\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress,onecolumn]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,siunitx} \usepackage[version=4]{mhchem} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{txfonts} \usepackage[ colorlinks=true, citecolor=blue, breaklinks=true ]{hyperref} \urlstyle{same} \newcommand{\ie}{\textit{i.e.}} \newcommand{\eg}{\textit{e.g.}} \newcommand{\alert}[1]{\textcolor{red}{#1}} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\QP}{\textsc{quantum package}} \newcommand{\T}[1]{#1^{\intercal}} % coordinates \newcommand{\br}{\boldsymbol{r}} \newcommand{\bx}{\boldsymbol{x}} \newcommand{\dbr}{d\br} \newcommand{\dbx}{d\bx} % methods \newcommand{\GW}{\text{$GW$}} \newcommand{\evGW}{ev$GW$} \newcommand{\qsGW}{qs$GW$} \newcommand{\GOWO}{$G_0W_0$} \newcommand{\Hxc}{\text{Hxc}} \newcommand{\xc}{\text{xc}} \newcommand{\Ha}{\text{H}} \newcommand{\co}{\text{c}} \newcommand{\x}{\text{x}} \newcommand{\KS}{\text{KS}} \newcommand{\HF}{\text{HF}} \newcommand{\RPA}{\text{RPA}} % \newcommand{\Ne}{N} \newcommand{\Norb}{K} \newcommand{\Nocc}{O} \newcommand{\Nvir}{V} % operators \newcommand{\hH}{\Hat{H}} \newcommand{\hS}{\Hat{S}} % energies \newcommand{\Enuc}{E^\text{nuc}} \newcommand{\Ec}[1]{E_\text{c}^{#1}} \newcommand{\EHF}{E^\text{HF}} % orbital energies \newcommand{\eps}[2]{\epsilon_{#1}^{#2}} \newcommand{\reps}[2]{\Tilde{\epsilon}_{#1}^{#2}} \newcommand{\Om}[2]{\Omega_{#1}^{#2}} % Matrix elements \newcommand{\Sig}[2]{\Sigma_{#1}^{#2}} \newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}} \newcommand{\rSigC}[1]{\Tilde{\Sigma}^\text{c}_{#1}} \newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}} \newcommand{\SigXC}[1]{\Sigma^\text{xc}_{#1}} \newcommand{\MO}[1]{\phi_{#1}} \newcommand{\SO}[1]{\psi_{#1}} \newcommand{\ERI}[2]{(#1|#2)} \newcommand{\rbra}[1]{(#1|} \newcommand{\rket}[1]{|#1)} % Matrices \newcommand{\bO}{\boldsymbol{0}} \newcommand{\bI}{\boldsymbol{1}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bvc}{\boldsymbol{v}} \newcommand{\bSig}[2]{\boldsymbol{\Sigma}_{#1}^{#2}} \newcommand{\bSigC}[1]{\boldsymbol{\Sigma}_{#1}^{\text{c}}} \newcommand{\be}{\boldsymbol{\epsilon}} \newcommand{\bOm}[1]{\boldsymbol{\Omega}^{#1}} \newcommand{\bA}[2]{\boldsymbol{A}_{#1}^{#2}} \newcommand{\bB}[2]{\boldsymbol{B}_{#1}^{#2}} \newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}} \newcommand{\bD}[2]{\boldsymbol{D}_{#1}^{#2}} \newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}} \newcommand{\bW}[2]{\boldsymbol{W}_{#1}^{#2}} \newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}} \newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}} \newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}} \newcommand{\bc}[2]{\boldsymbol{c}_{#1}^{#2}} % orbitals, gaps, etc \newcommand{\IP}{I} \newcommand{\EA}{A} \newcommand{\HOMO}{\text{HOMO}} \newcommand{\LUMO}{\text{LUMO}} \newcommand{\Eg}{E_\text{g}} \newcommand{\EgFun}{\Eg^\text{fund}} \newcommand{\EgOpt}{\Eg^\text{opt}} \newcommand{\EB}{E_B} \newcommand{\RHH}{R_{\ce{H-H}}} \newcommand{\ii}{\mathrm{i}} % addresses \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \begin{document} \title{Undressing $GW$ one determinant at a time} \author{Pierre-Fran\c{c}ois \surname{Loos}} \email{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \begin{abstract} Here comes the abstract. %\bigskip %\begin{center} % \boxed{\includegraphics[width=0.5\linewidth]{TOC}} %\end{center} %\bigskip \end{abstract} \maketitle %%%%%%%%%%%%%%%%%%%%%% \section{Introduction} %%%%%%%%%%%%%%%%%%%%%% Here comes the introduction. %%%%%%%%%%%%%%%%% \section{Theory} %%%%%%%%%%%%%%%%% In the case of {\GOWO}, the quasiparticle equation reads \begin{equation} \label{eq:qp_eq} \eps{p}{\HF} + \SigC{p}(\omega) - \omega = 0 \end{equation} where $\eps{p}{\HF}$ is the HF one-electron energy of the spatial orbital $\MO{p}(\br)$ and the correlation part of the frequency-dependent self-energy is \begin{equation} \label{eq:SigC} \SigC{p}(\omega) = \sum_{im} \frac{2\ERI{pi}{m}^2}{\omega - \eps{i}{\HF} + \Om{m}{\RPA}} + \sum_{am} \frac{2\ERI{pa}{m}^2}{\omega - \eps{a}{\HF} - \Om{m}{\RPA}} \end{equation} where \begin{equation} \ERI{pq}{m} = \sum_{ia} \ERI{pq}{ia} X_{ia,m}^\RPA \end{equation} are the screened two-electron repulsion integrals where $\Om{m}{\RPA}$ and $\bX{m}{\RPA}$ are the $m$th RPA eigenvalue and eigenvector obtained by solving the following (linear) RPA eigenvalue system: \begin{equation} \bA{}{\RPA} \cdot \bX{m}{\RPA} = \Om{m}{\RPA} \bX{m}{\RPA} \end{equation} with \begin{equation} A_{ia,jb}^{\RPA} = (\eps{a}{\HF} - \eps{i}{\HF}) \delta_{ij} \delta_{ab} + \ERI{ia}{bj} \end{equation} and \begin{equation} \ERI{pq}{ia} = \iint \MO{p}(\br_1) \MO{q}(\br_1) \frac{1}{\abs{\br_1 - \br_2}} \MO{i}(\br_2) \MO{a}(\br_2) d\br_1 \dbr_2 \end{equation} The spectral weight of the solution $\eps{p,s}{\GW}$ is given by \begin{equation} \label{eq:Z} 0 \le Z_{p,s} = \qty[ 1 - \eval{\pdv{\SigC{p}(\omega)}{\omega}}_{\omega = \eps{p,s}{\GW}} ]^{-1} \le 1 \end{equation} with the following sum rules: \begin{align} \sum_{s} Z_{p,s} & = 1 & \sum_{s} Z_{p,s} \eps{p,s}{\GW} & = \eps{p}{\HF} \end{align} As shown recently, the quasiparticle equation \eqref{eq:qp_eq} can be recast as a linear eigensystem with exactly the same solution: \begin{equation} \bH^{(p)} \cdot \bc{}{(p,s)} = \eps{p,s}{\GW} \bc{}{(p,s)} \end{equation} with \begin{equation} \label{eq:Hp} \bH^{(p)} = \begin{pmatrix} \eps{p}{\HF} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}} \\ \T{(\bV{p}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO \\ \T{(\bV{p}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}} \end{pmatrix} \end{equation} and where the expressions of the 2h1p and 2p1h blocks reads \begin{align} C^\text{2h1p}_{IJA,KCL} & = \qty[ \qty( \eps{I}{\HF} + \eps{J}{\HF} - \eps{A}{\HF}) \delta_{JL} \delta_{AC} - 2 \ERI{JA}{CL} ] \delta_{IK} \\ C^\text{2p1h}_{IAB,KCD} & = \qty[ \qty( \eps{A}{\HF} + \eps{B}{\HF} - \eps{I}{\HF}) \delta_{IK} \delta_{AC} + 2 \ERI{AI}{KC} ] \delta_{BD} \end{align} with the following expressions for the coupling blocks: \begin{align} V^\text{2h1p}_{p,KLC} & = \sqrt{2} \ERI{pK}{CL} & V^\text{2p1h}_{p,KCD} & = \sqrt{2} \ERI{pD}{KC} \end{align} By solving the secular equation \begin{equation} \det[ \bH^{(p)} - \omega \bI ] = 0 \end{equation} we recover the dynamical expression of the self-energy \eqref{eq:SigC}, \ie, \begin{equation} \SigC{p}(\omega) = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})} + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})} \end{equation} with \begin{equation} \label{eq:Z_proj} Z_{p,s} = \qty[ c_{1}^{(p,s)} ]^{2} \end{equation} In the presence of intruder states, it might be interesting to move additional electronic configurations in the reference space. Let us label as $p$ the reference 1h ($p = i$) or 1p ($p = a$) determinant and $qia$ the additional 2h1p ($qia = ija$) or 2p1h ($qia = iab$) \begin{equation} \label{eq:Hp_qia} \bH^{(p,qia)} = \begin{pmatrix} \eps{p}{\HF} & V_{p,qia} & \bV{p}{\text{2h1p}} & \bV{p}{\text{2p1h}} \\ V_{qia,p} & C_{qia,qia} & \bC{qia}{\text{2h1p}} & \bC{qia}{\text{2p1h}} \\ \T{(\bV{p}{\text{2h1p}})} & \T{(\bC{qia}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO \\ \T{(\bV{p}{\text{2p1h}})} & \T{(\bC{qia}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}} \end{pmatrix} \end{equation} with new blocks defined as \begin{gather} V_{p,qia} = V_{qia,p} \sqrt{2} = \ERI{pq}{ia} \\ C_{qia,qia} = \text{sgn}(\eps{q}{\HF} - \mu) \qty[ \qty(\eps{q}{\HF} + \eps{a}{\HF} - \eps{i}{\HF} ) + 2 \ERI{ia}{ia} ] \\ C_{qia,KLC}^\text{2h1p} = - 2 \ERI{ia}{CL} \delta_{qK} \\ C_{qia,KCD}^\text{2p1h} = + 2 \ERI{ia}{KC} \delta_{qD} \end{gather} Downfolding Eq.~\eqref{eq:Hp_qia} yields the following frequency-dependent self-energy \begin{equation} \label{eq:Hp} \bSigC{p,qia}(\omega) = \begin{pmatrix} \eps{p}{\HF} + \SigC{p}(\omega) & V_{p,qia} + \SigC{p,qia}(\omega) \\ V_{qia,p} + \SigC{qia,p}(\omega) & C_{qia,qia} + \SigC{qia}(\omega) \\ \end{pmatrix} \end{equation} with \begin{gather} \SigC{p}(\omega) = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})} + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})} \\ \SigC{qia}(\omega) = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})} + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})} \\ \SigC{p,qia}(\omega) = \bV{p}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2h1p}})} + \bV{p}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bC{qia}{\text{2p1h}})} \\ \SigC{qia,p}(\omega) = \bC{qia}{\text{2h1p}} \cdot \qty(\omega \bI - \bC{}{\text{2h1p}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2h1p}})} + \bC{qia}{\text{2p1h}} \cdot \qty(\omega \bI - \bC{}{\text{2p1h}} )^{-1} \cdot \T{\qty(\bV{p}{\text{2p1h}})} \end{gather} Of course, the present procedure can be generalized to any number of states. %%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} %%%%%%%%%%%%%%%%%%%%%% Here comes the conclusion. d %%%%%%%%%%%%%%%%%%%%%%%% \acknowledgements{ This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).} %%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section*{Data availability statement} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The data that supports the findings of this study are available within the article.% and its supplementary material. %%%%%%%%%%%%%%%%%%%%%%%% \bibliography{MRGW} %%%%%%%%%%%%%%%%%%%%%%%% \end{document}