628 lines
30 KiB
TeX
628 lines
30 KiB
TeX
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
|
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,mleftright,bbold}
|
|
\usepackage[version=4]{mhchem}
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
\usepackage[T1]{fontenc}
|
|
\usepackage{txfonts}
|
|
|
|
\usepackage[
|
|
colorlinks=true,
|
|
citecolor=blue,
|
|
breaklinks=true
|
|
]{hyperref}
|
|
\urlstyle{same}
|
|
|
|
\newcommand{\ie}{\textit{i.e.}}
|
|
\newcommand{\eg}{\textit{e.g.}}
|
|
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
|
\usepackage[normalem]{ulem}
|
|
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
|
\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}}
|
|
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
|
|
|
\newcommand{\mc}{\multicolumn}
|
|
\newcommand{\fnm}{\footnotemark}
|
|
\newcommand{\fnt}{\footnotetext}
|
|
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
|
\newcommand{\QP}{\textsc{quantum package}}
|
|
\newcommand{\T}[1]{#1^{\intercal}}
|
|
\newcommand{\Sig}[2]{\Sigma_{#1}^{#2}}
|
|
\newcommand{\dRPA}{\text{dRPA}}
|
|
|
|
% coordinates
|
|
\newcommand{\br}{\boldsymbol{r}}
|
|
\newcommand{\bx}{\boldsymbol{x}}
|
|
\newcommand{\dbr}{d\br}
|
|
\newcommand{\dbx}{d\bx}
|
|
|
|
% methods
|
|
\newcommand{\GW}{\text{$GW$}}
|
|
\newcommand{\evGW}{ev$GW$}
|
|
\newcommand{\qsGW}{qs$GW$}
|
|
\newcommand{\GOWO}{$G_0W_0$}
|
|
\newcommand{\Hxc}{\text{Hxc}}
|
|
\newcommand{\xc}{\text{xc}}
|
|
\newcommand{\Ha}{\text{H}}
|
|
\newcommand{\co}{\text{c}}
|
|
\newcommand{\x}{\text{x}}
|
|
\newcommand{\KS}{\text{KS}}
|
|
\newcommand{\HF}{\text{HF}}
|
|
\newcommand{\RPA}{\text{RPA}}
|
|
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
|
\newcommand{\sERI}[2]{(#1|#2)}
|
|
\newcommand{\e}[2]{\epsilon_{#1}^{#2}}
|
|
|
|
%
|
|
\newcommand{\Ne}{N}
|
|
\newcommand{\Norb}{K}
|
|
\newcommand{\Nocc}{O}
|
|
\newcommand{\Nvir}{V}
|
|
|
|
% operators
|
|
\newcommand{\hH}{\Hat{H}}
|
|
\newcommand{\hS}{\Hat{S}}
|
|
\newcommand{\ani}[1]{\hat{a}_{#1}}
|
|
\newcommand{\cre}[1]{\hat{a}_{#1}^\dagger}
|
|
\newcommand{\no}[2]{\mleft\{ \hat{a}_{#1}^{#2}\mright\} }
|
|
|
|
% energies
|
|
\newcommand{\Enuc}{E^\text{nuc}}
|
|
\newcommand{\Ec}[1]{E_\text{c}^{#1}}
|
|
\newcommand{\EHF}{E^\text{HF}}
|
|
|
|
% orbital energies
|
|
\newcommand{\eps}{\epsilon}
|
|
\newcommand{\reps}{\Tilde{\epsilon}}
|
|
|
|
% Matrix elements
|
|
\newcommand{\SigC}{\Sigma^\text{c}}
|
|
\newcommand{\rSigC}{\Tilde{\Sigma}^\text{c}}
|
|
\newcommand{\MO}[1]{\phi_{#1}}
|
|
\newcommand{\SO}[1]{\psi_{#1}}
|
|
\newcommand{\eri}[2]{\braket{#1}{#2}}
|
|
\newcommand{\aeri}[2]{\mel{#1}{}{#2}}
|
|
\newcommand{\ERI}[2]{(#1|#2)}
|
|
\newcommand{\rbra}[1]{(#1|}
|
|
\newcommand{\rket}[1]{|#1)}
|
|
|
|
|
|
% Matrices
|
|
\newcommand{\bO}{\boldsymbol{0}}
|
|
\newcommand{\bI}{\boldsymbol{1}}
|
|
\newcommand{\bH}{\boldsymbol{H}}
|
|
\newcommand{\bSigC}{\boldsymbol{\Sigma}^{\text{c}}}
|
|
\newcommand{\be}{\boldsymbol{\epsilon}}
|
|
\newcommand{\bOm}{\boldsymbol{\Omega}}
|
|
\newcommand{\bA}{\boldsymbol{A}}
|
|
\newcommand{\bB}{\boldsymbol{B}}
|
|
\newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}}
|
|
\newcommand{\bD}{\boldsymbol{D}}
|
|
\newcommand{\bF}{\boldsymbol{F}}
|
|
\newcommand{\bU}{\boldsymbol{U}}
|
|
\newcommand{\bR}{\boldsymbol{R}}
|
|
\newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}}
|
|
\newcommand{\bW}{\boldsymbol{W}}
|
|
\newcommand{\bX}{\boldsymbol{X}}
|
|
\newcommand{\bY}{\boldsymbol{Y}}
|
|
\newcommand{\bZ}{\boldsymbol{Z}}
|
|
\newcommand{\bc}{\boldsymbol{c}}
|
|
|
|
% orbitals, gaps, etc
|
|
\newcommand{\IP}{I}
|
|
\newcommand{\EA}{A}
|
|
\newcommand{\HOMO}{\text{HOMO}}
|
|
\newcommand{\LUMO}{\text{LUMO}}
|
|
\newcommand{\Eg}{E_\text{g}}
|
|
\newcommand{\EgFun}{\Eg^\text{fund}}
|
|
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
|
\newcommand{\EB}{E_B}
|
|
|
|
% shortcuts for greek letters
|
|
\newcommand{\si}{\sigma}
|
|
\newcommand{\la}{\lambda}
|
|
|
|
|
|
\newcommand{\RHH}{R_{\ce{H-H}}}
|
|
\newcommand{\ii}{\mathrm{i}}
|
|
|
|
\newcommand{\bEta}[1]{\boldsymbol{\eta}^{(#1)}(s)}
|
|
\newcommand{\bHd}[1]{\bH_\text{d}^{(#1)}}
|
|
\newcommand{\bHod}[1]{\bH_\text{od}^{(#1)}}
|
|
|
|
% addresses
|
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
|
|
|
\begin{document}
|
|
|
|
\title{Notes on the project: Perturbative Analysis of the Similarity Renormalization Group formalism applied to the electronic Hamiltonian and Green's function theory}
|
|
|
|
\author{Antoine \surname{Marie}}
|
|
\email{amarie@irsamc.ups-tlse.fr}
|
|
\affiliation{\LCPQ}
|
|
|
|
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
|
\email{loos@irsamc.ups-tlse.fr}
|
|
\affiliation{\LCPQ}
|
|
|
|
%\begin{abstract}
|
|
%Here comes the abstract.
|
|
%\bigskip
|
|
%\begin{center}
|
|
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
|
|
%\end{center}
|
|
%\bigskip
|
|
%\end{abstract}
|
|
|
|
\maketitle
|
|
|
|
%=================================================================%
|
|
\section{Introduction}
|
|
%=================================================================%
|
|
|
|
The aim of this document is two-fold.
|
|
First, we want to re-derive (in details) the perturbative analysis of the similarity renormalisation group (SRG) formalism applied to the non-relativistic electronic Hamiltonian.
|
|
In a second time, we want to apply the same formalism to the unfolded GW Hamiltonian.
|
|
To do so, we first need to find a second quantization effective Hamiltonian for Green function theory.
|
|
Before jumping into these analysis, we do a brief presentation of the SRG formalism.
|
|
|
|
%=================================================================%
|
|
\section{The similarity renormalisation group}
|
|
%=================================================================%
|
|
|
|
The similarity renormalization group aims at continuously transforming an Hamiltonian to a diagonal form, or more often to a block-diagonal form.
|
|
Therefore, the transformed Hamiltonian
|
|
\begin{equation}
|
|
\bH(s) = \bU(s) \, \bH \, \bU^\dag(s)
|
|
\end{equation}
|
|
depends on a flow parameter $s$.
|
|
The resulting Hamiltonian possess up to $N$-body operators with $N$ the number of particle.
|
|
\begin{equation}
|
|
\bH(s) = E_0(s) + \bF(s) + \titou{\bV(s)} + \bW(s) + \dots
|
|
\end{equation}
|
|
In the following, we will truncate every contribution superior to two-body operators.
|
|
We can easily derive an evolution equation for this Hamiltonian by taking the derivative of $\bH(s)$. This gives
|
|
\begin{equation}
|
|
\label{eq:flowEquation}
|
|
\dv{\bH(s)}{s} = \comm{\boldsymbol{\eta}(s)}{\bH(s)}
|
|
\end{equation}
|
|
where $\boldsymbol{\eta}(s)$, the flow generator, is defined as
|
|
\begin{equation}
|
|
\boldsymbol{\eta}(s) = \dv{\bU(s)}{s} \bU^\dag(s) = - \boldsymbol{\eta}^\dag(s) .
|
|
\end{equation}
|
|
To solve this equation at a cost inferior to the one of diagonalizing the initial Hamiltonian, one needs to introduce approximation for $\boldsymbol{\eta}(s)$.
|
|
Before doing so, we need to define what is the blocks to suppress in order to obtain a block-diagonal Hamiltonian.
|
|
Therefore, the Hamiltonian is separated in two parts as
|
|
\begin{equation}
|
|
\bH(s) = \underbrace{\bH^\text{d}(s)}_{\text{diagonal}} + \underbrace{\bH^\text{od}(s)}_{\text{off-diagonal}}.
|
|
\end{equation}
|
|
By definition, we have the following condition on $\bH^\text{od}$
|
|
\begin{equation}
|
|
\bH^\text{od}(\infty) = \boldsymbol{0}.
|
|
\end{equation}
|
|
|
|
In this work, we will use Wegner's canonical generator which is defined as
|
|
\begin{equation}
|
|
\boldsymbol{\eta}^\text{W}(s) = \comm{\bH^\text{d}(s)}{\bH(s)} = \comm{\bH^\text{d}(s)}{\bH^\text{od}(s)}.
|
|
\end{equation}
|
|
This generator has the advantage of defining a true renormalisation scheme, \ie the coupling coefficients with the highest energy determinants are removed first.
|
|
One of the flaws of this generator is that it generates a \titou{stiff} set of ODE which is difficult to solve numerically.
|
|
However, here we consider analytical perturbative expressions so we will not be affected by this problem.
|
|
|
|
%=================================================================%
|
|
\section{The electronic Hamiltonian}
|
|
%=================================================================%
|
|
|
|
In this part, we derive the perturbative expression for the SRG applied to the non-relativistic electronic Hamiltonian
|
|
\begin{equation}
|
|
\label{eq:hamiltonianSecondQuant}
|
|
\hH = \sum_{pq} f_{pq} \cre{p}\ani{q} + \frac{1}{4} \sum_{pqrs} \aeri{pq}{rs} \cre{p}\cre{q}\ani{r}\ani{s}
|
|
\end{equation}
|
|
which can also be written in normal order wrt a reference determinant as
|
|
\begin{equation}
|
|
\label{eq:hamiltonianNormalOrder}
|
|
\hH = E_0 + \sum_{pq} + f_p^q\no{q}{p} + \frac{1}{4} \sum_{pqrs}v_{pq}^{rs}\no{rs}{pq}.
|
|
\end{equation}
|
|
|
|
In this case, we want to decouple the reference determinant from every singly and doubly excited determinants.
|
|
Hence, we define the off-diagonal Hamiltonian as
|
|
\begin{equation}
|
|
\label{eq:hamiltonianOffDiagonal}
|
|
\hH^{\text{od}}(s) = \sum_{ia} f_i^a(s)\no{a}{i} + \frac{1}{4} \sum_{ijab}\titou{v(s)_{ij}^{ab}}\no{ab}{ij}.
|
|
\end{equation}
|
|
Note that each coefficients depend on $s$.
|
|
|
|
The perturbative parameter $\la$ is such that
|
|
\begin{equation}
|
|
\bH(0) = E_0(0) + F(0) + \la V(0)
|
|
\end{equation}
|
|
In addition, we know the following initial conditions.
|
|
We use the HF basis set of the reference such that $F^{\text{od}}(0) = 0$ and \titou{$F^{\mathrm{d}}(0)=\delta_{pq}\epsilon_p$}
|
|
Therefore, we have
|
|
\begin{align}
|
|
\bH^\text{d}(0)&=E_0(0) + F^{\mathrm{d}}(0) + \la V^{\mathrm{d}}(0) & \bH^\text{od}(0)&= \la V^{\mathrm{od}}(0)
|
|
\end{align}
|
|
Now, we want to compute the terms at each order of the following development
|
|
\begin{equation}
|
|
\label{eq:hamiltonianPTExpansion}
|
|
\bH(s) = \bH^{(0)}(s) + \bH^{(1)}(s) + \bH^{(2)}(s) + \bH^{(3)}(s) + \dots
|
|
\end{equation}
|
|
by integrating Eq.~\eqref{eq:flowEquation}.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{Zeroth order Hamiltonian}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
First, we start by showing that the zeroth order Hamiltonian is independant of $s$ and therefore equal to $\bH^{(0)}(0)$
|
|
\begin{align}
|
|
\bH(\delta s) &= \bH(0) + \delta s \dv{\bH(s)}{s}\bigg|_{s=0} + O(\delta s^2) \\
|
|
\dv{\bH(s)}{s}\bigg|_{s=0} &= [ \boldsymbol{\eta}(0), \bH(0)] \\
|
|
\end{align}
|
|
However, we have seen that $\bH^\text{od}(0)$ is of order 1.
|
|
Hence, $\boldsymbol{\eta}(0)$ does not have a zero order contribution.
|
|
Which gives us the following equality
|
|
\begin{equation}
|
|
\bH^{(0)}(\delta s) = \bH^{(0)}(0)
|
|
\end{equation}
|
|
meaning that the zeroth order Hamiltonian is independant of $s$.
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{First order Hamiltonian}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
The right-hand side of \eqref{eq:flowEquation} has no zeroth order, so we want to compute its first order term.
|
|
To do so, we first need to compute the first order term of $\boldsymbol{\eta}(s)$.
|
|
We have seen that $\bH^\text{od}(0)$ has no zeroth order contribution so we have
|
|
\begin{equation}
|
|
\boldsymbol{\eta}^{(1)}(s) = \comm{\bH^{\text{d},(0)}(0)}{\bH^{\text{od},(1)}(s)}
|
|
\end{equation}
|
|
According to the appendix the one-body part of $\boldsymbol{\eta}^{(1)}(s) $ has four contributions. However, two of them involve the two-body part of $\bH^{\text{d},(0)}(0)$ which is equal to zero.
|
|
In addition, the term $\left[A_{1}, B_{2}\right]_{p}^{q}$ involves the coefficients $A_i^a = f_i^a(0) = 0$.
|
|
So finally we only have one term
|
|
\begin{align}
|
|
\eta_a^{i,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(1)}(s)}_a^i \\
|
|
&= \sum_r \left( f_a^r(0) f_r^{i,(1)}(s) - f_r^i(0) f_a^{r,(1)}(s) \right) \\
|
|
&= (\epsilon_a - \epsilon_i)f_a^{i,(1)}(s)
|
|
\end{align}
|
|
Now turning to the two-body part of $\boldsymbol{\eta}^{(1)}(s) $ and once again two terms are zero because the two-body part of $\bH^{\text{d},(0)}(0)$ is equal to zero.
|
|
So we have
|
|
\begin{align}
|
|
\eta_{ab}^{ij,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_2^{\text{od},(1)}(s)}_{ab}^{ij} \\
|
|
&= \sum_t [P(ab) f_a^t(0) v_{tb}^{ij,(1)}(s) - P(ij) f_t^i(0) v_{ab}^{tj,(1)}(s) ] \notag \\
|
|
&= \sum_t [ P(ab) \epsilon_a \delta_{at}v_{tb}^{ij,(1)}(s) - P(ij) \epsilon_i \delta_{it} v_{ab}^{tj,(1)}(s) ] \notag \\
|
|
&= P(ab) \epsilon_a v_{ab}^{ij,(1)}(s) - P(ij) \epsilon_i v_{ab}^{ij,(1)}(s) \notag\\
|
|
&= \left( \epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j \right) v_{ab}^{ij,(1)} \notag
|
|
\end{align}
|
|
|
|
We can now compute the first order contribution to Eq.~\eqref{eq:flowEquation}. We have seen that $\eta$ has no zeroth order contribution so
|
|
\begin{equation}
|
|
\dv{\bH^{(1)}(s)}{s} = \comm{\boldsymbol{\eta}^{(1)}(s)}{\bH^{(0)}(s)}
|
|
\end{equation}
|
|
We start with the scalar contribution, \ie the PT1 energy
|
|
\begin{equation}
|
|
\dv{E_0^{(1)}(s)}{s} = \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(0)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(0)}(s)}}{\phi}
|
|
\end{equation}
|
|
where the second term is equal to zero.
|
|
Thus we have
|
|
\begin{align}
|
|
\label{eq:diffEqScalPT1}
|
|
\dv{E_0^{(1)}(s)}{s} &= \sum_{ip}\eta_i^{p,(1)}f_p^i(0) - \eta_p^{i,(1)}f_i^p(0) \\
|
|
&= \sum_i \epsilon_i(\eta_i^{i,(1)} - \eta_i^{i,(1)}) \notag \\
|
|
&= 0 \notag
|
|
\end{align}
|
|
Using the exact same reasoning as above we can show that there is only of the four terms of the one-body part of the commutator that is non-zero.
|
|
\begin{align}
|
|
\dv{f_a^{i,(1)}(s)}{s} &= \comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(0)}(s)}_a^i \\
|
|
&= \sum_r \eta_a^{r,(1)}(s)f_r^i(0) - \eta_r^{i,(1)}f_a^r(0) \notag \\
|
|
&= (\epsilon_i - \epsilon_a) \eta_a^{i,(1)}(s) \notag \\
|
|
&= -(\epsilon_i - \epsilon_a) ^2f_a^{i,(1)}(s) \notag
|
|
\end{align}
|
|
The derivation for the two-body part to first order is once again similar
|
|
\begin{align}
|
|
\dv{v_{ab}^{ij,(1)}(s)}{s} &= \comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_1^{(0)}(s)}_{ab}^{ij} \\
|
|
&= -(\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b) ^2v_{ab}^{ij,(1)}(s) \notag
|
|
\end{align}
|
|
These three differential equations can be integrated to obtain the analytical form of the Hamiltonian coefficients up to first order of perturbation theory.
|
|
\begin{align}
|
|
E_0^{(1)}(s) &= E_0^{(1)}(0) = 0 \\
|
|
f_a^{i,(1)}(s) &= f_a^{i,(1)}(0) e^{-s (\Delta_a^i )^2} = 0 \\
|
|
v_{ab}^{ij,(1)}(s) &= v_{ab}^{ij,(1)}(0) e^{-s (\Delta_{ab}^{ij})^2} = \aeri{ij}{ab} e^{-s (\Delta_{ab}^{ij})^2}
|
|
\end{align}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{Second order Hamiltonian}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
To compute the second order contribution to the Hamiltonian coefficients, we first need to compute the second order contribution to $\boldsymbol{\eta}(s)$.
|
|
\begin{equation}
|
|
\boldsymbol{\eta}^{(2)}(s) = \comm{\bH^{\text{d},(0)}(0)}{\bH^{\text{od},(2)}(s)} + \comm{\bH^{\text{d},(1)}(s)}{\bH^{\text{od},(1)}(s)}
|
|
\end{equation}
|
|
The expressions for the first commutator are computed analogously to the one of the previous subsection.
|
|
We focus on deriving expressions for the second term.
|
|
The one-body part of $\bH^{\text{od},(1)}(s)$ is equal to zero so two of the four terms contributing to the one-body part of $\comm{\bH^{\text{d},(1)}(s)}{\bH^{\text{od},(1)}(s)}$ are zero.
|
|
In addition, the term $\comm{A_1}{B_2}$ is equal to zero as well because the coefficients \titou{$A_{1,i}^a$} are zero (see expression in Appendix).
|
|
So we have
|
|
\begin{align}
|
|
\eta_a^{i,(2)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(2)}(s)}_a^i + \comm{\bH_2^{\text{d},(1)}(s)}{\bH_2^{\text{od},(1)}(s)}_a^i \\
|
|
&= (\epsilon_a - \epsilon_i)f_a^{i,(2)}(s) + \dots
|
|
\end{align}
|
|
Need to continue this derivation but this not needed for EPT2.
|
|
|
|
|
|
Now turning to the differential equations, we start by computing the scalar part of Eq.~\eqref{eq:flowEquation}, \ie the differential equation for the second order energy.
|
|
\begin{align}
|
|
\dv{E_0^{(2)}(s)}{s} & = \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(2)}(s)}{\bH_1^{(0)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(2)}(s)}{\bH_2^{(0)}(s)}}{\phi} \\
|
|
&+ \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(1)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(1)}(s)}}{\phi}
|
|
\end{align}
|
|
The two first terms are equal to zero for the same reason as the PT1 scalar differential equation (see Eq.~\eqref{eq:diffEqScalPT1}).
|
|
In addition, the one-body hamiltonian has no first order contribution so
|
|
\begin{align}
|
|
\dv{E_0^{(2)}(s)}{s} &= \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(1)}(s)}}{\phi} \\
|
|
&= \frac{1}{4} \sum_{i j} \sum_{a b}\left(\eta_{i j}^{ab,(1)} H_{ab}^{i j,(1)} - H_{i j}^{ab,(1)} \eta_{ab}^{i j,(1)}\right) \\
|
|
&=\frac{1}{4} \sum_{i j} \sum_{a b}\left(\eta_{i j}^{ab,(1)} - \eta_{ab}^{i j,(1)}\right) v_{ab}^{ij,(1)} \\
|
|
&= \frac{1}{4} \sum_{i j} \sum_{a b}\left(\Delta_{ab}^{ij}v_{ij}^{ab,(1)} - (-\Delta_{ab}^{ij} v_{ab}^{ij,(1)}) \right) \aeri{ij}{ab} e^{-s (\Delta_{ab}^{ij})^2} \\
|
|
&= \frac{1}{2} \sum_{i j} \sum_{a b} \Delta_{ab}^{ij} (v_{ab}^{ij,(1)})^2 \\
|
|
&= \frac{1}{2} \sum_{i j} \sum_{a b} \Delta_{ab}^{ij} \aeri{ij}{ab}^2 e^{-2s (\Delta_{ab}^{ij})^2}
|
|
\end{align}
|
|
After integration, using the initial condition $E_0^{(2)}(0)=0$, we obtain
|
|
\begin{equation}
|
|
E_0^{(2)}(s) = \frac{1}{4} \sum_{i j} \sum_{a b} \titou{\frac{\Delta_{ab}^{ij}}{\aeri{ij}{ab}}}\left(1-e^{-2s (\Delta_{ab}^{ij})^2}\right)
|
|
\end{equation}
|
|
|
|
%=================================================================%
|
|
\section{The unfolded Green's function}
|
|
% =================================================================%
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{Initial conditions}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
Finding a second quantized effective Hamiltonian for MBPT is far from being trivial so we start the project with matrix perturbation theory.
|
|
A general upfolded MBPT matrix can be written as
|
|
\begin{equation}
|
|
\label{eq:H_MBPT}
|
|
H =
|
|
\begin{pmatrix}
|
|
\bF & \bV{}{} \\
|
|
\bV{}{\dagger} & \bC{}{}
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
Using SRG language, we define the diagonal and off-diagonal parts as
|
|
\begin{equation}
|
|
\label{eq:H_MBPT_partitioning}
|
|
H(0) =
|
|
\begin{pmatrix}
|
|
\bF & \bO \\
|
|
\bO & \bC{\text{d}}{}
|
|
\end{pmatrix}
|
|
+ \lambda
|
|
\begin{pmatrix}
|
|
\bO & \bV{}{} \\
|
|
\bV{}{\dagger} & \bC{\text{od}}{}
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
which gives the following conditions
|
|
\begin{align}
|
|
\bHd{0}(0) &= \begin{pmatrix}
|
|
\bF & \bO \\
|
|
\bO & \bC{\text{d}}{}
|
|
\end{pmatrix} & \bHod{0}(0) &= \bO \\
|
|
\bHd{1}(0) &= \bO & \bHod{1}(0) &= \begin{pmatrix}
|
|
\bO & \bV{}{} \\
|
|
\bV{}{\dagger} & \bC{\text{od}}{}
|
|
\end{pmatrix}
|
|
\end{align}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{Zeroth order Hamiltonian}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
The zeroth-order commutator of the Wegner generator therefore gives
|
|
\begin{equation}
|
|
\bEta{0} = \comm{\bHd{0}}{\bHod{0}} = \bO
|
|
\end{equation}
|
|
and similarly
|
|
\begin{equation}
|
|
\dv{\bH^{(0)}}{s} = \comm{\bEta{0}}{\bH^{(0)}} = \bO
|
|
\end{equation}
|
|
Finally, we have
|
|
\begin{equation}
|
|
\color{red}{\boxed{
|
|
\color{black}{\bH^{(0)}(s) = \bH^{(0)}(0)}
|
|
}}
|
|
\end{equation}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{First order Hamiltonian}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
Now turning to the first-order contribution to the MBPT matrix, we start by computing the first order part of the Wegner generator.
|
|
|
|
\begin{align}
|
|
&\bEta{1} = \comm{\bHd{0}}{\bHod{1}} \\
|
|
&= \begin{pmatrix}
|
|
\bO & \bF^{(0)}\bV{}{(1)} - \bV{}{(1)}\bC{\text{d}}{(0)}\\
|
|
\bC{\text{d}}{(0)}\bV{}{(1),\dagger} - \bV{}{(1),\dagger} \bF^{(0)} & \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} - \bC{\text{od}}{(1)} \bC{\text{d}}{(0)}
|
|
\end{pmatrix}
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
\dv{\bH^{(1)}}{s} &= \comm{\bEta{1}}{\bHd{0}} = \begin{pmatrix}
|
|
\dv{\bF^{(1)}}{s} & \dv{\bV{}{(1)}}{s} \\
|
|
\dv{\bV{}{(1),\dagger}}{s} & \dv{\bC{}{(1)}}{s}
|
|
\end{pmatrix} \\
|
|
\dv{\bF^{(1)}}{s} &= \bO \Longleftrightarrow \color{red}{\boxed{\color{black}{\bF^{(1)}= \bO}}} \\
|
|
\dv{\bV{}{(1)}}{s} &= 2 \bF^{(0)}\bV{}{(1)}\bC{\text{d}}{(0)} - (\bF^{(0)})^2\bV{}{(1)} - \bV{}{(1)}(\bC{\text{d}}{(0)})^2 \\
|
|
\dv{\bV{}{(1),\dagger}}{s} &= 2 \bC{\text{d}}{(0)}\bV{}{(1),\dagger}\bF^{(0)} - \bV{}{(1),\dagger}(\bF^{(0)})^2 - (\bC{\text{d}}{(0)})^2\bV{}{(1),\dagger} \\
|
|
\dv{\bC{}{(1)}}{s} &= 2 \bC{\text{d}}{(0)}\bC{\text{od}}{(1)}\bC{\text{d}}{(0)}- (\bC{\text{d}}{(0)})^2\bC{\text{od}}{(1)} - \bC{\text{od}}{(1)}(\bC{\text{d}}{(0)})^2
|
|
\end{align}
|
|
The last two equations can be solved differently depending on the form of $\bF$ and $\bC{}{}$.
|
|
\subsubsection*{Diagonal $\bC{}{(0)}$}
|
|
In the following, upper case indices correspond to the 2h1p and 2p1h sectors while lower case indices correspond to the 1h and 1p sectors. Also the $\Delta\eps_R$ corresponds to the diagonal elements of the 2h1p and 2p1h sectors.
|
|
|
|
\begin{align}
|
|
(\dv{\bV{}{(1)}}{s})_{pQ} &= (2 \bF^{(0)}\bV{}{(1)}\bC{\text{d}}{(0)} - (\bF^{(0)})^2\bV{}{(1)} - \bV{}{(1)}(\bC{\text{d}}{(0)})^2 )_{pQ}\\
|
|
&= \sum_{rS} 2 f^{(0)}_{pr} v^{(1)}_{rS}c^{(0)}_{SQ} - \sum_{rs} f^{(0)}_{pr} f^{(0)}_{rs} v^{(1)}_{sQ} - \sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS}c^{(0)}_{SQ} \\
|
|
&= \sum_{rS} 2 \epsilon^{(0)}_p\delta_{pr} v^{(1)}_{rS}\Delta\epsilon^{(0)}_Q\delta_{SQ} \\
|
|
&- \sum_{rs} \epsilon^{(0)}_p\delta_{pr} \epsilon^{(0)}_r\delta_{rs} v^{(1)}_{sQ} \\
|
|
&- \sum_{RS} v^{(1)}_{pR} \Delta\epsilon^{(0)}_R\delta_{RS} \Delta\epsilon^{(0)}_Q\delta_{SQ} \\
|
|
&= (2 \epsilon^{(0)}_p\Delta\epsilon^{(0)}_Q - (\epsilon^{(0)}_p)^2 - (\Delta\epsilon^{(0)}_Q )^2) v^{(1)}_{pQ} \\
|
|
\dv{v^{(1)}_{pQ}}{s} &= - (\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2 v^{(1)}_{pQ} \\
|
|
&\color{red}{\boxed{\color{black}{v^{(1)}_{pQ}(s) = v^{(1)}_{pQ}(0) e^{-s(\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2} }}}
|
|
\end{align}
|
|
Note the close similarity with Evangelista's expressions for the off-diagonal part at first order!
|
|
\begin{align}
|
|
(\dv{\bC{}{(1)}}{s})_{PQ} &= (2 \bC{\text{d}}{(0)}\bC{\text{od}}{(1)}\bC{\text{d}}{(0)}- (\bC{\text{d}}{(0)})^2\bC{\text{od}}{(1)} - \bC{\text{od}}{(1)}(\bC{\text{d}}{(0)})^2)_{PQ} \\
|
|
&= \sum_{RS} 2 c^{(0)}_{PR} c^{(1)}_{RS} c^{(0)}_{SQ} - c^{(0)}_{PR} c^{(0)}_{RS} c^{(1)}_{SQ} - c^{(1)}_{PR} c^{(0)}_{RS} c^{(0)}_{SQ} \\
|
|
&= 2 \Delta\epsilon^{(0)}_Pc^{(1)}_{PQ}\Delta\epsilon^{(0)}_Q - (\Delta\epsilon^{(0)}_P)^2 c^{(1)}_{PQ} - c^{(1)}_{PQ} (\Delta\epsilon^{(0)}_Q)^2 \\
|
|
&= - (\Delta\epsilon^{(0)}_P - \Delta\epsilon^{(0)}_Q )^2 c^{(1)}_{PQ} \\
|
|
&\color{red}{\boxed{\color{black}{c^{(1)}_{PQ}(s) = c^{(1)}_{PQ}(0) e^{-s(\Delta\epsilon^{(0)}_P - \Delta\epsilon^{(0)}_Q )^2} }}}
|
|
\end{align}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{Second order Hamiltonian}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
Recalling that $\bHod{0} = \bO$ and $\bHd{1} = \bO$, we derive
|
|
\begin{align}
|
|
&\bEta{2} = \comm{\bHd{0}}{\bHod{2}} + \comm{\bHd{1}}{\bHod{1}} \\
|
|
&= \comm{\bHd{0}}{\bHod{2}} \\
|
|
&= \begin{pmatrix}
|
|
\bO & \bF^{(0)}\bV{}{(2)} - \bV{}{(2)}\bC{\text{d}}{(0)}\\
|
|
\bC{\text{d}}{(0)}\bV{}{(2),\dagger} - \bV{}{(2),\dagger}\bF^{(0)} & \bC{\text{d}}{(0)} \bC{\text{od}}{(2)} - \bC{\text{od}}{(2)} \bC{\text{d}}{(0)}
|
|
\end{pmatrix}
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
&\dv{\bH^{(2)}}{s} = \comm{\bEta{2}}{\bHd{0}} + \comm{\bEta{1}}{\bHd{1}} \\
|
|
&= \begin{pmatrix}
|
|
\dv{\bF^{(2)}}{s} & \dv{\bV{}{(2)}}{s} \\
|
|
\dv{\bV{}{(2),\dagger}}{s} & \dv{\bC{}{(2)}}{s}
|
|
\end{pmatrix} \\
|
|
\dv{\bF^{(2)}}{s} &= \bF^{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bF^{(0)} - 2 \bV{}{(1)}\bC{\text{d}}{(0)}\bV{}{(1),\dagger}\\
|
|
\dv{\bC{}{(2)}}{s} &= 2 \bC{\text{d}}{(0)}\bC{\text{od}}{(2)}\bC{\text{d}}{(0)}- (\bC{\text{d}}{(0)})^2\bC{\text{od}}{(2)} - \bC{\text{od}}{(2)}(\bC{\text{d}}{(0)})^2 \\
|
|
&-2 \bC{\text{d}}{(1)}\bC{\text{od}}{(0)}\bC{\text{d}}{(1)}- (\bC{\text{d}}{(1)})^2\bC{\text{od}}{(0)} - \bC{\text{od}}{(0)}(\bC{\text{d}}{(1)})^2 \notag \\
|
|
\dv{\bV{}{(2)}}{s} &= 2 \bF^{(0)}\bV{}{(2)}\bC{\text{d}}{(0)} - (\bF^{(0)})^2\bV{}{(2)} - \bV{}{(2)}(\bC{\text{d}}{(0)})^2 \\
|
|
&- 2 \bV{}{(1)} \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} + \bF^{(0)} \bV{}{(1)} \bC{\text{od}}{(1)} + \bV{}{(1)} \bC{\text{od}}{(1)} \bC{\text{d}}{(0)} \notag \\
|
|
\dv{\bV{}{(2),\dagger}}{s} &= 2 \bC{\text{d}}{(0)}\bV{}{(2),\dagger}\bF^{(0)} - \bV{}{(2),\dagger}(\bF^{(0)})^2 - (\bC{\text{d}}{(0)})^2\bV{}{(2),\dagger} \\
|
|
&- 2 \bC{\text{od}}{(1)} \bC{\text{d}}{(0)} \bV{}{(1),\dagger} + \bC{\text{od}}{(1)} \bV{}{(1),\dagger} \bF^{(0)} + \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} \bV{}{(1),\dagger} \notag
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
&(\dv{\bF^{(2)}}{s})_{pq} = (\bF^{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bF^{(0)} - 2 \bV{}{(1)}\bC{\text{d}}{(0)}\bV{}{(1),\dagger})_{pq} \notag \\
|
|
&= \sum_{rS} f^{(0)}_{pr} v^{(1)}_{rS} v^{(1),\dagger}_{Sq} + \sum_{Rs} v^{(1)}_{pR} v^{(1),\dagger}_{Rs} f^{(0)}_{sq} - 2\sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS} v^{(1),\dagger}_{Sq} \notag \\
|
|
&= \sum_{S} \eps^{(0)}_{p} v^{(1)}_{pS} v^{(1)}_{qS} + \sum_{R} \eps^{(0)}_{q} v^{(1)}_{pR} v^{(1)}_{qR} - 2\sum_{R} \Delta\eps^{(0)}_R v^{(1)}_{pR} v^{(1)}_{qR} \notag \\
|
|
&= \sum_R (\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R) v^{(1)}_{pR} v^{(1)}_{qR} \notag \\
|
|
&= \sum_R (\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R) v^{(1)}_{pR}(0) v^{(1)}_{qR}(0) e^{-s [ (\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2]} \notag \\
|
|
&f^{(2)}_{pq}(s) = \notag \\
|
|
&\color{red}{\boxed{\color{black}{- \sum_R \frac{\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R}{(\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2}(1 - e^{-s [ (\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2]})}}} \notag
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
(\dv{\bV{}{(2)}}{s})_{pQ} &= (2 \bF^{(0)}\bV{}{(2)}\bC{\text{d}}{(0)} - (\bF^{(0)})^2\bV{}{(2)} - \bV{}{(2)}(\bC{\text{d}}{(0)})^2 \\
|
|
& - 2 \bV{}{(1)} \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} + \bF^{(0)} \bV{}{(1)} \bC{\text{od}}{(1)} + \bV{}{(1)} \bC{\text{od}}{(1)} \bC{\text{d}}{(0)})_{pQ} \notag \\
|
|
v^{(2)}_{pQ}(s) &= v^{(2)}_{pQ}(0) e^{-s(\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2} + \text{Non-homogeneous solution} \notag \\
|
|
v^{(2)}_{pQ}(s) &= \text{Non-homogeneous solution}
|
|
\end{align}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{Downfolding the SRG-transformed matrix}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
Now that we obtained the SRG-transformed Hamiltonian to a given order we can downfold it back to obtain a SRG-renormalized self-energy up to a given order.
|
|
\begin{equation}
|
|
\label{eq:H_SRGMBPT}
|
|
H(s) =
|
|
\begin{pmatrix}
|
|
\bF^{(0)}(0) + \bF^{(2)}(s) & \bV{}{(1)}(s) + \bV{}{(2)}(s) \\
|
|
\bV{}{(1),\dagger}(s) + \bV{}{(2),\dagger}(s) & \bC{}{(0)}(0) +\bC{}{(2)}(s)
|
|
\end{pmatrix}
|
|
\end{equation}
|
|
|
|
\begin{equation}
|
|
\left\{
|
|
\begin{aligned}
|
|
(\bF^{(0)}(0) + \bF^{(2)}(s)) \bR^{1h/1p} + \bV{}{(1)}(s) \bR^{2h1p/2p1h} &= \omega \bR^{1h/1p} \\
|
|
\bV{}{(1),\dagger}(s) \bR^{1h/1p} + (\bC{}{(0)}(0) +\bC{}{(2)}(s) ) \bR^{2h1p/2p1h}&= \omega \bR^{2h1p/2p1h}
|
|
\end{aligned}
|
|
\right.
|
|
\end{equation}
|
|
|
|
\begin{align}
|
|
&(\bF^{(0)}(0) + \bF^{(2)}(s)) + (\bV{}{(1)}(s) + \bV{}{(2)}(s))(\omega \mathbb{1} - \bC{}{(0)}(0) +\bC{}{(2)}(s) )^{-1} \notag \\
|
|
&\dots (\bV{}{(1),\dagger}(s) + \bV{}{(2),\dagger}(s)) \bR^{1h/1p} = \omega \bR^{1h/1p}
|
|
\end{align}
|
|
|
|
\begin{align}
|
|
&(\omega \mathbb{1} - \bC{}{(0)}(0) - \bC{}{(1)}(s) - \bC{}{(2)}(s) )^{-1} = (\omega \mathbb{1} - \bC{}{(0)}(0))^{-1} \\
|
|
&+ (\omega \mathbb{1} - \bC{}{(0)}(0))^{-1}(\bC{}{(1)}(s) + \bC{}{(2)}(s) )(\omega \mathbb{1} - \bC{}{(0)}(0))^{-1} \notag \\
|
|
&+ \dots \notag
|
|
\end{align}
|
|
Using this taylor expansion we can see that only the first term will contribute to second order in the self energy. Hence we have
|
|
\begin{equation*}
|
|
(\bF^{(0)}(0) + \bF^{(2)}(s) + \bV{}{(1)}(s)(\omega \mathbb{1} - \bC{}{(0)}(0))^{-1} \bV{}{(1),\dagger}(s))\bR^{1h/1p} = \omega \bR^{1h/1p}
|
|
\end{equation*}
|
|
Therefore we have to solve the following equation
|
|
\begin{align}
|
|
&(\tilde{\bF} + \tilde{\boldsymbol{\Sigma}}(\omega)) \bX{}{} = \omega \bX \\
|
|
&\tilde{\bF} =\bF^{(0)}(0) + \bF^{(2)}(s) \\
|
|
&\tilde{\boldsymbol{\Sigma}}(\omega) = \bV{}{(1)}(s)(\omega \mathbb{1} - \bC{}{(0)}(0))^{-1} \bV{}{(1),\dagger}(s)
|
|
\end{align}
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
\subsection{The SRG(2) quasi-particle equations}
|
|
%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
In this section, we report the GF(2), GW and GT quasi-particle equations.
|
|
|
|
\appendix
|
|
|
|
%=================================================================%
|
|
\section{Matrix elements of $C=[A, B]_{1,2}$}
|
|
%=================================================================%
|
|
|
|
An operator $A$ containing at most two-body terms may be written in normal ordered form with respect to the reference $\Phi$ as
|
|
|
|
$$
|
|
A=A_{0}+A_{1}+A_{2},
|
|
$$
|
|
|
|
where $A_{0}$ is a scalar, and
|
|
|
|
$$
|
|
\begin{gathered}
|
|
A_{1}=\sum_{p q} A_{p}^{q}\left\{\hat{a}_{q}^{p}\right\}, \\
|
|
A_{2}=\frac{1}{4} \sum_{p q r s} A_{p q}^{r s}\left\{\hat{a}_{r s}^{p q}\right\},
|
|
\end{gathered}
|
|
$$
|
|
|
|
with the second quantization operator written compactly as $\hat{a}_{q}^{p}=\hat{a}_{p}^{\dagger} \hat{a}_{q}$ and $\hat{a}_{r s}^{p q}=\hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}$. The commutator $C=[A, B]_{1,2}$ contains contributions from the following terms:
|
|
|
|
$$
|
|
\begin{gathered}
|
|
C_{0}=\left\langle\Phi\left|\left[A_{1}, B_{1}\right]\right| \Phi\right\rangle+\left\langle\Phi\left|\left[A_{2}, B_{2}\right]\right| \Phi\right\rangle, \\
|
|
C_{p}^{q}=\left[A_{1}, B_{1}\right]_{p}^{q}+\left[A_{1}, B_{2}\right]_{p}^{q}-\left[B_{1}, A_{2}\right]_{p}^{q}+\left[A_{2}, B_{2}\right]_{p}^{q}, \\
|
|
C_{p q}^{r s}=\left[A_{1}, B_{2}\right]_{p q}^{r s}-\left[B_{1}, A_{2}\right]_{p q}^{r s}+\left[A_{2}, B_{2}\right]_{p q}^{r s},
|
|
\end{gathered}
|
|
$$
|
|
|
|
where the unique contributions to the matrix elements are
|
|
|
|
$$
|
|
\begin{gathered}
|
|
\left\langle\Phi\left|\left[A_{1}, B_{1}\right]\right| \Phi\right\rangle=\sum_{p} \sum_{i}\left(A_{i}^{p} B_{p}^{i}-B_{i}^{p} A_{p}^{i}\right), \\
|
|
\left\langle\Phi\left|\left[A_{2}, B_{2}\right]\right| \Phi\right\rangle=\frac{1}{4} \sum_{i j} \sum_{a b}\left(A_{i j}^{a b} B_{a b}^{i j}-B_{i j}^{a b} A_{a b}^{i j}\right), \\
|
|
{\left[A_{1}, B_{1}\right]_{p}^{q}=\sum_{r}\left(A_{p}^{r} B_{r}^{q}-B_{p}^{r} A_{r}^{q}\right),} \\
|
|
{\left[A_{1}, B_{2}\right]_{p}^{q}=\sum_{i} \sum_{a} A_{i}^{a} B_{p a}^{q i}-A_{a}^{i} B_{p i}^{q a},} \\
|
|
{\left[A_{2}, B_{2}\right]_{p}^{q}=\frac{1}{2} \sum_{i j} \sum_{a}\left(A_{a p}^{i j} B_{i j}^{a q}-A_{i j}^{a q} B_{a p}^{i j}\right)} \\
|
|
+\frac{1}{2} \sum_{i} \sum_{a b}\left(A_{i p}^{a b} B_{a b}^{i q}-A_{a b}^{i q} B_{i p}^{a b}\right), \\
|
|
{\left[A_{1}, B_{2}\right]_{p q}^{r s}=\sum_{t}\left[P(p q) A_{p}^{t} B_{t q}^{r s}-P(r s) A_{t}^{r} B_{p q}^{t s}\right],} \\
|
|
{\left[A_{2}, B_{2}\right]_{p q}^{r s}=\frac{1}{2} \sum_{a b}\left(A_{p q}^{a b} B_{a b}^{r s}-A_{a b}^{r s} B_{p q}^{a b}\right)} \\
|
|
-\frac{1}{2} \sum_{i j}\left(A_{p q}^{i j} B_{i j}^{r s}-A_{i j}^{r s} B_{p q}^{i j}\right) \\
|
|
+\sum_{i} \sum_{a} P(p q) P(r s)\left[A_{p i}^{r a} B_{q a}^{s i}-A_{p a}^{r i} B_{q i}^{s a}\right] .
|
|
\end{gathered}
|
|
$$
|
|
|
|
In these equations $P(r s)$ is the antisymmetric permutation operator.
|
|
|
|
\end{document} |