SRGGW/Poster/main.tex

276 lines
9.9 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[25pt, a0paper, portrait]{tikzposter}
\usepackage{blindtext}
\usepackage{comment}
\usepackage{adjustbox}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,bbold,siunitx,xspace}
% \usetheme{Desert}
% \usecolorstyle{Britain}
\usetitlestyle{VerticalShading}
\useblockstyle{Slide}
\usenotestyle{VerticalShading}
\usetikzlibrary{positioning}
\title{\parbox{0.7\linewidth}{\centering A similarity renormalization group approach to Green's function methods}}
% \title{A similarity renormalization group approach \\ to Green's function methods}
\author{Antoine MARIE and Pierre-François \textsc{LOOS}}
\date{\today}
\institute{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France}
\definecolor{darkgreen}{RGB}{0, 180, 0}
\definecolor{fooblue}{RGB}{0,153,255}
\definecolor{fooyellow}{RGB}{234,180,0}
\definecolor{lavender}{rgb}{0.71, 0.49, 0.86}
\definecolor{inchworm}{rgb}{0.7, 0.93, 0.36}
\newcommand{\violet}[1]{\textcolor{violet}{#1}}
\newcommand{\orange}[1]{\textcolor{orange}{#1}}
\newcommand{\purple}[1]{\textcolor{purple}{#1}}
\newcommand{\blue}[1]{\textcolor{blue}{#1}}
\newcommand{\green}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\yellow}[1]{\textcolor{fooyellow}{#1}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\cyan}[1]{\textcolor{cyan}{#1}}
\newcommand{\magenta}[1]{\textcolor{magenta}{#1}}
\newcommand{\highlight}[1]{\textcolor{fooblue}{#1}}
\newcommand{\pub}[1]{\textcolor{purple}{#1}}
\newcommand{\bSig}{\boldsymbol{\Sigma}}
\newcommand{\bSigC}{\boldsymbol{\Sigma}^{\text{c}}}
\newcommand{\be}{\boldsymbol{\epsilon}}
\newcommand{\bOm}{\boldsymbol{\Omega}}
\newcommand{\bEta}[1]{\boldsymbol{\eta}^{(#1)}(s)}
\newcommand{\ii}{\mathrm{i}}
\newcommand{\GW}{GW}
\newcommand{\GF}{\text{GF(2)}}
\newcommand{\GT}{GT}
\newcommand{\evGW}{\text{ev}GW}
\newcommand{\qsGW}{\text{qs}GW}
\newcommand{\SRGGW}{\text{SRG-}GW}
\newcommand{\SRGqsGW}{\text{SRG-qs}GW}
\newcommand{\GOWO}{G_0W_0}
\makeatletter
\newcommand\insertlogoi[2][]{\def\@insertlogoi{\includegraphics[#1]{#2}}}
\newcommand\insertlogoii[2][]{\def\@insertlogoii{\includegraphics[#1]{#2}}}
\newcommand\insertlogoiii[2][]{\def\@insertlogoiii{\includegraphics[#1]{#2}}}
\newcommand\insertlogoiv[2][]{\def\@insertlogoiv{\includegraphics[#1]{#2}}}
\newlength\LogoHSep
\newlength\LogoVSep
\setlength\LogoHSep{-1cm}
\setlength\LogoVSep{1.cm}
\insertlogoi[width=7.5cm]{CNRS}
%\insertlogoii[width=5cm]{images/overleaf-logo}
%\insertlogoiii[width=5cm]{images/overleaf-logo}
\insertlogoiv[width=7.5cm]{ERC}
\renewcommand\maketitle[1][]{ % #1 keys
\normalsize
\setkeys{title}{#1}
% Title dummy to get title height
\node[transparent,inner sep=\TP@titleinnersep, line width=\TP@titlelinewidth, anchor=north, minimum width=\TP@visibletextwidth-2\TP@titleinnersep]
(TP@title) at ($(0, 0.5\textheight-\TP@titletotopverticalspace)$) {\parbox{\TP@titlewidth-2\TP@titleinnersep}{\TP@maketitle}};
\draw let \p1 = ($(TP@title.north)-(TP@title.south)$) in node {
\setlength{\TP@titleheight}{\y1}
\setlength{\titleheight}{\y1}
\global\TP@titleheight=\TP@titleheight
\global\titleheight=\titleheight
};
% Compute title position
\setlength{\titleposleft}{-0.5\titlewidth}
\setlength{\titleposright}{\titleposleft+\titlewidth}
\setlength{\titlepostop}{0.5\textheight-\TP@titletotopverticalspace}
\setlength{\titleposbottom}{\titlepostop-\titleheight}
% Title style (background)
\TP@titlestyle
% Title node
\node[inner sep=\TP@titleinnersep, line width=\TP@titlelinewidth, anchor=north, minimum width=\TP@visibletextwidth-2\TP@titleinnersep]
at (0,0.5\textheight-\TP@titletotopverticalspace)
(title)
{\parbox{\TP@titlewidth-2\TP@titleinnersep}{\TP@maketitle}};
\node[inner sep=0pt,anchor=west]
at ([shift={(-\LogoHSep,\LogoVSep)}]title.west)
(logo1)
{\@insertlogoi};
% \node[inner sep=0pt,anchor=west,right=of logo1]
% (logo2)
% {\@insertlogoii};
\node[inner sep=0pt,anchor=east]
at ([shift={(\LogoHSep,\LogoVSep)}]title.east)
(logo4)
{\@insertlogoiv};
% \node[inner sep=0pt,left=of logo4]
% (logo4)
% {\@insertlogoiii};
% Settings for blocks
\normalsize
\setlength{\TP@blocktop}{\titleposbottom-\TP@titletoblockverticalspace}
}
\makeatother
\begin{document}
\maketitle
\begin{columns}
\column{0.5}
\block{Dynamic $GW$}
{
\begin{minipage}{0.4\linewidth}
\begin{tikzfigure}
\includegraphics[width=0.8\textwidth]{square}
\end{tikzfigure}
\end{minipage}
\begin{minipage}{0.6\linewidth}
\begin{equation*}
\qty[ \underbrace{\blue{\boldsymbol{F}}}_{\text{\blue{Fock matrix}}} + \underbrace{\violet{\boldsymbol{\Sigma}^{\GW}} (\omega = \epsilon^{GW}_{p})}_{\text{\violet{dynamic self-energy}}} ] \psi_{p}^{GW}
= \epsilon^{GW}_{p} \psi_{p}^{GW}
\end{equation*}
\vspace{1cm}
\begin{equation*}
\begin{split}
\violet{\Sigma_{pq}^{GW}}(\omega)
&= \sum_{i\nu} \frac{\red{W_{pi}^{\nu}} \red{W_{qi}^{\nu}}}{\omega - \epsilon^{GW}_{i} + \orange{\Omega_{\nu}} - \ii \eta} \\
&+ \sum_{a\nu} \frac{\red{W_{pa}^{\nu}} \red{W_{qa}^{\nu}}}{\omega - \epsilon^{GW}_{a} - \orange{\Omega_{\nu}} + \ii \eta}
\end{split}
\end{equation*}
\end{minipage}
}
\column{0.5}
\block{SRG}{
\begin{minipage}{0.49\linewidth}
The pillar of the SRG formalism is the flow equation
\begin{equation}
\label{eq:flowEquation}
\dv{\boldsymbol{H}(s)}{s} = \comm{\boldsymbol{\eta}(s)}{\boldsymbol{H}(s)}
\end{equation}
with the similarity transformed Hamiltonian
\begin{equation}
\label{eq:SRG_Ham}
\boldsymbol{H}(s) = \boldsymbol{U}(s) \, \boldsymbol{H} \, \boldsymbol{U}^\dagger(s)
\end{equation}
In this work, we use Wegner's generator
%\begin{equation}
% \boldsymbol{\eta}(s) = \dv{\boldsymbol{U}(s)}{s} \boldsymbol{U}^\dagger(s) = - \boldsymbol{\eta}^\dag(s)
%\end{equation}
\begin{equation}
\boldsymbol{\eta}^\text{W}(s) = \comm{\boldsymbol{H}^\text{d}(s)}{\boldsymbol{H}^\text{od}(s)}
\end{equation}
\end{minipage}
\hfill\vline\hfill
\begin{minipage}{0.49\linewidth}
\begin{tikzfigure}
\includegraphics[width=0.9\textwidth]{SRGMatrix}
\end{tikzfigure}
\end{minipage}
}
\end{columns}
\begin{columns}
\column{0.35}
\block{Static $GW$}
{
\begin{tikzfigure}
\includegraphics[width=0.29\textwidth]{upfolding.pdf}
\end{tikzfigure}}
\column{0.65}
\block{SRG-$GW$}
{
\begin{minipage}{0.575\linewidth}
\begin{equation*}
\begin{split}
&\blue{\widetilde{\boldsymbol{F}}_{pq}}(s) = \delta_{pq} \blue{\epsilon^{\text{HF}}_{p}} + \sum_{r\nu} \frac{\Delta_{pr}^{\nu} + \Delta_{qr}^{\nu}}{(\Delta_{pr}^{\nu})^2 + (\Delta_{qr}^{\nu})^2 } \red{W_{pr}^{\nu}} \red{W_{qr}^{\nu}} \qty[1 - e^{-((\Delta_{pr}^{\nu})^2+(\Delta_{qr}^{\nu})^2) s} ] \\
&\qq{with} \Delta_{pr}^{\nu} = \epsilon^{GW}_{p} - \epsilon^{GW}_{r} \pm \Omega_\nu \\
\\
&\violet{\widetilde{\Sigma}_{pq}^{\SRGGW}}(\omega;s) = \\
&\sum_{i\nu} \frac{\red{W_{pi}^{\nu}} \red{W_{qi}^{\nu}}e^{-((\Delta_{pi}^{\nu})^2+(\Delta_{qi}^{\nu})^2) s}}{\omega - \epsilon^{GW}_{i} + \Omega_{\nu}} + \sum_{a\nu} \frac{\red{W_{pa}^{\nu}} \red{W_{qa}^{\nu}}e^{-((\Delta_{pa}^{\nu})^2+(\Delta_{qa}^{\nu})^2) s}}{\omega - \epsilon^{GW}_{a} - \Omega_{\nu}}
\end{split}
\end{equation*}
\end{minipage}
\begin{minipage}{0.425\linewidth}
\begin{tikzfigure}
\includegraphics[width=\textwidth]{fig1.pdf}
\end{tikzfigure}
\end{minipage}
}
\end{columns}
\block{Functional form of the qs$GW$ and SRG-qs$GW$}
{
\begin{minipage}[t]{0.275\linewidth}
\vspace{2.5cm}
\begin{equation*}
\begin{split}
&\boldsymbol{\Sigma}^{\text{qs}GW}_{pq}(\eta) = \delta_{pq} \epsilon^{\text{HF}}_{p} + \\
\\
&\sum_{r\nu} \frac{1}{2}\qty(\frac{\Delta_{pr}^{\nu}}{(\Delta_{pr}^{\nu})^2 + \eta^2 } + \frac{\Delta_{qr}^{\nu}}{(\Delta_{qr}^{\nu})^2 + \eta^2}) W_{pr}^{\nu} W_{qr}^{\nu}
\end{split}
\end{equation*}
\end{minipage}
\begin{adjustbox}{valign=t}
\begin{minipage}[t]{0.45\linewidth}
\begin{tikzfigure}
\includegraphics[width=0.8\textwidth]{fig2.pdf}
\end{tikzfigure}
\end{minipage}
\end{adjustbox}
\begin{minipage}[t]{0.275\linewidth}
\vspace{2.5cm}
\begin{equation*}
\begin{split}
&\boldsymbol{\Sigma}^{\text{SRG-qs}GW}_{pq}(s) = \delta_{pq} \epsilon^{\text{HF}}_{p} + \\
\\
&\sum_{r\nu} \frac{\Delta_{pr}^{\nu} + \Delta_{qr}^{\nu}}{(\Delta_{pr}^{\nu})^2 + (\Delta_{qr}^{\nu})^2 } W_{pr}^{\nu} W_{qr}^{\nu} \qty[1 - e^{-((\Delta_{pr}^{\nu})^2+(\Delta_{qr}^{\nu})^2) s} ]
\end{split}
\end{equation*}
\end{minipage}
}
\begin{columns}
\column{0.33}
\block{IP flow parameter dependence}{
\begin{tikzfigure}
\includegraphics[height=14cm]{fig3.pdf}
\end{tikzfigure}}
\column{0.33}
\block{EA flow parameter dependence}{
\begin{tikzfigure}
\includegraphics[height=14cm]{fig4.pdf}
\end{tikzfigure}}
\column{0.33}
\block{MAE flow parameter dependence}{
\begin{tikzfigure}
\includegraphics[height=14cm]{fig6.pdf}
\end{tikzfigure}}
\end{columns}
\begin{columns}
\column{0.85}
\block{$GW$50 statistics}{
\begin{tikzfigure}
\includegraphics[height=14cm]{fig5.pdf}
\end{tikzfigure}}
\column{0.15}
\block{Funding}{
This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No. 863481).}
\end{columns}
\node [above right,outer sep=0pt,minimum width=\paperwidth,align=center,draw,fill=blue!30] at (bottomleft) {Blabla};
\end{document}