355 lines
12 KiB
TeX
355 lines
12 KiB
TeX
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
|
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx}
|
|
\usepackage[version=4]{mhchem}
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{txfonts}
|
|
|
|
\usepackage[
|
|
colorlinks=true,
|
|
citecolor=blue,
|
|
breaklinks=true
|
|
]{hyperref}
|
|
\urlstyle{same}
|
|
|
|
\newcommand{\ie}{\textit{i.e.}}
|
|
\newcommand{\eg}{\textit{e.g.}}
|
|
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
|
\usepackage[normalem]{ulem}
|
|
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
|
\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}}
|
|
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
|
|
|
\newcommand{\mc}{\multicolumn}
|
|
\newcommand{\fnm}{\footnotemark}
|
|
\newcommand{\fnt}{\footnotetext}
|
|
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
|
\newcommand{\QP}{\textsc{quantum package}}
|
|
\newcommand{\T}[1]{#1^{\intercal}}
|
|
|
|
% coordinates
|
|
\newcommand{\br}{\boldsymbol{r}}
|
|
\newcommand{\bx}{\boldsymbol{x}}
|
|
\newcommand{\dbr}{d\br}
|
|
\newcommand{\dbx}{d\bx}
|
|
|
|
% methods
|
|
\newcommand{\GW}{\text{$GW$}}
|
|
\newcommand{\evGW}{ev$GW$}
|
|
\newcommand{\qsGW}{qs$GW$}
|
|
\newcommand{\GOWO}{$G_0W_0$}
|
|
\newcommand{\Hxc}{\text{Hxc}}
|
|
\newcommand{\xc}{\text{xc}}
|
|
\newcommand{\Ha}{\text{H}}
|
|
\newcommand{\co}{\text{c}}
|
|
\newcommand{\x}{\text{x}}
|
|
\newcommand{\KS}{\text{KS}}
|
|
\newcommand{\HF}{\text{HF}}
|
|
\newcommand{\RPA}{\text{RPA}}
|
|
|
|
%
|
|
\newcommand{\Ne}{N}
|
|
\newcommand{\Norb}{K}
|
|
\newcommand{\Nocc}{O}
|
|
\newcommand{\Nvir}{V}
|
|
|
|
% operators
|
|
\newcommand{\hH}{\Hat{H}}
|
|
\newcommand{\hS}{\Hat{S}}
|
|
|
|
% energies
|
|
\newcommand{\Enuc}{E^\text{nuc}}
|
|
\newcommand{\Ec}[1]{E_\text{c}^{#1}}
|
|
\newcommand{\EHF}{E^\text{HF}}
|
|
|
|
% orbital energies
|
|
\newcommand{\eps}[2]{\epsilon_{#1}^{#2}}
|
|
\newcommand{\reps}[2]{\Tilde{\epsilon}_{#1}^{#2}}
|
|
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
|
|
|
% Matrix elements
|
|
\newcommand{\Sig}[2]{\Sigma_{#1}^{#2}}
|
|
\newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}}
|
|
\newcommand{\rSigC}[1]{\Tilde{\Sigma}^\text{c}_{#1}}
|
|
\newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}}
|
|
\newcommand{\SigXC}[1]{\Sigma^\text{xc}_{#1}}
|
|
\newcommand{\MO}[1]{\phi_{#1}}
|
|
\newcommand{\SO}[1]{\psi_{#1}}
|
|
\newcommand{\ERI}[2]{(#1|#2)}
|
|
\newcommand{\rbra}[1]{(#1|}
|
|
\newcommand{\rket}[1]{|#1)}
|
|
|
|
|
|
% Matrices
|
|
\newcommand{\bO}{\boldsymbol{0}}
|
|
\newcommand{\bI}{\boldsymbol{1}}
|
|
\newcommand{\bH}{\boldsymbol{H}}
|
|
\newcommand{\bvc}{\boldsymbol{v}}
|
|
\newcommand{\bSig}[2]{\boldsymbol{\Sigma}_{#1}^{#2}}
|
|
\newcommand{\bSigC}[1]{\boldsymbol{\Sigma}_{#1}^{\text{c}}}
|
|
\newcommand{\be}{\boldsymbol{\epsilon}}
|
|
\newcommand{\bOm}[1]{\boldsymbol{\Omega}^{#1}}
|
|
\newcommand{\bA}[2]{\boldsymbol{A}_{#1}^{#2}}
|
|
\newcommand{\bB}[2]{\boldsymbol{B}_{#1}^{#2}}
|
|
\newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}}
|
|
\newcommand{\bD}[2]{\boldsymbol{D}_{#1}^{#2}}
|
|
\newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}}
|
|
\newcommand{\bW}[2]{\boldsymbol{W}_{#1}^{#2}}
|
|
\newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}}
|
|
\newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}}
|
|
\newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}}
|
|
\newcommand{\bc}[2]{\boldsymbol{c}_{#1}^{#2}}
|
|
|
|
% orbitals, gaps, etc
|
|
\newcommand{\IP}{I}
|
|
\newcommand{\EA}{A}
|
|
\newcommand{\HOMO}{\text{HOMO}}
|
|
\newcommand{\LUMO}{\text{LUMO}}
|
|
\newcommand{\Eg}{E_\text{g}}
|
|
\newcommand{\EgFun}{\Eg^\text{fund}}
|
|
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
|
\newcommand{\EB}{E_B}
|
|
|
|
\newcommand{\RHH}{R_{\ce{H-H}}}
|
|
\newcommand{\ii}{\mathrm{i}}
|
|
|
|
% addresses
|
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
|
|
|
\begin{document}
|
|
|
|
\title{Undressing $GW$ one determinant at a time}
|
|
|
|
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
|
\email{loos@irsamc.ups-tlse.fr}
|
|
\affiliation{\LCPQ}
|
|
|
|
\begin{abstract}
|
|
Here comes the abstract.
|
|
%\bigskip
|
|
%\begin{center}
|
|
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
|
|
%\end{center}
|
|
%\bigskip
|
|
\end{abstract}
|
|
|
|
\maketitle
|
|
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Introduction}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
Here comes the introduction.
|
|
|
|
%%%%%%%%%%%%%%%%%
|
|
\section{Theory}
|
|
%%%%%%%%%%%%%%%%%
|
|
In the case of {\GOWO}, the quasiparticle equation reads
|
|
\begin{equation}
|
|
\label{eq:qp_eq}
|
|
\eps{p}{} + \SigC{p}(\omega) - \omega = 0
|
|
\end{equation}
|
|
where $\eps{p}{}$ is the one-electron energy of the HF spatial orbital $\MO{p}(\br)$ and the correlation part of the frequency-dependent self-energy is
|
|
\begin{equation}
|
|
\label{eq:SigC}
|
|
\SigC{p}(\omega)
|
|
= \sum_{im} \frac{2\ERI{pi}{m}^2}{\omega - \eps{i}{} + \Om{m}{}}
|
|
+ \sum_{am} \frac{2\ERI{pa}{m}^2}{\omega - \eps{a}{} - \Om{m}{}}
|
|
\end{equation}
|
|
where
|
|
\begin{equation}
|
|
\ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}
|
|
\end{equation}
|
|
are the screened two-electron repulsion integrals where $\Om{m}{}$ and $\bX{m}{}$ are the $m$th RPA eigenvalue and eigenvector obtained by solving the following (linear) RPA eigenvalue system within the Tamm-Dancoff approximation:
|
|
\begin{equation}
|
|
\bA{}{\RPA} \cdot \bX{m}{} = \Om{m}{\RPA} \bX{m}{}
|
|
\end{equation}
|
|
with
|
|
\begin{equation}
|
|
A_{ia,jb}^{} = (\eps{a}{} - \eps{i}{}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj}
|
|
\end{equation}
|
|
and
|
|
\begin{equation}
|
|
\ERI{pq}{ia} = \iint \MO{p}(\br_1) \MO{q}(\br_1) \frac{1}{\abs{\br_1 - \br_2}} \MO{i}(\br_2) \MO{a}(\br_2) d\br_1 \dbr_2
|
|
\end{equation}
|
|
|
|
The spectral weight of the solution $\eps{p,s}{\GW}$ is given by
|
|
\begin{equation}
|
|
\label{eq:Z}
|
|
0 \le Z_{p,s} = \qty[ 1 - \eval{\pdv{\SigC{p}(\omega)}{\omega}}_{\omega = \eps{p,s}{\GW}} ]^{-1} \le 1
|
|
\end{equation}
|
|
with the following sum rules:
|
|
\begin{align}
|
|
\sum_{s} Z_{p,s} & = 1
|
|
&
|
|
\sum_{s} Z_{p,s} \eps{p,s}{\GW} & = \eps{p}{}
|
|
\end{align}
|
|
Here, we $p,q,r$ indicate arbitrary (\ie, occupied or unoccupied) orbitals, $i,j,k,l$ are occupied orbitals, while $a,b,c,d$ are unoccupied (virtual) orbitals.
|
|
As shown recently, the quasiparticle equation \eqref{eq:qp_eq} can be recast as a linear eigensystem with exactly the same solution:
|
|
\begin{equation}
|
|
\bH^{(p)} \cdot \bc{}{(p,s)} = \eps{p,s}{\GW} \bc{}{(p,s)}
|
|
\end{equation}
|
|
with
|
|
\begin{equation}
|
|
\label{eq:Hp}
|
|
\bH^{(p)} =
|
|
\begin{pmatrix}
|
|
\eps{p}{} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
|
|
\\
|
|
\T{(\bV{p}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO
|
|
\\
|
|
\T{(\bV{p}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}}
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
and where the expressions of the 2h1p and 2p1h blocks reads
|
|
\begin{subequations}
|
|
\begin{align}
|
|
\label{eq:C2h1p}
|
|
C^\text{2h1p}_{IJA,KCL} & = \qty[ \qty( \eps{I}{} + \eps{J}{} - \eps{A}{}) \delta_{JL} \delta_{AC} - 2 \ERI{JA}{CL} ] \delta_{IK}
|
|
\\
|
|
\label{eq:C2p1h}
|
|
C^\text{2p1h}_{IAB,KCD} & = \qty[ \qty( \eps{A}{} + \eps{B}{} - \eps{I}{}) \delta_{IK} \delta_{AC} + 2 \ERI{AI}{KC} ] \delta_{BD}
|
|
\end{align}
|
|
\end{subequations}
|
|
with the following expressions for the coupling blocks:
|
|
\begin{subequations}
|
|
\begin{align}
|
|
\label{eq:V2h1p}
|
|
V^\text{2h1p}_{p,KLC} & = \sqrt{2} \ERI{pK}{CL}
|
|
\\
|
|
\label{eq:V2p1h}
|
|
V^\text{2p1h}_{p,KCD} & = \sqrt{2} \ERI{pD}{KC}
|
|
\end{align}
|
|
\end{subequations}
|
|
Here, we use lower case letters for the electronic configurations belonging to the reference model state and upper case letters for the external determinants (\ie, the perturbers).
|
|
|
|
By solving the secular equation
|
|
\begin{equation}
|
|
\det[ \bH^{(p)} - \omega \bI ] = 0
|
|
\end{equation}
|
|
we recover the dynamical expression of the self-energy \eqref{eq:SigC}, \ie,
|
|
\begin{multline}
|
|
\SigC{p}(\omega)
|
|
= \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
|
\\
|
|
+ \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
|
\end{multline}
|
|
with
|
|
\begin{equation}
|
|
\label{eq:Z_proj}
|
|
Z_{p,s} = \qty[ c_{1}^{(p,s)} ]^{2}
|
|
\end{equation}
|
|
|
|
In the presence of intruder states, it might be interesting to move additional electronic configurations in the reference space.
|
|
Let us label as $p$ the reference 1h ($p = i$) or 1p ($p = a$) determinant and $qia$ the additional 2h1p ($qia = ija$) or 2p1h ($qia = iab$) that one wants to consider explicitly in the model space.
|
|
Equation \label{eq:Hp} can then be written exactly as
|
|
\begin{equation}
|
|
\label{eq:Hp_qia}
|
|
\bH^{(p,qia)} =
|
|
\begin{pmatrix}
|
|
\eps{p}{} & V_{p,qia} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}}
|
|
\\
|
|
V_{qia,p} & \eps{qia}{} & \bC{qia}{\text{2h1p}} & \bC{qia}{\text{2p1h}}
|
|
\\
|
|
\T{(\bV{p}{\text{2h1p}})} & \T{(\bC{qia}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO
|
|
\\
|
|
\T{(\bV{p}{\text{2p1h}})} & \T{(\bC{qia}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}}
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
with new blocks defined as
|
|
\begin{subequations}
|
|
\begin{gather}
|
|
\eps{qia}{} = \text{sgn}(\eps{q}{} - \mu) \qty[ \qty(\eps{q}{} + \eps{a}{} - \eps{i}{} ) + 2 \ERI{ia}{ia} ]
|
|
\\
|
|
C_{qia,KLC}^\text{2h1p} = - 2 \ERI{ia}{CL} \delta_{qK}
|
|
\\
|
|
C_{qia,KCD}^\text{2p1h} = + 2 \ERI{ia}{KC} \delta_{qD}
|
|
\\
|
|
V_{p,qia} = V_{qia,p} = \sqrt{2} \ERI{pq}{ia}
|
|
\end{gather}
|
|
\end{subequations}
|
|
where $\text{sgn}$ is the sign function and $\mu$ is the chemical potential.
|
|
|
|
The expressions of $\bC{p}{\text{2h1p}}$, $\bC{p}{\text{2p1h}}$, $\bV{}{\text{2h1p}}$, and $\bV{}{\text{2p1h}}$ remain identical to the ones given in Eqs.~\eqref{eq:C2h1p}, \eqref{eq:C2p1h}, \eqref{eq:V2h1p}, and \eqref{eq:V2p1h} but one has to remove the contribution from the 2h1p or 2p1h configuration $qia$.
|
|
While $\eps{p}{}$ represents the relative energy (with respect to the $N$-electron HF reference determinant) of the 1h or 1p configuration, $\eps{qia}{} \equiv C_{qia,qia}$ is the relative energy of the 2h1p or 2p1h configuration with respect to the $N$-electron HF reference determinant.
|
|
Therefore, when $\eps{p}{}$ and $\eps{qia}{}$ becomes of similar mangitude, one might want to move the 2h1p or 2p1h configuration from the external to the internal space in order to avoid intruder state problems.
|
|
|
|
Downfolding Eq.~\eqref{eq:Hp_qia} yields the following frequency-dependent self-energy matrix
|
|
\begin{equation}
|
|
\label{eq:Hp}
|
|
\bSigC{p,qia}(\omega) =
|
|
\begin{pmatrix}
|
|
\eps{p}{} + \SigC{p}(\omega) & V_{p,qia} + \SigC{p,qia}(\omega)
|
|
\\
|
|
V_{qia,p} + \SigC{qia,p}(\omega) & \eps{qia}{} + \SigC{qia}(\omega)
|
|
\\
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
with the dynamical self-energies
|
|
\begin{subequations}
|
|
\begin{gather}
|
|
\begin{split}
|
|
\SigC{p}(\omega)
|
|
& = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
|
\\
|
|
& + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
|
\end{split}
|
|
\\
|
|
\begin{split}
|
|
\SigC{qia}(\omega)
|
|
& = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
|
|
\\
|
|
& + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
|
|
\end{split}
|
|
\\
|
|
\begin{split}
|
|
\SigC{p,qia}(\omega)
|
|
& = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})}
|
|
\\
|
|
& + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})}
|
|
\end{split}
|
|
\\
|
|
\begin{split}
|
|
\SigC{qia,p}(\omega)
|
|
& = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})}
|
|
\\
|
|
& + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})}
|
|
\end{split}
|
|
\end{gather}
|
|
\end{subequations}
|
|
Of course, the present procedure can be generalized to any number of states.
|
|
|
|
Solving
|
|
\begin{equation}
|
|
\bH^{(p,qia)} \cdot \bc{}{(p,qia,s)} = \eps{p,s}{\GW} \bc{}{(p,qia,s)}
|
|
\end{equation}
|
|
Because both the 1h or 1p configuration $p$ and the 2h1p or 2p1h configuration $qia$ are in the internal space, we have a new definition of the spectral weight:
|
|
\begin{equation}
|
|
\label{eq:Z_proj}
|
|
Z_{p,qia,s} = \qty[ c_{1}^{(p,qia,s)} ]^{2} + \qty[ c_{2}^{(p,qia,s)} ]^{2}
|
|
\end{equation}
|
|
|
|
Without doubt, the present procedure has similarities with the dressed time-dependent density-functional theory method developed by Maitra and coworkers, \cite{Cave_2004,Maitra_2004} where one doubly-excited configuration is included in the space of single excitations, hence resulting in a dynamical kernel.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\section{Conclusion}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
Here comes the conclusion.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\acknowledgements{
|
|
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\section*{Data availability statement}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
The data that supports the findings of this study are available within the article.% and its supplementary material.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
|
\bibliography{MRGW}
|
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
\end{document}
|