\documentclass[9pt,aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{hyperref} \usepackage{amsmath,amssymb,amsfonts,pgfpages,graphicx,subfigure,xcolor,bm,multirow,microtype,wasysym,multimedia,hyperref,tabularx,amscd,pgfgantt,mhchem,physics,array} \usepackage{pifont}% http://ctan.org/pkg/pifont \newcommand{\cmark}{\ding{51}}% \newcommand{\xmark}{\ding{55}}% \definecolor{darkgreen}{RGB}{0, 180, 0} \definecolor{fooblue}{RGB}{0,153,255} \definecolor{fooyellow}{RGB}{234,180,0} \definecolor{lavender}{rgb}{0.71, 0.49, 0.86} \definecolor{inchworm}{rgb}{0.7, 0.93, 0.36} \newcommand{\violet}[1]{\textcolor{lavender}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\purple}[1]{\textcolor{purple}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\green}[1]{\textcolor{darkgreen}{#1}} \newcommand{\yellow}[1]{\textcolor{fooyellow}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\highlight}[1]{\textcolor{fooblue}{#1}} \newcommand{\pub}[1]{\textcolor{purple}{#1}} \newcommand{\cdash}{\multicolumn{1}{c}{---}} \newcommand{\mc}{\multicolumn} \newcommand{\mcc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\mr}{\multirow} \newcommand{\br}{\bm{r}} \newcommand{\ree}{r_{12}} \newcommand{\T}[1]{#1^{\intercal}} \newcommand{\la}{\lambda} \newcommand{\eps}{\epsilon} % operators \newcommand{\hH}{\Hat{H}} \newcommand{\hP}{\Hat{P}} \newcommand{\hQ}{\Hat{Q}} \newcommand{\hU}{\Hat{U}} \newcommand{\hI}{\Hat{1}} \newcommand{\hA}{\Hat{A}} \newcommand{\hT}{\Hat{T}} \newcommand{\hR}{\Hat{R}} \newcommand{\heta}{\Hat{\eta}} \newcommand{\hOm}{\Hat{\Omega}} \newcommand{\bH}{\Bar{H}} \newcommand{\hO}{\Hat{O}} % matrices \newcommand{\mA}{\boldsymbol{A}} \newcommand{\mB}{\boldsymbol{B}} \newcommand{\mx}{\boldsymbol{x}} \newcommand{\mS}{\boldsymbol{S}} \institute{Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse \\ \url{https://lcpq.github.io/pterosor}} \usetheme{pterosor} \author{Pierre-Fran\c{c}ois (Titou) Loos} % FIXME \date{3rd September 2021} % FIXME \title{Similarity Renormalization Group (SRG)} %FIXME \begin{document} \maketitle %----------------------------------------------------- \begin{frame}{Effective Hamiltonian Theory} \begin{block}{Similarity transformation of the Hamiltonian} \begin{equation} \underbrace{\Omega}_{\text{wave operator}}: \underbrace{\hH}_{\text{bare Hamiltonian}} \rightarrow \underbrace{\hH^\text{eff}}_{\text{effective Hamiltonian}} = \Omega^{-1} \, \hH \, \Omega \end{equation} \end{block} \begin{block}{Examples of effective Hamiltonian theory} \begin{itemize} \item L\"owdin's partitioning technique \item Transcorrelated method \item (multireference) perturbation theory \item (multireference) coupled-cluster (CC) theory \item Fock-space CC \item Equation-of-motion CC \end{itemize} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Mathematical Definitions} \begin{block}{Matrix similarity} Two $n$-by-$n$ matrices $\mA$ and $\mB$ are called \alert{similar} if there exists an invertible $n$-by-$n$ matrix $\mS$ such that \begin{equation} \mB = \mS^{-1} \cdot \mA \cdot \mS \end{equation} \end{block} \begin{columns} \begin{column}{0.85\textwidth} \begin{block}{Properties} \begin{itemize} \item If $\mA$ and $\mB$ are similar, they share the \alert{same eigenvalues}, but \alert{different eigenvectors} \begin{equation} \qif \mA \cdot \mx = \la \mx \qthen \mB \cdot (\mS^{-1} \cdot \mx) = \la (\mS^{-1} \cdot \mx) \end{equation} \item Similarity transformations aim at reducing the complexity of evaluating the eigenvalues \item If $\mA$ is diagonalizable, it is similar to a diagonal matrix (not unique) \item Even if $\mA$ is not diagonalizable, it is similar to a matrix in Jordan form (not unique) \item \alert{Unitary transformations} are a type of similarity transformation for which $\mS^{-1} = \mS^{\dag}$ \item Every hermitian matrix is \alert{unitarily similar} to a diagonal real matrix \end{itemize} \end{block} \end{column} \begin{column}{0.15\textwidth} \includegraphics[width=\textwidth]{fig/JCF} \end{column} \end{columns} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Model And External Spaces} \begin{block}{Model/External space} \begin{align} \qq*{\underline{Model space projector:}} & \hP = \dyad*{\Psi_0}{\Psi_0} = \sum_I \dyad{I}{I} \\ \qq*{\underline{External space projector:}} & \hQ = \hI - \hP = \hI - \dyad*{\Psi_0}{\Psi_0} \end{align} \end{block} \begin{block}{L\"owdin's partitioning technique} \begin{equation} \hH \ket{\Psi} = E \ket{\Psi} \qq{$\Rightarrow$} \begin{pmatrix} \hP \hH \hP & \hP \hH \hQ \\ \hQ \hH \hP & \hQ \hH \hQ \\ \end{pmatrix} \begin{pmatrix} \hP \ket{\Psi} \\ \hQ \ket{\Psi} \\ \end{pmatrix} = E \begin{pmatrix} \hP \ket{\Psi} \\ \hQ \ket{\Psi} \\ \end{pmatrix} \end{equation} \begin{center} \begin{tabular}{p{0.18\textwidth} m{0.3\textwidth} b{0.18\textwidth}} Traditional CC $\Rightarrow$ & \includegraphics[width=0.3\textwidth]{fig/Heff} & $\Leftarrow$ Unitary CC \end{tabular} \end{center} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Intruder-State Problem} \begin{equation*} \begin{split} \text{\alert{Intruder-state problem}} & \Leftrightarrow \text{a determinant in $Q$ becomes near-degenerate with a determinant in $P$} \\ & \Rightarrow \text{appearance of small denominators} \\ & \Rightarrow \text{\alert{convergence issues!}} \\ \\ \text{How to avoid intruder states?} & \Rightarrow \text{do not enforce $\hQ H^\text{eff} \hP = 0$} \\ & \Leftrightarrow \text{near-degenerate determinants are not decoupled} \\ \end{split} \end{equation*} \begin{center} \begin{tabular}{m{0.5\textwidth} b{0.35\textwidth}} \includegraphics[width=0.5\textwidth]{fig/Heff_SRG} & $\Leftarrow$ \alert{Continuous SRG transformation} \end{tabular} \end{center} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Historical Overview of SRG} \begin{block}{SRG or flow equations} \begin{itemize} \item SRG is a \alert{continuous} (unitary) transformation of the Hamiltonian \item Introduced independently by Glazek and Wilson \pub{[Phys. Rev. D 48, 5863 (1993), ibid 49, 4214 (1994)]} and Wegner \pub{[Ann. Phys. 506, 77 (1994)]} in quantum field theory \item \alert{SRG decouples the Hamiltonian starting from states that have the largest energy separation and progressing to states with smaller energy separation} \item SRG does not enforce $\hQ H^\text{eff} \hP = 0$ \item (MR-)SRG is used a lot in nuclear physics \pub{[Rep. Prog. Phys. 76, 126301 (2013)]} \item First introduced in chemistry by Steven White (father of DMRG) \pub{[J. Chem. Phys. 117, 7472 (2002)]} \item More recently developed by the group of Evangelista (SR/MR-DSRG) \pub{[J. Chem. Phys. 141, 054109 (2014); Annu. Rev. Phys. Chem. 70, 275 (2019)]} \end{itemize} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{SRG Fundamental Equation} \begin{block}{Unitary transformation of the Hamiltonian} \begin{equation} \boxed{\hH \rightarrow \hH(s) = \hU(s) \, \hH \, \hU^\dag(s), \quad s \in [0,\infty)} \end{equation} with \begin{equation} \hH = \underbrace{\sum_{pq} h_{p}^{q} \Hat{a}_{p}^{q}}_{\text{one-body terms}} + \frac{1}{4} \underbrace{\sum_{pqrs} v_{pq}^{rs} \Hat{a}_{rs}^{pq}}_{\text{two-body terms}} \qq{and} \Hat{a}_{rs\cdots}^{pq\cdots} = \Hat{a}_{p}^\dag \Hat{a}_{q}^\dag \cdots \Hat{a}_{s} \Hat{a}_{r} \end{equation} \begin{itemize} \item For $s > 0$, $\hH(s)$ has a more (block) diagonal form than $\hH$ \item The \alert{flow variable} $s$ is a time-like parameter that controls the extent of the transformation \begin{itemize} \item If $s = 0$, then $\hU(s) = \hI$, i.e., $\hH(s=0) = \hH$ \item In the limit $s \to \infty$, $\hH(s)$ becomes (block) diagonal \end{itemize} \end{itemize} \begin{equation} \hH(s) = \underbrace{\hH_\text{d}(s)}_{\text{diagonal}} + \underbrace{\hH_\text{od}(s)}_{\text{off-diagonal}} \qq{$\Rightarrow$} \lim_{s\to\infty} \hH_\text{od}(s) = 0 \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{SRG Flow Equation} \begin{block}{The SRG flow equation} \begin{equation} \label{eq:flow_eq} \boxed{\dv{\hH(s)}{s} = \comm{\heta(s)}{\hH(s)}, \quad \hH(0) = \hH} \end{equation} \begin{equation*} \qq*{where the \alert{flow generator}} \heta(s) = \dv{\hU(s)}{s} \hU^\dag(s) = - \heta^\dag(s) \qq{is an \alert{anti-Hermitian} operator} \end{equation*} \end{block} \begin{block}{Take-home message} Suitable parametrization of $\heta(s)$ allows to integrate Eq.~\eqref{eq:flow_eq} and find a numerical solution of $\hH(s)$ that satisfies the boundary conditions without having to explicitly construct $\hU(s)$. \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Canonical Generator \& SRG Hamiltonian} \begin{block}{Wegner's canonical generator} \begin{equation} \boxed{\eta^\text{W}(s) = \comm{\hH_\text{d}(s)}{\hH(s)} = \comm{\hH_\text{d}(s)}{\hH_\text{od}(s)}} \end{equation} As long as $\eta^\text{W}(s) \neq 0$, $\dv{}{s} \Tr[\hH_\text{od}^\dag(s)\hH_\text{od}(s)] \le 0$. \\ Therefore, as $s \to \infty$, \begin{itemize} \item $E_0(s) = \mel{\Psi_0}{\hH(s)}{\Psi_0}$ evolves towards one of the eigenvalues of $\hH$ \item The state $\hU^\dag(s) \ket{\Psi_0}$ approaches one of its eigenvectors \end{itemize} \end{block} \begin{block}{The many-body SRG Hamiltonian} \begin{equation} \hH(s) = E_0(s) + \underbrace{\sum_{pq} f_{p}^{q}(s) \{\Hat{a}_{p}^{q}\}}_{\text{one-body terms}} + \frac{1}{4} \underbrace{\sum_{pqrs} v_{pq}^{rs}(s) \overbrace{\{\Hat{a}_{rs}^{pq}\}}^{\text{normal ordered}}}_{\text{two-body terms}} + \frac{1}{36} \underbrace{\sum_{pqrstu} w_{pqr}^{stu}(s) \{\Hat{a}_{stu}^{pqr}\}}_{\text{three-body terms}} + \cdots \end{equation} In practice, $\hH(s)$ and $\heta(s)$ must be truncated to a given order $\Rightarrow$ \alert{SRG($n$)} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Perturbative Analysis} \begin{block}{Perturbative analysis of the SRG equations } \begin{align} \hH(s) & = \hH^{(0)}(s) + \la \hH^{(1)}(s) + \la^2 \hH^{(2)}(s) + \cdots \\ E_0(s) & = E_0^{(0)}(s) + \la E_0^{(1)}(s) + \la^2 E_0^{(2)}(s) + \cdots \end{align} \end{block} \begin{block}{First-order off-diagonal components} For a fixed value of the \alert{energy cut-off} $\Lambda = s^{-1/2}$, \begin{align} \qif* \abs*{\Delta_{ij}^{ab}} \gg \Lambda & \qthen v_{ij}^{ab,(1)}(s) = \mel{ij}{}{ab} e^{-s (\Delta_{ij}^{ab})^2} \approx 0 \qq{(decoupled)} \\ \qif* \abs*{\Delta_{ij}^{ab}} \ll \Lambda & \qthen v_{ij}^{ab,(1)}(s) \approx \mel{ij}{}{ab} \qq{(remains coupled)} \end{align} \end{block} \begin{block}{Second-order energy contribution $\equiv$ renormalized MP2} \begin{equation} E_0^{(2)}(s) = \frac{1}{4} \sum_{ij} \sum_{ab} \frac{\abs{\mel{ij}{}{ab}}^2}{\Delta_{ij}^{ab}} \qty[ 1 - e^{-2s (\Delta_{ij}^{ab})^2}] \qq{with} \Delta_{ij}^{ab} = \eps_i + \eps_j - \eps_a - \eps_b \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Driven Similarity Renormalization Group (DSRG)} \begin{block}{Main drawbacks of SRG} \begin{itemize} \item More challenging and less numerically robust to solve ODEs than polynomial equations \item Lacks the nice exponential form of the CC expansion \end{itemize} \end{block} \begin{block}{DSRG Hamiltonian = SRG \`a la CC \pub{[Evangelista, J. Chem. Phys. 141, 054109 (2014)]}} \begin{equation} \boxed{\bH(s) = e^{-\hA(s)} \, \hH \, e^{\hA(s)}, \quad s \in [0,\infty)} \end{equation} \end{block} \begin{block}{Unitary CC inspired transformation} \begin{gather} \underbrace{\hA(s)}_{\text{anti-Hermitian operator}} = \hT(s) - \hT^{\dag}(s) \qq{with} \hT(s) = \hT_1(s) + \hT_2(s) + \cdots + \hT_n(s) \\ \hT_k(s) = \frac{1}{(k!)^2} \sum_{ij\cdots} \sum_{ab\cdots} \underbrace{t_{ij\cdots}^{ab\cdots}(s)}_{\text{cluster amplitudes}} \{ \Hat{a}_{ij\cdots}^{ab\cdots}\} \end{gather} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{DSRG Equation} \begin{block}{DSRG equation and source operator} \begin{equation} \qty[ e^{-\hA(s)} \hH e^{\hA(s)} ]_\text{od} = \underbrace{\hR(s)}_{\text{(Hermitian) source operator}} \qq{$\Rightarrow$} \underbrace{\hOm(s)}_{\text{residual operator}} = \qty[ e^{-\hA(s)} \, \hH \, e^{\hA(s)} ]_\text{od} - \hR(s) \end{equation} $\hR(s)$ drives the off-diagonal components of $\bH(s)$ to zero \end{block} \begin{block}{Many-body expansion of the residual operator} \begin{gather} \hOm(s) = \hOm_1(s) + \hOm_2(s) + \cdots + \hOm_n(s) \\ \hOm_k(s) = \frac{1}{(k!)^2} \sum_{ij\cdots} \sum_{ab\cdots} \omega_{ij\cdots}^{ab\cdots}(s) \{ \Hat{a}_{ij\cdots}^{ab\cdots}\} + \text{h.c.} \end{gather} \end{block} \begin{block}{DSRG equations} \begin{equation} \boxed{\omega_{ij\cdots}^{ab\cdots}(s) = 0} \qq{$\Rightarrow$} t_{ij\cdots}^{ab\cdots}(s) \qq{\green{\checkmark}} \qq{DSRG up to $n$-body terms $\Rightarrow$ \alert{DSRG($n$)}} \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Many-Body Expansions} \begin{block}{Many-body expansion of the source opertor} \begin{gather} \hR(s) = \hR_1(s) + \hR_2(s) + \cdots + \hR_n(s) \\ \hR_k(s) = \frac{1}{(k!)^2} \sum_{ij\cdots} \sum_{ab\cdots} r_{ij\cdots}^{ab\cdots}(s) \{ \Hat{a}_{ij\cdots}^{ab\cdots}\} + \text{h.c.} \end{gather} \end{block} \begin{block}{Many-body expansion of the DSRG Hamiltonian} \begin{gather} \bH(s) = E_0(s) + \hH_1(s) + \hH_2(s) + \cdots + \hH_n(s) \\ \bH_k(s) = \frac{1}{(k!)^2} \sum_{pqrs\cdots} \bH_{pq\cdots}^{rs\cdots}(s) \{ \Hat{a}_{pq\cdots}^{rs\cdots}\} \end{gather} \end{block} \begin{block}{DSRG equations} \begin{equation} \boxed{\bH_{ij\cdots}^{ab\cdots}(s) = r_{ij\cdots}^{ab\cdots}(s)} \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Elements of The DSRG Hamiltonian and Source Operator} \begin{block}{Baker--Campbell--Hausdorff (BCH) formula} \begin{equation} \bH(s) \equiv e^{-\hA(s)} \hH e^{\hA(s)} = \hH + \comm{\hH}{\hA(s)} + \frac{1}{2!} \comm{\comm{\hH}{\hA(s)}}{\hA(s)} + \frac{1}{3!} \comm{\comm{\comm{\hH}{\hA(s)}}{\hA(s)}}{\hA(s)} + \cdots \end{equation} Because $\hA(s) = \hT(s) - \hT^{\dag}(s)$, the BCH expression \alert{does not terminate!} \end{block} \begin{block}{Yanai--Chan linear truncation scheme \pub{[J. Chem. Phys. 124, 194106 (2006); ibid 127, 104107 (2007)]}} \begin{equation} \comm{\cdot}{\hA} \approx \sum_{k=0}^m \underbrace{\comm{\cdot}{\hA}_k}_{\text{$k$-body component}} \equiv \comm{\cdot}{\hA}_{\{m\}} \end{equation} \end{block} \begin{block}{Parametrization of the source operator based on a perturbative analysis} \begin{equation} r_{ij\cdots}^{ab\cdots}(s) = \qty[ \bH_{ij\cdots}^{ab\cdots}(s) + \Delta_{ij\cdots}^{ab\cdots} t_{ij\cdots}^{ab\cdots}(s) ] e^{-s (\Delta_{ij\cdots}^{ab\cdots})^2} \end{equation} which satisfies the boundary conditions: (i) $\bH(s) = \hH$ when $s = 0$; (ii) $\bH_{ij\cdots}^{ab\cdots}(s) = 0$ when $s \to \infty$ \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Truncated DSRG} \begin{block}{DSRG(2) equations} \begin{equation} \text{\alert{DSRG(2)}} \qq{$\Leftrightarrow$} \hT(s) = \hT_1(s) + \hT_2(s) \end{equation} \begin{align} \bH_{i}^{a}(s) & = r_{i}^{a}(s) & \bH_{ij}^{ab}(s) & = r_{ij}^{ab}(s) \end{align} \end{block} \begin{block}{Source operator} \begin{align} r_{i}^{a}(s) & = \qty[ \bH_{i}^{a}(s) + \Delta_{i}^{a} t_{i}^{a}(s) ] e^{-s (\Delta_{i}^{a})^2} & r_{ij}^{ab}(s) & = \qty[ \bH_{ij}^{ab}(s) + \Delta_{ij}^{ab} t_{ij}^{ab}(s) ] e^{-s (\Delta_{ij}^{ab})^2} \end{align} \end{block} \begin{block}{Recursive evaluation of the approximate BCH expansion} \begin{equation} \bH_{\{ 2 \}}(s) = \sum_{k=0}^{N_\text{com}} \hO^{(k)}(s) \qq{with} \hO^{(k)}(s) = \frac{1}{k} \comm{\hO^{(k-1)}(s)}{\hA(s)}_{\{2\}} \qq{and} \hO^{(0)} = \hH \end{equation} Computing $\bH_{\{ 2 \}}(s)$ is the computational bottleneck and scales as $\order*{O^2 V^2 N^2}$ \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{DSRG(2) in Practice} \begin{block}{Updating scheme} One solves iteratively the DSRG(2) equations following \begin{align} \qq*{\underline{Singles amplitudes:}} & t_{i}^{a}(s) \leftarrow \qty[ \bH_{i}^{a}(s) + \Delta_{i}^{a} t_{i}^{a}(s) ] \frac{1 - e^{-s (\Delta_{i}^{a})^2}}{\Delta_{i}^{a}} \\ \qq*{\underline{Doubles amplitudes:}} & t_{ij}^{ab}(s) \leftarrow \qty[ \bH_{ij}^{ab}(s) + \Delta_{ij}^{ab} t_{ij}^{ab}(s) ] \frac{1 - e^{-s (\Delta_{ij}^{ab})^2}}{\Delta_{ij}^{ab}} \end{align} with starting values \begin{align} t_{i}^{a}(s) & = 0 \\ t_{ij}^{ab}(s) & = v_{ij}^{ab,(1)} \frac{1 - e^{-s (\Delta_{ij}^{ab})^2}}{\Delta_{ij}^{ab}} \end{align} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Further reading} \small \begin{itemize} % \item \textit{A driven similarity renormalization group approach to quantum many-body problems} % \\ % Evangelista, J. Chem. Phys. 141, 054109 (2014) \item \textit{Multireference driven similarity renormalization group: a second-order perturbative analysis} \\ Li \& Evangelista, J. Chem. Theory Comput. 11, 2097 (2015) \item \textit{An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory} \\ Hannon et al. J. Chem. Phys. 144, 204111 (2016) \item \textit{Towards numerically robust multireference theories: The driven similarity renormalization group truncated to one- and two-body operators} \\ Li \& Evangelista, J. Chem. Phys. 144, 164114 (2016) \item \textit{A low-cost approach to electronic excitation energies based on the driven similarity renormalization group} \\ Li et al. J. Chem. Phys. 147, 074107 (2017) \item \textit{Driven similarity renormalization group: Third-order multireference perturbation theory} \\ Li \& Evangelista J. Chem. Phys. 146, 124132 (2017); \item \textit{Driven similarity renormalization group for excited states: A state-averaged perturbation theory} \\ Li \& Evangelista, J. Chem. Phys. 148, 124106 (2018); % \item \textit{Multireference Theories of Electron Correlation Based on the Driven Similarity Renormalization Group} % \\ % Li \& Evangelista, Annu. Rev. Phys. Chem. 2019. 70:275?303 % \item \textit{Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Transformation, Density Fitting, and the Noninteracting Virtual Orbital Approximation} % \\ % Zhang et al. J. Chem. Theory Comput., 15, 4399 (2019) \item \textit{Connected three-body terms in single-reference unitary many-body theories: Iterative and perturbative approximations} \\ Li \& Evangelista, J. Chem. Phys. 152, 234116 (2020) \item \textit{Analytic gradients for the single-reference driven similarity renormalization group second-order perturbation theory} \\ Wang, J. Chem. Phys. 151, 044118 (2019) % \item \textit{Spin-free implementation of the multireference driven similarity renormalization group: A benchmark study of open-shell diatomic molecules and spin-crossover energetics} % \\ % Li \& Evangelista, arXiv:2106.07097 \end{itemize} \end{frame} %----------------------------------------------------- \end{document}