonian (Take 2)} \begin{columns} - \begin{column}{0.5\textwidth} + \begin{column}{0.4\textwidth} \begin{block}{In atomic units ($m = e = \hbar = 1$)} \begin{align} & \green{\cT_\text{n}} = - \sum_{A=1}^{M} \frac{\nabla_A^2}{2 M_A} @@ -217,7 +216,7 @@ \end{align} \end{block} \end{column} - \begin{column}{0.5\textwidth} + \begin{column}{0.6\textwidth} \begin{itemize} \item $\nabla^2$ is the \alert{Laplace operator} (or Laplacian) \bigskip @@ -242,12 +241,12 @@ \end{frame} \begin{frame}{The Born-Oppenheimer approximation} - \begin{block}{Electronic Hamiltonian} - The \alert{electronic Hamiltonian} is + \begin{block}{Born-Oppenheimer approximation = decoupling nuclei and electrons} + Because $M_A \gg 1$, the nuclear coordinates are ``parameters'' $\Rightarrow$ \blue{potential energy surface (PES)} \begin{equation} - \cH_\text{elec} \Phi_\text{elec} = \cE_\text{elec} \Phi_\text{elec} + \Phi(\{\br_i\},\{\bR_A\}) = \Phi_\text{nucl}(\{\bR_A\}) \Phi_\text{elec}(\{\br_i\},\{\bR_A\}) \qq{with} - \boxed{\cH_\text{elec} = \blue{\cT_\text{e}} + \orange{\cV_\text{ne}} + \alert{\cV_\text{ee}}} + \cE_\text{tot} = \cE_\text{elec} + \sum_{A