\documentclass[9pt,aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{hyperref} \usepackage{mathtools,amsmath,amssymb,amsfonts,graphicx,xcolor,bm,microtype,wasysym,hyperref,tabularx,amscd,mhchem,physics} \definecolor{darkgreen}{RGB}{0, 180, 0} \definecolor{fooblue}{RGB}{0,153,255} \definecolor{fooyellow}{RGB}{234,180,0} \definecolor{lavender}{rgb}{0.71, 0.49, 0.86} \definecolor{inchworm}{rgb}{0.7, 0.93, 0.36} \newcommand{\violet}[1]{\textcolor{lavender}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\purple}[1]{\textcolor{purple}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\green}[1]{\textcolor{darkgreen}{#1}} \newcommand{\yellow}[1]{\textcolor{fooyellow}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\highlight}[1]{\textcolor{fooblue}{#1}} \newcommand{\pub}[1]{\textcolor{purple}{#1}} \newcommand{\bC}{\boldsymbol{C}} \newcommand{\bD}{\boldsymbol{D}} \newcommand{\bF}{\boldsymbol{F}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bHd}{\boldsymbol{H}_\text{d}} \newcommand{\bHod}{\boldsymbol{H}_\text{od}} \newcommand{\bO}{\boldsymbol{0}} \newcommand{\bI}{\boldsymbol{1}} \newcommand{\bU}{\boldsymbol{U}} \newcommand{\bV}{\boldsymbol{V}} \newcommand{\bW}{\boldsymbol{W}} \newcommand{\bEta}{\boldsymbol{\eta}} \newcommand{\bSig}{\boldsymbol{\Sigma}} \newcommand{\bpsi}{\boldsymbol{\psi}} \newcommand{\bPsi}{\boldsymbol{\Psi}} \newcommand{\la}{\lambda} \newcommand{\om}{\omega} \newcommand{\Om}{\Omega} \newcommand{\eps}{\varepsilon} \institute{Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse\\ \url{https://lcpq.github.io/pterosor}} \usetheme{pterosor} \author{Antoine Marie \& Pierre-Fran\c{c}ois Loos} \date{14th November 2022} \title{A Similarity Renormalization Group (SRG) Approach to Green's Function Methods} \begin{document} \maketitle %----------------------------------------------------- \begin{frame}{First-Quantized Form of SRG} \begin{block}{General upfolded/downfolded many-body perturbation theory (MBPT) problem} \begin{equation} \left. \begin{array}{cc} \qty[ \bF + \bSig_c(\om) ] \bpsi = \om \bpsi \\ \\ \bSig_c(\om) = \bV \qty(\om \bI - \bC)^{-1} \bV^{\dag} \end{array} \right\} \qq{$\xleftrightharpoons[upfolding]{downfolding}$} \begin{cases} \bH \bPsi = \om \bPsi \\ \bH = \begin{pmatrix} \bF & \bV \\ \bV^{\dagger} & \bC \end{pmatrix} \end{cases} \end{equation} \end{block} % \begin{block}{Perturbative partitioning (one choice at least)} \begin{equation} \bH = \underbrace{ \begin{pmatrix} \bF & \bO \\ \bO & \bC \end{pmatrix} }_{\bHd} + \la \underbrace{ \begin{pmatrix} \bO & \bV \\ \bV^{\dagger} & \bO \end{pmatrix} }_{\bHod} \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Perturbative Expansions} % % \begin{block}{Perturbative partitioning in the SRG framework} % \begin{equation} % \bH(s) = % \underbrace{ % \begin{pmatrix} % \bF(s) & \bO % \\ % \bO & \bC(s) % \end{pmatrix} % }_{\bHd{}(s)} % + \la % \underbrace{ % \begin{pmatrix} % \bO & \bV(s) % \\ % \bV^{\dagger}(s) & \bO % \end{pmatrix} % }_{\bHod(s)} % \end{equation} % \end{block} \begin{block}{Components of the effective Hamiltonian} \begin{subequations} \begin{align} \bH(s) & = \bH^{(0)}(s) + \la \bH^{(1)}(s) + \la^2 \bH^{(2)}(s) + \cdots \\ \bF(s) &= \bF^{(0)}(s) + \la \bF^{(1)}(s) + \la^2 \bF^{(2)}(s) + \cdots \\ \bC(s) & = \bC^{(0)}(s) + \la \bC^{(1)}(s) + \la^2 \bC^{(2)}(s) + \cdots \\ \bV(s) & = \bV^{(0)}(s) + \la \bV^{(1)}(s) + \la^2 \bV^{(2)}(s) + \cdots \end{align} \end{subequations} \end{block} \begin{block}{Wegner generator} \begin{equation} \bEta(s) = \comm{\bHd(s)}{\bHod(s)} = \bEta^{(0)}(s) + \la \bEta^{(1)}(s) + \la^2 \bEta^{(2)}(s) + \cdots \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Zeroth-Order Terms} \begin{block}{Wegner generator} \begin{equation} \bEta^{(0)}(s) = \comm{\bHd^{(0)}(s)}{\bHod^{(0)}(s)} = \bO \qq{because} \bHod^{(0)}(s) = \bO \end{equation} \end{block} % \begin{block}{Zeroth-order effective Hamiltonian} \begin{equation} \dv{\bH^{(0)}(s)}{s} = \comm{\bEta^{(0)}(s)}{\bH^{(0)}(s)} = \bO \qq{$\Rightarrow$} \boxed{\bH^{(0)}(s) = \bH^{(0)}{(0)} = \bHd(0)} \end{equation} \end{block} \alert{NB: we omit the $s$ dependency from hereon} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{First-Order Terms} \begin{block}{Wegner generator} \begin{equation} \bEta^{(1)} = \comm{\bHd^{(0)}}{\bHod^{(1)}} + \underbrace{\comm{\bHd^{(1)}}{\bHod^{(0)}}}_{\bHod^{(0)} = \bHd^{(1)} = \bO} = \begin{pmatrix} \bO & \bF^{(0)} \bV^{(1)} - \bV^{(1)} \bC^{(0)} \\ \bC^{(0)} \bV^{(1),\dagger} - \bV^{(1),\dagger} \bF^{(0)} & \bO \end{pmatrix} \end{equation} \end{block} % \begin{block}{First-order effective Hamiltonian} \begin{equation} \dv{\bH^{(1)}}{s} = \comm{\bEta^{(0)}}{\bH^{(1)}} + \comm{\bEta^{(1)}}{\bH^{(0)}} = \comm{\bEta^{(1)}}{\bHd^{(0)}} = \begin{pmatrix} \dv{\bF^{(1)}}{s} & \dv{\bV^{(1)}}{s} \\ \dv{\bV^{(1),\dagger}}{s} & \dv{\bC^{(1)}}{s} \end{pmatrix} \end{equation} with \begin{gather} \dv{\bF^{(1)}}{s} = \dv{\bC^{(1)}}{s} = \bO \\ \dv{\bV^{(1)}}{s} = 2 \bF^{(0)} \bV^{(1)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(1)} - \bV^{(1)} \qty[\bC^{(0)}]^2 \end{gather} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Integration of the First-Order Terms} \begin{block}{Diagonal terms} \begin{equation} \dv{\bF^{(1)}}{s} = \bO \Leftrightarrow \bF^{(1)}(s) = \bF^{(1)}(0) \Leftrightarrow \boxed{\bF^{(1)}(s) = \bO} \end{equation} \begin{equation} \dv{\bC^{(1)}}{s} = \bO \Leftrightarrow \bC^{(1)}(s) = \bC^{(1)}(0) \Leftrightarrow \boxed{\bC^{(1)}(s) = \bO} \end{equation} \end{block} \pause[2] \begin{block}{Off-diagonal terms} \begin{gather} \dv{\bV^{(1)}}{s} = 2 \bF^{(0)} \bV^{(1)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(1)} - \bV^{(1)} \qty[\bC^{(0)}]^2 \\ \dv{\bW^{(1)}}{s} = 2 \bF^{(0)}\bW^{(1)} \bD^{(0)} - \qty[\bF^{(0)}]^2\bW^{(1)} - \bW^{(1)} \qty[\bD^{(0)}]^2 \\ \qq{with} \bW^{(1)} = \bV^{(1)} \bU \qq{and} \bC^{(0)} = \bU \bD^{(0)} \bU^{\dag}\\ \Rightarrow \boxed{W^{(1)}_{pq,m}(s) = W_{pq,m}^{(1)}(0)e^{-(\Delta_{pq}^{m})^2 s} \qq{and} \Delta_{pq}^{m} = \epsilon_p - \epsilon_q + \Om_m \text{sgn}(\mu - \eps_q) } \end{gather} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Second-Order Terms} \begin{block}{Wegner generator} \begin{equation} \bEta^{(2)} = \comm{\bHd^{(0)}}{\bHod^{(2)}} + \underbrace{\comm{\bHd^{(1)}}{\bHod^{(1)}}}_{\bO} + \underbrace{\comm{\bHd^{(2)}}{\bHod^{(0)}}}_{\bO} = \begin{pmatrix} \bO & \bF^{(0)} \bV^{(2)} - \bV^{(2)} \bC^{(0)} \\ \bC^{(0)} \bV^{(2),\dagger} - \bV^{(2),\dagger} \bF^{(0)} & \bO \end{pmatrix} \end{equation} \end{block} % \begin{block}{Second-order effective Hamiltonian} \begin{equation} \dv{\bH^{(2)}}{s} = \comm{\bEta^{(2)}}{\bHd^{(0)}} + \comm{\bEta^{(1)}}{\bHod^{(1)}} + \comm{\bEta^{(0)}}{\bH^{(2)}} = \begin{pmatrix} \dv{\bF^{(2)}}{s} & \dv{\bV^{(2)}}{s} \\ \dv{\bV^{(2),\dagger}}{s} & \dv{\bC^{(2)}}{s} \end{pmatrix} \end{equation} \begin{align} \dv{\bF^{(2)}}{s} & = \bF^{(0)} \bV^{(1)} \bV^{(1),\dag} + \bV^{(1)} \bV^{(1),\dag} \bF^{(0)} - 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag} \\ \dv{\bC^{(2)}}{s} & = \bC^{(0)} \bV^{(1),\dag} \bV^{(1)} + \bV^{(1),\dag} \bV^{(1)} \bC^{(0)} - 2 \bV^{(1),\dag} \bF^{(0)} \bV^{(1)} \\ \dv{\bV^{(2)}}{s} & = 2 \bF^{(0)} \bV^{(2)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(2)} - \bV^{(2)} \qty[\bC^{(0)}]^2 \end{align} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Integration of the Second-Order Terms} \begin{block}{Diagonal terms} \begin{gather} \dv{\bF^{(2)}}{s} = \bF^{(0)} \bV^{(1)} \bV^{(1),\dag} + \bV^{(1)} \bV^{(1),\dag} \bF^{(0)} - 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag} \\ \Rightarrow F_{pq}^{(2)}(s) = \sum_{rm} \frac{\Delta_{pr}^{m} + \Delta_{qr}^{m}}{(\Delta_{pr}^{m})^2 + (\Delta_{qr}^{m})^2 } W_{pr,m}^{(1)}(0) W_{qr,m}^{(1)}(0) \qty[ 1 - e^{-(\Delta_{pr}^{m})^2s} e^{-(\Delta_{qr}^{m})^2s} ] \end{gather} \end{block} \pause[2] \begin{block}{Off-diagonal terms} \begin{equation} \dv{\bV^{(2)}}{s} = 2 \bF^{(0)} \bV^{(2)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(2)} - \bV^{(2)} \qty[\bC^{(0)}]^2 \Rightarrow \boxed{\bV^{(2)}(s) = \bO} \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Regularized Quasiparticle Equation} \begin{block}{Regularized $GW$ equations up to second order} \begin{equation} \qty[ \Tilde{\bF}(s) + \Tilde{\bSig}(\om;s) ] \bpsi = \om \bpsi \end{equation} \end{block} \pause[2] \begin{block}{Regularized Fock elements} \begin{equation} \Tilde{\bF}(s) = \bF + \bF^{(2)}(s) \qq{with} \Tilde{\bF}_{pq}(s) = \delta_{pq} \eps_{p} + \sum_{rm} \frac{\Delta_{pr}^{m} + \Delta_{qr}^{m}}{(\Delta_{pr}^{m})^2 + (\Delta_{qr}^{m})^2 } \qty[ \Tilde{W}_{pr,m}(0) \Tilde{W}_{qr,m}(0) - \Tilde{W}_{pr,m}(s) \Tilde{W}_{qr,m}(s) ] \end{equation} \end{block} \begin{block}{Regularized $GW$ self-energy} \begin{equation} \Tilde{\Sigma}_{pq}(\om;s) = \sum_{im} \frac{\Tilde{W}_{pi,m}(s) \Tilde{W}_{qi,m}(s)}{\om - \eps_{i} + \Om_{m}} + \sum_{am} \frac{\Tilde{W}_{pa,m}(s) \Tilde{W}_{qa,m}(s)}{\om - \eps_{a} - \Om_{m}} \qq{with} \Tilde{W}_{pq,m}(s) = W_{pq,m} e^{-(\Delta_p^{qm})^2 s} \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Limiting Forms} \begin{block}{Limit as $s \to 0$} \begin{equation} \bF^{(2)}(s = 0) = \bO \qq{$\Rightarrow$} \Tilde{\bF}(s=0) = \bF \qq{and} \Tilde{\bSig}(\om;s=0) = \bSig(\om) \end{equation} \end{block} \begin{block}{Limit as $s \to \infty$} \begin{equation} \Tilde{\bSig}(\om;s\to\infty) = \bO \qq{and} \Tilde{F}_{pq}(s\to\infty) = \delta_{pq} \eps_{p} + \underbrace{\sum_{rm} \frac{\Delta_{pr}^{m} + \Delta_{qr}^{m}}{(\Delta_{pr}^{m})^2 + (\Delta_{qr}^{m})^2 } W_{pr,m}^{(1)}(0) W_{qr,m}^{(1)}(0)}_{\text{static correction}} \end{equation} \end{block} \alert{By removing the coupling terms, SRG transforms continuously the dynamical problem into a static one} \end{frame} %----------------------------------------------------- %----------------------------------------------------- %\begin{frame}{Integration of the Second-Order Terms} % \begin{block}{Diagonal terms} % \begin{gather} % \dv{\bC^{(2)}}{s} % = \bC^{(0)} \bV^{(1)} \bV^{(1),\dag} % + \bV^{(1)} \bV^{(1),\dag} \bC^{(0)} % - 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag} % \\ % \Rightarrow % C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s}) % \end{gather} % \end{block} %\end{frame} %----------------------------------------------------- \end{document}