\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,mleftright,bbold} \usepackage[version=4]{mhchem} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{txfonts} \usepackage[ colorlinks=true, citecolor=blue, breaklinks=true ]{hyperref} \urlstyle{same} \newcommand{\ie}{\textit{i.e.}} \newcommand{\eg}{\textit{e.g.}} \newcommand{\alert}[1]{\textcolor{red}{#1}} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\QP}{\textsc{quantum package}} \newcommand{\T}[1]{#1^{\intercal}} \newcommand{\Sig}[2]{\Sigma_{#1}^{#2}} \newcommand{\dRPA}{\text{dRPA}} % coordinates \newcommand{\br}{\boldsymbol{r}} \newcommand{\bx}{\boldsymbol{x}} \newcommand{\dbr}{d\br} \newcommand{\dbx}{d\bx} % methods \newcommand{\GW}{\text{$GW$}} \newcommand{\evGW}{ev$GW$} \newcommand{\qsGW}{qs$GW$} \newcommand{\GOWO}{$G_0W_0$} \newcommand{\Hxc}{\text{Hxc}} \newcommand{\xc}{\text{xc}} \newcommand{\Ha}{\text{H}} \newcommand{\co}{\text{c}} \newcommand{\x}{\text{x}} \newcommand{\KS}{\text{KS}} \newcommand{\HF}{\text{HF}} \newcommand{\RPA}{\text{RPA}} \newcommand{\Om}[2]{\Omega_{#1}^{#2}} \newcommand{\sERI}[2]{(#1|#2)} \newcommand{\e}[2]{\epsilon_{#1}^{#2}} % \newcommand{\Ne}{N} \newcommand{\Norb}{K} \newcommand{\Nocc}{O} \newcommand{\Nvir}{V} % operators \newcommand{\hH}{\Hat{H}} \newcommand{\hS}{\Hat{S}} \newcommand{\ani}[1]{\hat{a}_{#1}} \newcommand{\cre}[1]{\hat{a}_{#1}^\dagger} \newcommand{\no}[2]{\mleft\{ \hat{a}_{#1}^{#2}\mright\} } % energies \newcommand{\Enuc}{E^\text{nuc}} \newcommand{\Ec}[1]{E_\text{c}^{#1}} \newcommand{\EHF}{E^\text{HF}} % orbital energies \newcommand{\eps}{\epsilon} \newcommand{\reps}{\Tilde{\epsilon}} % Matrix elements \newcommand{\SigC}{\Sigma^\text{c}} \newcommand{\rSigC}{\Tilde{\Sigma}^\text{c}} \newcommand{\MO}[1]{\phi_{#1}} \newcommand{\SO}[1]{\psi_{#1}} \newcommand{\eri}[2]{\braket{#1}{#2}} \newcommand{\aeri}[2]{\mel{#1}{}{#2}} \newcommand{\ERI}[2]{(#1|#2)} \newcommand{\rbra}[1]{(#1|} \newcommand{\rket}[1]{|#1)} % Matrices \newcommand{\bO}{\boldsymbol{0}} \newcommand{\bI}{\boldsymbol{1}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bSigC}{\boldsymbol{\Sigma}^{\text{c}}} \newcommand{\be}{\boldsymbol{\epsilon}} \newcommand{\bOm}{\boldsymbol{\Omega}} \newcommand{\bA}{\boldsymbol{A}} \newcommand{\bB}{\boldsymbol{B}} \newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}} \newcommand{\bD}{\boldsymbol{D}} \newcommand{\bF}{\boldsymbol{F}} \newcommand{\bU}{\boldsymbol{U}} \newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}} \newcommand{\bW}{\boldsymbol{W}} \newcommand{\bX}{\boldsymbol{X}} \newcommand{\bY}{\boldsymbol{Y}} \newcommand{\bZ}{\boldsymbol{Z}} \newcommand{\bc}{\boldsymbol{c}} % orbitals, gaps, etc \newcommand{\IP}{I} \newcommand{\EA}{A} \newcommand{\HOMO}{\text{HOMO}} \newcommand{\LUMO}{\text{LUMO}} \newcommand{\Eg}{E_\text{g}} \newcommand{\EgFun}{\Eg^\text{fund}} \newcommand{\EgOpt}{\Eg^\text{opt}} \newcommand{\EB}{E_B} % shortcuts for greek letters \newcommand{\si}{\sigma} \newcommand{\la}{\lambda} \newcommand{\RHH}{R_{\ce{H-H}}} \newcommand{\ii}{\mathrm{i}} \newcommand{\bEta}[1]{\boldsymbol{\eta}^{(#1)}(s)} \newcommand{\bHd}[1]{\bH_\text{d}^{(#1)}} \newcommand{\bHod}[1]{\bH_\text{od}^{(#1)}} % addresses \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \begin{document} \title{Notes on the project: Similarity Renormalization Group formalism applied to Green's function theory} \author{Antoine \surname{Marie}} \email{amarie@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \author{Pierre-Fran\c{c}ois \surname{Loos}} \email{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} %\begin{abstract} %Here comes the abstract. %\bigskip %\begin{center} % \boxed{\includegraphics[width=0.5\linewidth]{TOC}} %\end{center} %\bigskip %\end{abstract} \maketitle %=================================================================% \section{Introduction} %=================================================================% The aim of this document is two-fold. First, we want to re-derive (in details) the perturbative analysis of the similarity renormalisation group (SRG) formalism applied to the non-relativistic electronic Hamiltonian. In a second time, we want to apply the same formalism to the unfolded GW Hamiltonian. To do so, we first need to find a second quantization effective Hamiltonian for Green function theory. Before jumping into these analysis, we do a brief presentation of the SRG formalism. %=================================================================% \section{The similarity renormalisation group} %=================================================================% The similarity renormalization group aims at continuously transforming an Hamiltonian to a diagonal form, or more often to a block-diagonal form. Therefore, the transformed Hamiltonian \begin{equation} \bH(s) = \bU(s) \, \bH \, \bU^\dag(s) \end{equation} depends on a flow parameter $s$. The resulting Hamiltonian possess up to $N$-body operators with $N$ the number of particle. \begin{equation} \bH(s) = E_0(s) + \bF(s) + \bV(s) + \bW(s) + \dots \end{equation} In the following, we will truncate every contribution superior to two-body operators. We can easily derive an evolution equation for this Hamiltonian by taking the derivative of $\bH(s)$. This gives \begin{equation} \label{eq:flowEquation} \dv{\bH(s)}{s} = \comm{\boldsymbol{\eta}(s)}{\bH(s)} \end{equation} where $\boldsymbol{\eta}(s)$, the flow generator, is defined as \begin{equation} \boldsymbol{\eta}(s) = \dv{\bU(s)}{s} \bU^\dag(s) = - \boldsymbol{\eta}^\dag(s) . \end{equation} To solve this equation at a cost inferior to the one of diagonalizing the initial Hamiltonian, one needs to introduce approximation for $\boldsymbol{\eta}(s)$. Before doing so, we need to define what is the blocks to suppress in order to obtain a block-diagonal Hamiltonian. Therefore, the Hamiltonian is separated in two parts as \begin{equation} \bH(s) = \underbrace{\bH^\text{d}(s)}_{\text{diagonal}} + \underbrace{\bH^\text{od}(s)}_{\text{off-diagonal}}. \end{equation} By definition, we have the following condition on $\bH^\text{od}$ \begin{equation} \bH^\text{od}(\infty) = \boldsymbol{0}. \end{equation} In this work, we will use Wegner's canonical generator which is defined as \begin{equation} \boldsymbol{\eta}^\text{W}(s) = \comm{\bH^\text{d}(s)}{\bH(s)} = \comm{\bH^\text{d}(s)}{\bH^\text{od}(s)}. \end{equation} This generator has the advantage of defining a true renormalisation scheme, \ie the coupling coefficients with the highest energy determinants are removed first. One of the flaws of this generator is that it generates a stiff set of ODE which is difficult to solve numerically. However, here we consider analytical perturbative expressions so we will not be affected by this problem. %=================================================================% \section{The electronic Hamiltonian} %=================================================================% In this part, we derive the perturbative expression for the SRG applied to the non-relativistic electronic Hamiltonian \begin{equation} \label{eq:hamiltonianSecondQuant} \hH = \sum_{pq} f_{pq} \cre{p}\ani{q} + \frac{1}{4} \sum_{pqrs} \aeri{pq}{rs} \cre{p}\cre{q}\ani{r}\ani{s} \end{equation} which can also be written in normal order wrt a reference determinant as \begin{equation} \label{eq:hamiltonianNormalOrder} \hH = E_0 + \sum_{pq} + f_p^q\no{q}{p} + \frac{1}{4} \sum_{pqrs}v_{pq}^{rs}\no{rs}{pq}. \end{equation} In this case, we want to decouple the reference determinant from every singly and doubly excited determinants. Hence, we define the off-diagonal Hamiltonian as \begin{equation} \label{eq:hamiltonianOffDiagonal} \hH^{\text{od}}(s) = \sum_{ia} f_i^a(s)\no{a}{i} + \frac{1}{4} \sum_{ijab}v(s)_{ij}^{ab}\no{ab}{ij}. \end{equation} Note that each coefficients depend on $s$. The perturbative parameter $\la$ is such that \begin{equation} \bH(0) = E_0(0) + F(0) + \la V(0) \end{equation} In addition, we know the following initial conditions. We use the HF basis set of the reference such that $F^{\text{od}}(0) = 0$ and $F^{\mathrm{d}}(0)=\delta_{pq}\epsilon_p$ Therefore, we have \begin{align} \bH^\text{d}(0)&=E_0(0) + F^{\mathrm{d}}(0) + \la V^{\mathrm{d}}(0) & \bH^\text{od}(0)&= \la V^{\mathrm{od}}(0) \end{align} Now, we want to compute the terms at each order of the following development \begin{equation} \label{eq:hamiltonianPTExpansion} \bH(s) = \bH^{(0)}(s) + \bH^{(1)}(s) + \bH^{(2)}(s) + \bH^{(3)}(s) + \dots \end{equation} by integrating Eq.~\eqref{eq:flowEquation}. %%%%%%%%%%%%%%%%%%%%%% \subsection{Zeroth order Hamiltonian} %%%%%%%%%%%%%%%%%%%%%% First, we start by showing that the zeroth order Hamiltonian is independant of $s$ and therefore equal to $\bH^{(0)}(0)$ \begin{align} \bH(\delta s) &= \bH(0) + \delta s \dv{\bH(s)}{s}\bigg|_{s=0} + O(\delta s^2) \\ \dv{\bH(s)}{s}\bigg|_{s=0} &= [ \boldsymbol{\eta}(0), \bH(0)] \\ \end{align} However, we have seen that $\bH^\text{od}(0)$ is of order 1. Hence, $\boldsymbol{\eta}(0)$ does not have a zero order contribution. Which gives us the following equality \begin{equation} \bH^{(0)}(\delta s) = \bH^{(0)}(0) \end{equation} meaning that the zeroth order Hamiltonian is independant of $s$. %%%%%%%%%%%%%%%%%%%%%% \subsection{First order Hamiltonian} %%%%%%%%%%%%%%%%%%%%%% The right-hand side of \eqref{eq:flowEquation} has no zeroth order, so we want to compute its first order term. To do so, we first need to compute the first order term of $\boldsymbol{\eta}(s)$. We have seen that $\bH^\text{od}(0)$ has no zeroth order contribution so we have \begin{equation} \boldsymbol{\eta}^{(1)}(s) = \comm{\bH^{\text{d},(0)}(0)}{\bH^{\text{od},(1)}(s)} \end{equation} According to the appendix the one-body part of $\boldsymbol{\eta}^{(1)}(s) $ has four contributions. However, two of them involve the two-body part of $\bH^{\text{d},(0)}(0)$ which is equal to zero. In addition, the term $\left[A_{1}, B_{2}\right]_{p}^{q}$ involves the coefficients $A_i^a = f_i^a(0) = 0$. So finally we only have one term \begin{align} \eta_a^{i,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(1)}(s)}_a^i \\ &= \sum_r \left( f_a^r(0) f_r^{i,(1)}(s) - f_r^i(0) f_a^{r,(1)}(s) \right) \\ &= (\epsilon_a - \epsilon_i)f_a^{i,(1)}(s) \end{align} Now turning to the two-body part of $\boldsymbol{\eta}^{(1)}(s) $ and once again two terms are zero because the two-body part of $\bH^{\text{d},(0)}(0)$ is equal to zero. So we have \begin{align} \eta_{ab}^{ij,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_2^{\text{od},(1)}(s)}_{ab}^{ij} \\ &= \sum_t [P(ab) f_a^t(0) v_{tb}^{ij,(1)}(s) - P(ij) f_t^i(0) v_{ab}^{tj,(1)}(s) ] \notag \\ &= \sum_t [ P(ab) \epsilon_a \delta_{at}v_{tb}^{ij,(1)}(s) - P(ij) \epsilon_i \delta_{it} v_{ab}^{tj,(1)}(s) ] \notag \\ &= P(ab) \epsilon_a v_{ab}^{ij,(1)}(s) - P(ij) \epsilon_i v_{ab}^{ij,(1)}(s) \notag\\ &= \left( \epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j \right) v_{ab}^{ij,(1)} \notag \end{align} We can now compute the first order contribution to Eq.~\eqref{eq:flowEquation}. We have seen that $\eta$ has no zeroth order contribution so \begin{equation} \dv{\bH^{(1)}(s)}{s} = \comm{\boldsymbol{\eta}^{(1)}(s)}{\bH^{(0)}(s)} \end{equation} We start with the scalar contribution, \ie the PT1 energy \begin{equation} \dv{E_0^{(1)}(s)}{s} = \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(0)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(0)}(s)}}{\phi} \end{equation} where the second term is equal to zero. Thus we have \begin{align} \label{eq:diffEqScalPT1} \dv{E_0^{(1)}(s)}{s} &= \sum_{ip}\eta_i^{p,(1)}f_p^i(0) - \eta_p^{i,(1)}f_i^p(0) \\ &= \sum_i \epsilon_i(\eta_i^{i,(1)} - \eta_i^{i,(1)}) \notag \\ &= 0 \notag \end{align} Using the exact same reasoning as above we can show that there is only of the four terms of the one-body part of the commutator that is non-zero. \begin{align} \dv{f_a^{i,(1)}(s)}{s} &= \comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(0)}(s)}_a^i \\ &= \sum_r \eta_a^{r,(1)}(s)f_r^i(0) - \eta_r^{i,(1)}f_a^r(0) \notag \\ &= (\epsilon_i - \epsilon_a) \eta_a^{i,(1)}(s) \notag \\ &= -(\epsilon_i - \epsilon_a) ^2f_a^{i,(1)}(s) \notag \end{align} The derivation for the two-body part to first order is once again similar \begin{align} \dv{v_{ab}^{ij,(1)}(s)}{s} &= \comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_1^{(0)}(s)}_{ab}^{ij} \\ &= -(\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b) ^2v_{ab}^{ij,(1)}(s) \notag \end{align} These three differential equations can be integrated to obtain the analytical form of the Hamiltonian coefficients up to first order of perturbation theory. \begin{align} E_0^{(1)}(s) &= E_0^{(1)}(0) = 0 \\ f_a^{i,(1)}(s) &= f_a^{i,(1)}(0) e^{-s (\Delta_a^i )^2} = 0 \\ v_{ab}^{ij,(1)}(s) &= v_{ab}^{ij,(1)}(0) e^{-s (\Delta_{ab}^{ij})^2} = \aeri{ij}{ab} e^{-s (\Delta_{ab}^{ij})^2} \end{align} %%%%%%%%%%%%%%%%%%%%%% \subsection{Second order Hamiltonian} %%%%%%%%%%%%%%%%%%%%%% To compute the second order contribution to the Hamiltonian coefficients, we first need to compute the second order contribution to $\boldsymbol{\eta}(s)$. \begin{equation} \boldsymbol{\eta}^{(2)}(s) = \comm{\bH^{\text{d},(0)}(0)}{\bH^{\text{od},(2)}(s)} + \comm{\bH^{\text{d},(1)}(s)}{\bH^{\text{od},(1)}(s)} \end{equation} The expressions for the first commutator are computed analogously to the one of the previous subsection. We focus on deriving expressions for the second term. The one-body part of $\bH^{\text{od},(1)}(s)$ is equal to zero so two of the four terms contributing to the one-body part of $\comm{\bH^{\text{d},(1)}(s)}{\bH^{\text{od},(1)}(s)}$ are zero. In addition, the term $\comm{A_1}{B_2}$ is equal to zero as well because the coefficients $A_{1,i}^a$ are zero (see expression in Appendix). So we have \begin{align} \eta_a^{i,(2)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(2)}(s)}_a^i + \comm{\bH_2^{\text{d},(1)}(s)}{\bH_2^{\text{od},(1)}(s)}_a^i \\ &= (\epsilon_a - \epsilon_i)f_a^{i,(2)}(s) + \dots \end{align} Need to continue this derivation but this not needed for EPT2. Now turning to the differential equations, we start by computing the scalar part of Eq.~\eqref{eq:flowEquation}, \ie the differential equation for the second order energy. \begin{align} \dv{E_0^{(2)}(s)}{s} & = \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(2)}(s)}{\bH_1^{(0)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(2)}(s)}{\bH_2^{(0)}(s)}}{\phi} \\ &+ \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(1)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(1)}(s)}}{\phi} \end{align} The two first terms are equal to zero for the same reason as the PT1 scalar differential equation (see Eq.~\eqref{eq:diffEqScalPT1}). In addition, the one-body hamiltonian has no first order contribution so \begin{align} \dv{E_0^{(2)}(s)}{s} &= \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(1)}(s)}}{\phi} \\ &= \frac{1}{4} \sum_{i j} \sum_{a b}\left(\eta_{i j}^{ab,(1)} H_{ab}^{i j,(1)} - H_{i j}^{ab,(1)} \eta_{ab}^{i j,(1)}\right) \\ &=\frac{1}{4} \sum_{i j} \sum_{a b}\left(\eta_{i j}^{ab,(1)} - \eta_{ab}^{i j,(1)}\right) v_{ab}^{ij,(1)} \\ &= \frac{1}{4} \sum_{i j} \sum_{a b}\left(\Delta_{ab}^{ij}v_{ij}^{ab,(1)} - (-\Delta_{ab}^{ij} v_{ab}^{ij,(1)}) \right) \aeri{ij}{ab} e^{-s (\Delta_{ab}^{ij})^2} \\ &= \frac{1}{2} \sum_{i j} \sum_{a b} \Delta_{ab}^{ij} (v_{ab}^{ij,(1)})^2 \\ &= \frac{1}{2} \sum_{i j} \sum_{a b} \Delta_{ab}^{ij} \aeri{ij}{ab}^2 e^{-2s (\Delta_{ab}^{ij})^2} \end{align} After integration, using the initial condition $E_0^{(2)}(0)=0$, we obtain \begin{equation} E_0^{(2)}(s) = \frac{1}{4} \sum_{i j} \sum_{a b} \frac{\Delta_{ab}^{ij}}{\aeri{ij}{ab}}\left(1-e^{-2s (\Delta_{ab}^{ij})^2}\right) \end{equation} %=================================================================% \section{The unfolded Green's function} % =================================================================% %%%%%%%%%%%%%%%%%%%%%% \subsection{Initial conditions} %%%%%%%%%%%%%%%%%%%%%% Finding a second quantized effective Hamiltonian for MBPT is far from being trivial so we start the project with matrix perturbation theory. A general upfolded MBPT matrix can be written as \begin{equation} \label{eq:H_MBPT} H = \begin{pmatrix} \bF & \bV{}{} \\ \bV{}{\dagger} & \bC{}{} \end{pmatrix} \end{equation} Using SRG language, we define the diagonal and off-diagonal parts as \begin{equation} \label{eq:H_MBPT_partitioning} H(0) = \begin{pmatrix} \bF & \bO \\ \bO & \bC{}{} \end{pmatrix} + \lambda \begin{pmatrix} \bO & \bV{}{} \\ \bV{}{\dagger} & \bO \end{pmatrix} \end{equation} which gives the following conditions \begin{align} \bHd{0}(0) &= \begin{pmatrix} \bF & \bO \\ \bO & \bC{}{} \end{pmatrix} & \bHod{0}(0) &= \bO \\ \bHd{1}(0) &= \bO & \bHod{1}(0) &= \begin{pmatrix} \bO & \bV{}{} \\ \bV{}{\dagger} & \bO \end{pmatrix} \end{align} %%%%%%%%%%%%%%%%%%%%%% \subsection{Zeroth order Hamiltonian} %%%%%%%%%%%%%%%%%%%%%% The zero-th order commutator of the Wegner generator therefore gives \begin{equation} \bEta{0} = \comm{\bHd{0}}{\bHod{0}} = \bO \end{equation} and similarly \begin{equation} \dv{\bH^{(0)}}{s} = \comm{\bEta{0}}{\bH^{(0)}} = \bO \end{equation} Finally, we have \begin{equation} \color{red}{\boxed{ \color{black}{\bH^{(0)}(s) = \bH^{(0)}(0)} }} \end{equation} %%%%%%%%%%%%%%%%%%%%%% \subsection{First order Hamiltonian} %%%%%%%%%%%%%%%%%%%%%% Now turning to the first-order contribution to the MBPT matrix, we start by computing the first order part of the Wegner generator. \begin{align} &\bEta{1} = \comm{\bHd{0}}{\bHod{1}} \\ &= \begin{pmatrix} \bO & \bF^{(0)}\bV{}{(1)} - \bV{}{(1)}\bF^{(0)}\\ \bC{}{(0)}\bV{}{(1),\dagger} - \bV{}{(1),\dagger}\bC{}{(0)} & \bO \end{pmatrix} \end{align} \begin{align} \dv{\bH^{(1)}}{s} &= \comm{\bEta{1}}{\bHd{0}} = \begin{pmatrix} \dv{\bF^{(1)}}{s} & \dv{\bV{}{(1)}}{s} \\ \dv{\bV{}{(1),\dagger}}{s} & \dv{\bC{}{(1)}}{s} \end{pmatrix} \\ \dv{\bF^{(1)}}{s} &= \bO \Longleftrightarrow \color{red}{\boxed{\color{black}{\bF^{(1)}= \bO}}} \\ \dv{\bC{}{(1)}}{s} &= \bO \Longleftrightarrow \color{red}{\boxed{\color{black}{\bC{}{(1)}= \bO}}} \\ \dv{\bV{}{(1)}}{s} &= 2 \bF^{(0)}\bV{}{(1)}\bC{}{(0)} - (\bF^{(0)})^2\bV{}{(1)} - \bV{}{(1)}(\bC{}{(0)})^2 \\ \dv{\bV{}{(1),\dagger}}{s} &= 2 \bC{}{(0)}\bV{}{(1),\dagger}\bF^{(0)} - \bV{}{(1),\dagger}(\bF^{(0)})^2 - (\bC{}{(0)})^2\bV{}{(1),\dagger} \end{align} The two last equations can be solved differently depending on the form of $\bF$ and $\bC{}{}$. \subsubsection*{Diagonal $\bC{}{(0)}$} In the following, upper case indices correspond to the 2h1p and 2p1h sectors while lower case indices correspond to the 1h and 1p sectors. Also the $\Delta\eps_R$ corresponds to the diagonal elements of the 2h1p and 2p1h sectors. \begin{align} (\dv{\bV{}{(1)}}{s})_{pQ} &= (2 \bF^{(0)}\bV{}{(1)}\bC{}{(0)} - (\bF^{(0)})^2\bV{}{(1)} - \bV{}{(1)}(\bC{}{(0)})^2 )_{pQ}\\ &= \sum_{rS} 2 f^{(0)}_{pr} v^{(1)}_{rS}c^{(0)}_{SQ} - \sum_{rs} f^{(0)}_{pr} f^{(0)}_{rs} v^{(1)}_{sQ} - \sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS}c^{(0)}_{SQ} \\ &= \sum_{rS} 2 \epsilon^{(0)}_p\delta_{pr} v^{(1)}_{rS}\Delta\epsilon^{(0)}_Q\delta_{SQ} \\ &- \sum_{rs} \epsilon^{(0)}_p\delta_{pr} \epsilon^{(0)}_r\delta_{rs} v^{(1)}_{sQ} \\ &- \sum_{RS} v^{(1)}_{pR} \Delta\epsilon^{(0)}_R\delta_{RS} \Delta\epsilon^{(0)}_Q\delta_{SQ} \\ &= (2 \epsilon^{(0)}_p\Delta\epsilon^{(0)}_Q - (\epsilon^{(0)}_p)^2 - (\Delta\epsilon^{(0)}_Q )^2) v^{(1)}_{pQ} \\ \dv{v^{(1)}_{pQ}}{s} &= - (\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2 v^{(1)}_{pQ} \\ &\color{red}{\boxed{\color{black}{v^{(1)}_{pQ}(s) = v^{(1)}_{pQ}(0) e^{-s(\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2} }}} \end{align} Note the close similarity with Evangelista's expressions for the off-diagonal part at first order! \subsubsection*{Non-diagonal $\bC{}{(0)}$} We follow the same development as before \begin{align} (\dv{\bV{}{(1)}}{s})_{pQ} &= (2 \bF^{(0)}\bV{}{(1)}\bC{}{(0)} - (\bF^{(0)})^2\bV{}{(1)} - \bV{}{(1)}(\bC{}{(0)})^2 )_{pQ}\\ &= \sum_{rS} 2 f^{(0)}_{pr} v^{(1)}_{rS}c^{(0)}_{SQ} - \sum_{rs} f^{(0)}_{pr} f^{(0)}_{rs} v^{(1)}_{sQ} - \sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS}c^{(0)}_{SQ} \\ &= \sum_{rS} 2 \epsilon^{(0)}_p\delta_{pr} v^{(1)}_{rS} c^{(0)}_{SQ} \\ &- \sum_{rs} \epsilon^{(0)}_p\delta_{pr} \epsilon^{(0)}_r\delta_{rs} v^{(1)}_{sQ} \\ &- \sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS} c^{(0)}_{SQ} \\ &= - (\epsilon^{(0)}_p)^2v^{(1)}_{pQ}+ \sum_{S} 2 \epsilon^{(0)}_p v^{(1)}_{pS} c^{(0)}_{SQ} - \sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS} c^{(0)}_{SQ} \end{align} We obtain a set of coupled differential equations which seems far from being trivial to solve. In order to simplify the problem we consider the case when $\bF = \eps_p$. \begin{align} \dv{\bV{}{(1)}}{s} &= 2 \bF^{(0)}\bV{}{(1)}\bC{}{(0)} - (\bF^{(0)})^2\bV{}{(1)} - \bV{}{(1)}(\bC{}{(0)})^2 \\ &= 2 \eps_p\bV{}{(1)}\bC{}{(0)} - (\eps_p)^2\bV{}{(1)} - \bV{}{(1)}(\bC{}{(0)})^2 \\ &= \bV{}{(1)} (\eps_p\mathbb{1} - \bC{}{(0)})^2 \end{align} Now to solve this matrix differential equation, we just need to diagonalize $(\eps_p \mathbb{1} - \bC{}{(0)})^2$. Fortunately, this can be easily done because the eigenvalues of $\bC{}{(0)}$ are known to be the shifted RPA eigenvalues and the eigenvectors are given in Bintrim 2021. \textbf{\color{red}{IDEA: Can we put the non-diagonal part of C in the off-diag H?}} %%%%%%%%%%%%%%%%%%%%%% \subsection{Second order Hamiltonian} %%%%%%%%%%%%%%%%%%%%%% Recalling that $\bHod{0} = \bO$ and $\bHd{1} = \bO$, we derive \begin{align} &\bEta{2} = \comm{\bHd{0}}{\bHod{2}} + \comm{\bHd{1}}{\bHod{1}} \\ &= \comm{\bHd{0}}{\bHod{2}} \\ &= \begin{pmatrix} \bO & \bF^{(0)}\bV{}{(2)} - \bV{}{(2)}\bF^{(0)}\\ \bC{}{(0)}\bV{}{(2),\dagger} - \bV{}{(2),\dagger}\bC{}{(0)} & \bO \end{pmatrix} \end{align} \begin{align} &\dv{\bH^{(2)}}{s} = \comm{\bEta{2}}{\bHd{0}} + \comm{\bEta{1}}{\bHd{1}} \\ &= \begin{pmatrix} \dv{\bF^{(2)}}{s} & \dv{\bV{}{(2)}}{s} \\ \dv{\bV{}{(2),\dagger}}{s} & \dv{\bC{}{(2)}}{s} \end{pmatrix} \\ \dv{\bF^{(2)}}{s} &= \bF^{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bF^{(0)} - 2 \bV{}{(1)}\bC{}{(0)}\bV{}{(1),\dagger}\\ \dv{\bC{}{(2)}}{s} &= \bC{}{(0)}\bV{}{(1),\dagger }\bV{}{(1)} + \bV{}{(1),\dagger }\bV{}{(1)}\bC{}{(0)} - 2 \bV{}{(1)}\bF^{(0)}\bV{}{(1),\dagger}\\ \dv{\bV{}{(2)}}{s} &= 2 \bF^{(0)}\bV{}{(2)}\bC{}{(0)} - (\bF^{(0)})^2\bV{}{(2)} - \bV{}{(2)}(\bC{}{(0)})^2 \\ \dv{\bV{}{(2),\dagger}}{s} &= 2 \bC{}{(0)}\bV{}{(2),\dagger}\bF^{(0)} - \bV{}{(2),\dagger}(\bF^{(0)})^2 - (\bC{}{(0)})^2\bV{}{(2),\dagger} \end{align} Once again the integration of these equations is much simpler if $\bC{}{(0)}$ is diagonal. \subsubsection*{Diagonal $\bC{}{(0)}$} \begin{align} &(\dv{\bF^{(2)}}{s})_{pq} = (\bF^{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bF^{(0)} - 2 \bV{}{(1)}\bC{}{(0)}\bV{}{(1),\dagger})_{pq} \notag \\ &= \sum_{rS} f^{(0)}_{pr} v^{(1)}_{rS} v^{(1),\dagger}_{Sq} + \sum_{Rs} v^{(1)}_{pR} v^{(1),\dagger}_{Rs} f^{(0)}_{sq} - 2\sum_{RS} v^{(1)}_{pR} c^{(0)}_{RS} v^{(1),\dagger}_{Sq} \notag \\ &= \sum_{S} \eps^{(0)}_{p} v^{(1)}_{pS} v^{(1)}_{qS} + \sum_{R} \eps^{(0)}_{q} v^{(1)}_{pR} v^{(1)}_{qR} - 2\sum_{R} \Delta\eps^{(0)}_R v^{(1)}_{pR} v^{(1)}_{qR} \notag \\ &= \sum_R (\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R) v^{(1)}_{pR} v^{(1)}_{qR} \notag \\ &= \sum_R (\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R) v^{(1)}_{pR}(0) v^{(1)}_{qR}(0) e^{-s [ (\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2]} \notag \\ &f^{(2)}_{pq}(s) = \notag \\ &\color{red}{\boxed{\color{black}{- \sum_R \frac{\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R}{(\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2}(1 - e^{-s [ (\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2]})}}} \notag \end{align} A similar derivation should give (\textbf{\textcolor{red}{TO CHECK}}) \begin{align} &c^{(2)}_{PQ}(s) = \notag \\ &\color{red}{\boxed{\color{black}{- \sum_r \frac{\Delta\eps^{(0)}_{P} + \Delta\eps^{(0)}_{Q} - 2 \eps^{(0)}_r}{(\Delta\eps^{(0)}_P - \eps^{(0)}_r)^2+ (\Delta\eps^{(0)}_Q - \eps^{(0)}_r)^2}(1 - e^{-s [ (\Delta\eps^{(0)}_P - \eps^{(0)}_r)^2+ (\Delta\eps^{(0)}_P - \eps^{(0)}_r)^2]})}}} \notag \end{align} \begin{align} &\dv{v^{(2)}_{pQ}}{s} = - (\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2 v^{(2)}_{pQ} \\ &\color{red}{\boxed{\color{black}{v^{(2)}_{pQ}(s) = v^{(2)}_{pQ}(0) e^{-s(\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2} = 0 }}} \end{align} \subsubsection*{Non-diagonal $\bC{}{(0)}$} \appendix %=================================================================% \section{Matrix elements of $C=[A, B]_{1,2}$} %=================================================================% An operator $A$ containing at most two-body terms may be written in normal ordered form with respect to the reference $\Phi$ as $$ A=A_{0}+A_{1}+A_{2}, $$ where $A_{0}$ is a scalar, and $$ \begin{gathered} A_{1}=\sum_{p q} A_{p}^{q}\left\{\hat{a}_{q}^{p}\right\}, \\ A_{2}=\frac{1}{4} \sum_{p q r s} A_{p q}^{r s}\left\{\hat{a}_{r s}^{p q}\right\}, \end{gathered} $$ with the second quantization operator written compactly as $\hat{a}_{q}^{p}=\hat{a}_{p}^{\dagger} \hat{a}_{q}$ and $\hat{a}_{r s}^{p q}=\hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}$. The commutator $C=[A, B]_{1,2}$ contains contributions from the following terms: $$ \begin{gathered} C_{0}=\left\langle\Phi\left|\left[A_{1}, B_{1}\right]\right| \Phi\right\rangle+\left\langle\Phi\left|\left[A_{2}, B_{2}\right]\right| \Phi\right\rangle, \\ C_{p}^{q}=\left[A_{1}, B_{1}\right]_{p}^{q}+\left[A_{1}, B_{2}\right]_{p}^{q}-\left[B_{1}, A_{2}\right]_{p}^{q}+\left[A_{2}, B_{2}\right]_{p}^{q}, \\ C_{p q}^{r s}=\left[A_{1}, B_{2}\right]_{p q}^{r s}-\left[B_{1}, A_{2}\right]_{p q}^{r s}+\left[A_{2}, B_{2}\right]_{p q}^{r s}, \end{gathered} $$ where the unique contributions to the matrix elements are $$ \begin{gathered} \left\langle\Phi\left|\left[A_{1}, B_{1}\right]\right| \Phi\right\rangle=\sum_{p} \sum_{i}\left(A_{i}^{p} B_{p}^{i}-B_{i}^{p} A_{p}^{i}\right), \\ \left\langle\Phi\left|\left[A_{2}, B_{2}\right]\right| \Phi\right\rangle=\frac{1}{4} \sum_{i j} \sum_{a b}\left(A_{i j}^{a b} B_{a b}^{i j}-B_{i j}^{a b} A_{a b}^{i j}\right), \\ {\left[A_{1}, B_{1}\right]_{p}^{q}=\sum_{r}\left(A_{p}^{r} B_{r}^{q}-B_{p}^{r} A_{r}^{q}\right),} \\ {\left[A_{1}, B_{2}\right]_{p}^{q}=\sum_{i} \sum_{a} A_{i}^{a} B_{p a}^{q i}-A_{a}^{i} B_{p i}^{q a},} \\ {\left[A_{2}, B_{2}\right]_{p}^{q}=\frac{1}{2} \sum_{i j} \sum_{a}\left(A_{a p}^{i j} B_{i j}^{a q}-A_{i j}^{a q} B_{a p}^{i j}\right)} \\ +\frac{1}{2} \sum_{i} \sum_{a b}\left(A_{i p}^{a b} B_{a b}^{i q}-A_{a b}^{i q} B_{i p}^{a b}\right), \\ {\left[A_{1}, B_{2}\right]_{p q}^{r s}=\sum_{t}\left[P(p q) A_{p}^{t} B_{t q}^{r s}-P(r s) A_{t}^{r} B_{p q}^{t s}\right],} \\ {\left[A_{2}, B_{2}\right]_{p q}^{r s}=\frac{1}{2} \sum_{a b}\left(A_{p q}^{a b} B_{a b}^{r s}-A_{a b}^{r s} B_{p q}^{a b}\right)} \\ -\frac{1}{2} \sum_{i j}\left(A_{p q}^{i j} B_{i j}^{r s}-A_{i j}^{r s} B_{p q}^{i j}\right) \\ +\sum_{i} \sum_{a} P(p q) P(r s)\left[A_{p i}^{r a} B_{q a}^{s i}-A_{p a}^{r i} B_{q i}^{s a}\right] . \end{gathered} $$ In these equations $P(r s)$ is the antisymmetric permutation operator. \end{document}