\documentclass[9pt,aspectratio=169]{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{hyperref} \usepackage{amsmath,amssymb,amsfonts,graphicx,xcolor,bm,microtype,wasysym,hyperref,tabularx,amscd,mhchem,physics} \definecolor{darkgreen}{RGB}{0, 180, 0} \definecolor{fooblue}{RGB}{0,153,255} \definecolor{fooyellow}{RGB}{234,180,0} \definecolor{lavender}{rgb}{0.71, 0.49, 0.86} \definecolor{inchworm}{rgb}{0.7, 0.93, 0.36} \newcommand{\violet}[1]{\textcolor{lavender}{#1}} \newcommand{\orange}[1]{\textcolor{orange}{#1}} \newcommand{\purple}[1]{\textcolor{purple}{#1}} \newcommand{\blue}[1]{\textcolor{blue}{#1}} \newcommand{\green}[1]{\textcolor{darkgreen}{#1}} \newcommand{\yellow}[1]{\textcolor{fooyellow}{#1}} \newcommand{\red}[1]{\textcolor{red}{#1}} \newcommand{\highlight}[1]{\textcolor{fooblue}{#1}} \newcommand{\pub}[1]{\textcolor{purple}{#1}} \newcommand{\bC}{\boldsymbol{C}} \newcommand{\bF}{\boldsymbol{F}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bHd}{\boldsymbol{H}_\text{d}} \newcommand{\bHod}{\boldsymbol{H}_\text{od}} \newcommand{\bO}{\boldsymbol{0}} \newcommand{\bI}{\boldsymbol{1}} \newcommand{\bV}{\boldsymbol{V}} \newcommand{\bEta}{\boldsymbol{\eta}} \newcommand{\bSig}{\boldsymbol{\Sigma}} \newcommand{\bpsi}{\boldsymbol{\psi}} \newcommand{\bPsi}{\boldsymbol{\Psi}} \institute{Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse \\ \url{https://lcpq.github.io/pterosor}} \usetheme{pterosor} \author{Antoine Marie \& Pierre-Fran\c{c}ois Loos} \date{14th November 2022} \title{Similarity Renormalization Group (SRG) Formalism Applied to Green's Function Methods} \begin{document} \maketitle %----------------------------------------------------- \begin{frame}{First-Quantized Form of SRG} \begin{block}{General upfolded many-body perturbation theory (MBPT) problem} \begin{align} \qty[ \bF + \bSig(\omega) ] \bpsi = \omega \bpsi & \qq{$\Leftrightarrow$} \bH \bPsi = \omega \bPsi \\ \bSig(\omega) = \bV \qty(\omega \bI - \bC)^{-1} \bV^{\dag} & \qq{$\Leftrightarrow$} \bH = \begin{pmatrix} \bF & \bV \\ \bV^{\dagger} & \bC \end{pmatrix} \end{align} \end{block} % \begin{block}{Perturbative partitioning} \begin{equation} \bH \equiv \bH(s=0) = \underbrace{ \begin{pmatrix} \bF & \bO \\ \bO & \bC \end{pmatrix} }_{\bHd^{(0)}(s=0)} + \lambda \underbrace{ \begin{pmatrix} \bO & \bV \\ \bV^{\dagger} & \bO \end{pmatrix} }_{\bHod^{(1)}(s=0)} \qq{with} \bHd^{(1)}(s=0) = \bHod^{(0)}(s=0) = \bO \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Perturbative Expansions} % \begin{block}{Perturbative partitioning in the SRG framework} \begin{equation} \bH(s) = \underbrace{ \begin{pmatrix} \bF(s) & \bO \\ \bO & \bC(s) \end{pmatrix} }_{\bHd{}(s)} + \lambda \underbrace{ \begin{pmatrix} \bO & \bV(s) \\ \bV^{\dagger}(s) & \bO \end{pmatrix} }_{\bHod(s)} \end{equation} \end{block} % \begin{block}{Components of the Hamiltonian} \begin{equation} \bH(s) = \bH^{(0)}(s) + \lambda \bH^{(1)}(s) + \lambda^2 \bH^{(2)}(s) + \cdots \end{equation} \begin{equation} \bC(s) = \bC^{(0)}(s) + \lambda \bC^{(1)}(s) + \lambda^2 \bC^{(2)}(s) + \cdots \end{equation} \begin{equation} \bV(s) = \bV^{(0)}(s) + \lambda \bV^{(1)}(s) + \lambda^2 \bV^{(2)}(s) + \cdots \end{equation} \end{block} \begin{block}{Wegner generator} \begin{equation} \bEta(s) = \bEta^{(0)}(s) + \lambda \bEta^{(1)}(s) + \lambda^2 \bEta^{(2)}(s) + \cdots \end{equation} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Zeroth-Order Terms} \begin{block}{Wegner generator} \begin{equation} \bEta^{(0)}(s) = \comm{\bHd^{(0)}(s)}{\bHod^{(0)}(s)} = \bO \end{equation} \end{block} % \begin{block}{Zeroth-order Hamiltonian} \begin{equation} \dv{\bH^{(0)}(s)}{s} = \comm{\bEta^{(0)}(s)}{\bH^{(0)}(s)} = \bO \qq{$\Rightarrow$} \bH^{(0)}(s) = \bH^{(0)}{(s=0)} \end{equation} \end{block} \alert{NB: we omit the $s$ dependency from hereon} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{First-Order Terms} \begin{block}{Wegner generator} \begin{equation} \bEta^{(1)} = \comm{\bHd^{(0)}}{\bHod^{(1)}} = \begin{pmatrix} \bO & \bF^{(0)} \bV^{(1)} - \bV^{(1)} \bC^{(0)} \\ \bC^{(0)} \bV^{(1),\dagger} - \bV^{(1),\dagger} \bF^{(0)} & \bO \end{pmatrix} \end{equation} \end{block} % \begin{block}{First-order Hamiltonian} \begin{equation} \dv{\bH^{(1)}}{s} = \comm{\bEta^{(1)}}{\bHd^{(0)}} = \begin{pmatrix} \dv{\bF^{(1)}}{s} & \dv{\bV^{(1)}}{s} \\ \dv{\bV^{(1),\dagger}}{s} & \dv{\bC^{(1)}}{s} \end{pmatrix} \end{equation} with \begin{gather} \dv{\bF^{(1)}}{s} = \dv{\bC^{(1)}}{s} = \bO \\ \dv{\bV^{(1)}}{s} = 2 \bF^{(0)} \bV^{(1)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(1)} - \bV^{(1)} \qty[\bC^{(0)}]^2 \end{gather} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Second-Order Terms} \begin{block}{Wegner generator} \begin{equation} \bEta^{(2)} = \comm{\bHd^{(0)}}{\bHod^{(2)}} + \underbrace{\comm{\bHd^{(1)}}{\bHod^{(1)}}}_{=\bO} = \begin{pmatrix} \bO & \bF^{(0)} \bV^{(2)} - \bV^{(2)} \bC^{(0)} \\ \bC^{(0)} \bV^{(2),\dagger} - \bV^{(2),\dagger} \bF^{(0)} & \bO \end{pmatrix} \end{equation} \end{block} % \begin{block}{Second-order Hamiltonian} \begin{equation} \dv{\bH^{(2)}}{s} = \comm{\bEta^{(2)}}{\bHd^{(0)}} + \comm{\bEta^{(1)}}{\bHd^{(1)}} = \begin{pmatrix} \dv{\bF^{(2)}}{s} & \dv{\bV^{(2)}}{s} \\ \dv{\bV^{(2),\dagger}}{s} & \dv{\bC^{(2)}}{s} \end{pmatrix} \end{equation} with \begin{gather} \dv{\bF^{(2)}}{s} = \bF^{(0)} \bV^{(1)} \bV^{(1),\dag} + \bV^{(1)} \bV^{(1),\dag} \bF^{(0)} - 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag} \\ \dv{\bC^{(2)}}{s} = \bC^{(0)} \bV^{(1)} \bV^{(1),\dag} + \bV^{(1)} \bV^{(1),\dag} \bC^{(0)} - 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag} \\ \dv{\bV^{(2)}}{s} = 2 \bF^{(0)} \bV^{(2)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(2)} - \bV^{(2)} \qty[\bC^{(0)}]^2 \end{gather} \end{block} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Integration of the First-Order Terms} \begin{equation} \dv{\bF^{(1)}}{s} = \bO \land \bF^{(1)}(0) = \bO \Rightarrow \bF^{(1)}(s) = \bO \end{equation} \begin{equation} \dv{\bC^{(1)}}{s} \land \bC^{(1)}(0) = \bO \Rightarrow \bC^{(1)}(s) = \bO \end{equation} \begin{equation} \dv{\bV^{(1)}}{s} = 2 \bF^{(0)} \bV^{(1)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(1)} - \bV^{(1)} \qty[\bC^{(0)}]^2 \land \Rightarrow \bV^{(1)}(s) = ? \end{equation} \end{frame} %----------------------------------------------------- %----------------------------------------------------- \begin{frame}{Integration of the Second-Order Terms} \begin{equation} \dv{\bF^{(2)}}{s} = \bF^{(0)} \bV^{(1)} \bV^{(1),\dag} + \bV^{(1)} \bV^{(1),\dag} \bF^{(0)} - 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag} \land \bF^{(2)}(0) = ? \Rightarrow \bF^{(2)}(s) = ? \end{equation} \begin{equation} \dv{\bC^{(2)}}{s} = \bC^{(0)} \bV^{(1)} \bV^{(1),\dag} + \bV^{(1)} \bV^{(1),\dag} \bC^{(0)} - 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag} \land \bC^{(2)}(0) = ? \Rightarrow \bC^{(2)}(s) = ? \end{equation} \begin{equation} \dv{\bV^{(2)}}{s} = 2 \bF^{(0)} \bV^{(2)} \bC^{(0)} - \qty[\bF^{(0)}]^2 \bV^{(2)} - \bV^{(2)} \qty[\bC^{(0)}]^2 \land \Rightarrow \bV^{(2)}(s) = ? \end{equation} \end{frame} %----------------------------------------------------- \end{document}