trying some stuff...
This commit is contained in:
parent
b975db28a4
commit
fe38e71dd6
@ -528,7 +528,7 @@ Recalling that $\bHod{0} = \bO$ and $\bHd{1} = \bO$, we derive
|
||||
|
||||
\begin{align}
|
||||
\dv{\bF{}{(2)}}{s} &= \bF{}{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bF{}{(0)} - 2 \bV{}{(1)}\bC{}{(0)}\bV{}{(1),\dagger} \\
|
||||
\dv{\bC{}{(2)}}{s} &= \bC{}{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bC{}{(0)} - 2 \bV{}{(1)}\bF{}{(0)}\bV{}{(1),\dagger} \\
|
||||
\dv{\bC{}{(2)}}{s} &= \bC{}{(0)}\bV{}{(1),\dagger}\bV{}{(1)} + \bV{}{(1),\dagger}\bV{}{(1),}\bC{}{(0)} - 2 \bV{}{(1)}\bF{}{(0)}\bV{}{(1),\dagger} \\
|
||||
\dv{\bV{}{(2)}}{s} &= 2 \bF{}{(0)}\bV{}{(2)}\bC{}{(0)} - (\bF{}{(0)})^2\bV{}{(2)} - \bV{}{(2)}(\bC{}{(0)})^2 \\
|
||||
\dv{\bV{}{(2),\dagger}}{s} &= 2 \bC{}{(0)}\bV{}{(2),\dagger}\bF{}{(0)} - \bV{}{(2),\dagger}(\bF{}{(0)})^2 - (\bC{}{(0)})^2\bV{}{(2),\dagger}
|
||||
\end{align}
|
||||
@ -818,7 +818,7 @@ Before discussing the regularizers in MBPT, we start by analyzing behavior of th
|
||||
\begin{equation}
|
||||
E_0^{(2)}(s= 1/\Lambda^2) = \frac{1}{4} \sum_{i j} \sum_{a b} \frac{\aeri{ij}{ab}^2}{\Delta_{ab}^{ij}}\left(1-e^{-2\left(\frac{\Delta_{ab}^{ij}}{\Lambda}\right)^2}\right)
|
||||
\end{equation}
|
||||
For $s=0$ the SRG-MP2 energy is equal to the MP2 one while for $s \to \infty$ the SRG-MP2 energy goes to zero.
|
||||
For $\Lambda \to 0$ the SRG-MP2 energy is equal to the MP2 one while for $\Lambda \to \infty$ the SRG-MP2 energy goes to zero.
|
||||
For a finite value of $s$, hence a finite energy cutoff $\Lambda$, then the term of the sum with $\Delta_{ab}^{ij} < \Lambda$ are almost zero. Therefore a small cutoff removes only the divergent $1/\Delta_{ab}^{ij}$.
|
||||
|
||||
A similar analysis can be done about the regularized correlation self-energy introduced by Monino and Loos. Here we discuss only the GW self-energy but without loss of generality.
|
||||
@ -834,13 +834,52 @@ This is because in addition to the divergent denominators we are removing more a
|
||||
|
||||
Finally, we discuss the renormalized correlation self-energy introduced in this work.
|
||||
\begin{align}
|
||||
\label{eq:GW_selfenergy_renormalized}
|
||||
(\Sigma_c^{\GW}(\omega,\Lambda))_{pq} &= \sum_{iv} \frac{W_{pi,v}^{\GW}W_{qi,v}^{\GW}}{\omega -\Omega_{i,v}^{\dRPA} - \ii \eta}e^{-\left( \frac{\epsilon_p - \Omega_{i,v}^{\dRPA} }{\Lambda} \right)^2} e^{-\left( \frac{\epsilon_p - \Omega_{i,v}^{\dRPA} }{\Lambda} \right)^2} \notag \\
|
||||
&+ \sum_{av} \frac{W_{pa,v}^{\GW} W_{qa,v}^{\GW}}{\omega - \Omega_{a,v}^{\dRPA} + \ii \eta} e^{-\left( \frac{\epsilon_p - \Omega_{a,v}^{\dRPA}}{\Lambda} \right)^2}e^{-\left( \frac{\epsilon_q - \Omega_{a,v}^{\dRPA} }{\Lambda} \right)^2} \notag
|
||||
\end{align}
|
||||
In this case the situation is reversed, \ie the divergent denominators will be the last removed when $\Lambda$ is increased.
|
||||
Therefore the renormalized self-energy seems not to be the good strategy to remove discontinuities.
|
||||
However, it defines SRG-PT2 approximations to the quasiparticle energies which have the same pros as the SRG-MP2 discussed above.
|
||||
|
||||
%=================================================================%
|
||||
\section{An alternative partitioning designed for discontinuities}
|
||||
\label{sec:discontinuities}
|
||||
%=================================================================%
|
||||
|
||||
As we have seen before the SRG scheme studied so far has been designed to renormalize the quasiparticle in the ``right way'', \ie by handling correctly the divergent denominators in the static energy expression.
|
||||
However, doing so we do note handle correctly the renormalization of the self-energy.
|
||||
The aim of this section is to find a partitioning that do it the other way around with respect to the previous one.
|
||||
The idea to obtain this is to start from the full Hamiltonian and use a perturber that remove the coupling, this gives
|
||||
\begin{equation}
|
||||
\bH(0) =
|
||||
\begin{pmatrix}
|
||||
\bF{}{} & \bV{}{}\\
|
||||
\bV{}{\dagger} & \bC{}{}
|
||||
\end{pmatrix}
|
||||
+ \lambda
|
||||
\begin{pmatrix}
|
||||
\bO & -\bV{}{} \\
|
||||
-\bV{}{\dagger} & \bO
|
||||
\end{pmatrix}
|
||||
= \bH_{\text{d}}(0) + (1-\lambda)\bH_{\text{od}}(0)
|
||||
\end{equation}
|
||||
We define $\lambda' = 1 - \lambda$, hence we can expand it like this
|
||||
\begin{align}
|
||||
\bH(s) & = \bH'^{(0)}(s) + \lambda' \bH'^{(1)}(s) + \lambda'^2 \bH'^{(2)}(s) + \cdots
|
||||
\\
|
||||
\bF{}{}(s) &= \bF{}{'(0)}(s) +\lambda' \bF{}{'(1)}(s) + \lambda'^2 \bF{}{'(2)}(s) + \cdots
|
||||
\\
|
||||
\bC{}{}(s) & = \bC{}{'(0)}(s) + \lambda' \bC{}{'(1)}(s) + \lambda'^2 \bC{}{'(2)}(s) + \cdots
|
||||
\\
|
||||
\bV{}{}(s) & = \bV{}{'(0)}(s) + \lambda' \bV{}{'(1)}(s) + \lambda'^2 \bV{}{'(2)}(s) + \cdots
|
||||
\end{align}
|
||||
We can use the expansion in terms of $\lambda$ and transform them to $\lambda^'$ and then identify with the expressions above, for example for $\bF{}{}$
|
||||
\begin{align}
|
||||
\bF{}{}(s) & = \bF{}{(0)}(s) + (1 - \lambda') \bF{}{(1)}(s) + (1 - \lambda')^2 \bF{}{(2)}(s) + \cdots \\
|
||||
&= \qty( \bF{}{(0)}(s) + \bF{}{(1)}(s) + \bF{}{(2)}(s) + \cdots) \notag \\
|
||||
&+ \lambda'\qty(-\bF{}{(1)}(s) - 2 \bF{}{(2)}(s) + \cdots) \notag \\
|
||||
&+ \lambda'^2 \qty(\bF{}{(2)}(s) + \cdots) \notag
|
||||
\end{align}
|
||||
|
||||
%=================================================================%
|
||||
\section{Towards second quantized effective Hamiltonians for MBPT?}
|
||||
|
Loading…
Reference in New Issue
Block a user