Merge branch 'master' of git.irsamc.ups-tlse.fr:loos/SRGGW
This commit is contained in:
commit
fe9b0b8038
@ -1,11 +1,13 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
%% https://bibdesk.sourceforge.io/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2023-03-10 13:54:51 +0100
|
||||
%% Created for Pierre-Francois Loos at 2023-05-13 22:23:14 +0200
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
||||
|
||||
|
||||
@article{Biswas_2021,
|
||||
author = {Biswas, T. and Singh, A.K.},
|
||||
date-added = {2023-02-03 21:59:35 +0100},
|
||||
@ -484,8 +486,6 @@
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00694-x}}
|
||||
|
||||
|
||||
|
||||
@inbook{Bartlett_1986,
|
||||
abstract = {A diagrammatic derivation of the coupled-cluster (CC) linear response equations for gradients is presented. MBPT approximations emerge as low-order iterations of the CC equations. In CC theory a knowledge of the change in cluster amplitudes with displacement is required, which would not be necessary if the coefficients were variationally optimum, as in the CI approach. However, it is shown that the CC linear response equations can be put in a form where there is no more difficulty in evaluating CC gradients than in the variational CI procedure. This offers a powerful approach for identifying critical points on energy surfaces and in evaluating other properties than the energy.},
|
||||
address = {Dordrecht},
|
||||
@ -586,85 +586,45 @@
|
||||
pages = {124123},
|
||||
title = {Exact relationships between the $GW$ approximation and equation-of-motion coupled-cluster theories through the quasi-boson formalism},
|
||||
volume = {158},
|
||||
year = {2023}}
|
||||
year = {2023},
|
||||
bdsk-url-1 = {https://doi.org/10.1063/5.0139716}}
|
||||
|
||||
@article{Scott_2023,
|
||||
author = {Scott, Charles J. C. and Backhouse, Oliver J. and Booth, George H.},
|
||||
doi = {10.1063/5.0143291},
|
||||
journal = {J. Chem. Phys.},
|
||||
volume = {158},
|
||||
number = {12},
|
||||
title = "{A “moment-conserving” reformulation of GW theory}",
|
||||
pages = {124102},
|
||||
title = {{A ``moment-conserving'' reformulation of GW theory}},
|
||||
volume = {158},
|
||||
year = {2023},
|
||||
pages = {124102}
|
||||
}
|
||||
@article{Dolgounitcheva_2016,
|
||||
title = {Accurate {{Ionization Potentials}} and {{Electron Affinities}} of {{Acceptor Molecules IV}}: {{Electron-Propagator Methods}}},
|
||||
author = {Dolgounitcheva, O. and {D{\'i}az-Tinoco}, Manuel and Zakrzewski, V. G. and Richard, Ryan M. and Marom, Noa and Sherrill, C. David and Ortiz, J. V.},
|
||||
year = {2016},
|
||||
journal = {Journal of Chemical Theory and Computation},
|
||||
volume = {12},
|
||||
number = {2},
|
||||
pages = {627--637},
|
||||
issn = {1549-9618},
|
||||
doi = {10.1021/acs.jctc.5b00872},
|
||||
urldate = {2023-04-25}
|
||||
}
|
||||
bdsk-url-1 = {https://doi.org/10.1063/5.0143291}}
|
||||
|
||||
@article{Gallandi_2016a,
|
||||
title = {Accurate {{Ionization Potentials}} and {{Electron Affinities}} of {{Acceptor Molecules II}}: {{Non-Empirically Tuned Long-Range Corrected Hybrid Functionals}}},
|
||||
author = {Gallandi, Lukas and Marom, Noa and Rinke, Patrick and K{\"o}rzd{\"o}rfer, Thomas},
|
||||
year = {2016},
|
||||
doi = {10.1021/acs.jctc.5b00873},
|
||||
issn = {1549-9618},
|
||||
journal = {Journal of Chemical Theory and Computation},
|
||||
volume = {12},
|
||||
number = {2},
|
||||
pages = {605--614},
|
||||
issn = {1549-9618},
|
||||
doi = {10.1021/acs.jctc.5b00873},
|
||||
urldate = {2023-04-25}
|
||||
}
|
||||
|
||||
@article{Knight_2016,
|
||||
title = {Accurate {{Ionization Potentials}} and {{Electron Affinities}} of {{Acceptor Molecules III}}: {{A Benchmark}} of {{GW Methods}}},
|
||||
author = {Knight, Joseph W. and Wang, Xiaopeng and Gallandi, Lukas and Dolgounitcheva, Olga and Ren, Xinguo and Ortiz, J. Vincent and Rinke, Patrick and K{\"o}rzd{\"o}rfer, Thomas and Marom, Noa},
|
||||
year = {2016},
|
||||
journal = {Journal of Chemical Theory and Computation},
|
||||
title = {Accurate {{Ionization Potentials}} and {{Electron Affinities}} of {{Acceptor Molecules II}}: {{Non-Empirically Tuned Long-Range Corrected Hybrid Functionals}}},
|
||||
urldate = {2023-04-25},
|
||||
volume = {12},
|
||||
number = {2},
|
||||
pages = {615--626},
|
||||
issn = {1549-9618},
|
||||
doi = {10.1021/acs.jctc.5b00871},
|
||||
urldate = {2023-04-25}
|
||||
}
|
||||
year = {2016},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.5b00873}}
|
||||
|
||||
@article{Lei_2022,
|
||||
title = {Gaussian-Based Quasiparticle Self-Consistent {{GW}} for Periodic Systems},
|
||||
author = {Lei, Jincheng and Zhu, Tianyu},
|
||||
year = {2022},
|
||||
doi = {10.1063/5.0125756},
|
||||
issn = {0021-9606},
|
||||
journal = {The Journal of Chemical Physics},
|
||||
volume = {157},
|
||||
number = {21},
|
||||
pages = {214114},
|
||||
issn = {0021-9606},
|
||||
doi = {10.1063/5.0125756},
|
||||
urldate = {2023-04-25}
|
||||
}
|
||||
|
||||
@article{Richard_2016,
|
||||
title = {Accurate {{Ionization Potentials}} and {{Electron Affinities}} of {{Acceptor Molecules I}}. {{Reference Data}} at the {{CCSD}}({{T}}) {{Complete Basis Set Limit}}},
|
||||
author = {Richard, Ryan M. and Marshall, Michael S. and Dolgounitcheva, O. and Ortiz, J. V. and Br{\'e}das, Jean-Luc and Marom, Noa and Sherrill, C. David},
|
||||
year = {2016},
|
||||
journal = {Journal of Chemical Theory and Computation},
|
||||
volume = {12},
|
||||
number = {2},
|
||||
pages = {595--604},
|
||||
issn = {1549-9618},
|
||||
doi = {10.1021/acs.jctc.5b00875},
|
||||
urldate = {2023-04-25}
|
||||
}
|
||||
|
||||
|
||||
|
||||
title = {Gaussian-Based Quasiparticle Self-Consistent {{GW}} for Periodic Systems},
|
||||
urldate = {2023-04-25},
|
||||
volume = {157},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1063/5.0125756}}
|
||||
|
||||
@article{McKeon_2022,
|
||||
author = {McKeon,Caroline A. and Hamed,Samia M. and Bruneval,Fabien and Neaton,Jeffrey B.},
|
||||
|
Loading…
Reference in New Issue
Block a user