creating the note on perturbative analysis and saving work
This commit is contained in:
parent
ddfa49877b
commit
fb7d6f9624
335
Notes/PerturbativeAnalysis.tex
Normal file
335
Notes/PerturbativeAnalysis.tex
Normal file
@ -0,0 +1,335 @@
|
|||||||
|
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
|
||||||
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,mleftright}
|
||||||
|
\usepackage[version=4]{mhchem}
|
||||||
|
|
||||||
|
\usepackage[utf8]{inputenc}
|
||||||
|
\usepackage[T1]{fontenc}
|
||||||
|
\usepackage{txfonts}
|
||||||
|
|
||||||
|
\usepackage[
|
||||||
|
colorlinks=true,
|
||||||
|
citecolor=blue,
|
||||||
|
breaklinks=true
|
||||||
|
]{hyperref}
|
||||||
|
\urlstyle{same}
|
||||||
|
|
||||||
|
\newcommand{\ie}{\textit{i.e.}}
|
||||||
|
\newcommand{\eg}{\textit{e.g.}}
|
||||||
|
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||||||
|
\usepackage[normalem]{ulem}
|
||||||
|
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
||||||
|
\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}}
|
||||||
|
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
||||||
|
|
||||||
|
\newcommand{\mc}{\multicolumn}
|
||||||
|
\newcommand{\fnm}{\footnotemark}
|
||||||
|
\newcommand{\fnt}{\footnotetext}
|
||||||
|
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||||||
|
\newcommand{\QP}{\textsc{quantum package}}
|
||||||
|
\newcommand{\T}[1]{#1^{\intercal}}
|
||||||
|
|
||||||
|
% coordinates
|
||||||
|
\newcommand{\br}{\boldsymbol{r}}
|
||||||
|
\newcommand{\bx}{\boldsymbol{x}}
|
||||||
|
\newcommand{\dbr}{d\br}
|
||||||
|
\newcommand{\dbx}{d\bx}
|
||||||
|
|
||||||
|
% methods
|
||||||
|
\newcommand{\GW}{\text{$GW$}}
|
||||||
|
\newcommand{\evGW}{ev$GW$}
|
||||||
|
\newcommand{\qsGW}{qs$GW$}
|
||||||
|
\newcommand{\GOWO}{$G_0W_0$}
|
||||||
|
\newcommand{\Hxc}{\text{Hxc}}
|
||||||
|
\newcommand{\xc}{\text{xc}}
|
||||||
|
\newcommand{\Ha}{\text{H}}
|
||||||
|
\newcommand{\co}{\text{c}}
|
||||||
|
\newcommand{\x}{\text{x}}
|
||||||
|
\newcommand{\KS}{\text{KS}}
|
||||||
|
\newcommand{\HF}{\text{HF}}
|
||||||
|
\newcommand{\RPA}{\text{RPA}}
|
||||||
|
|
||||||
|
%
|
||||||
|
\newcommand{\Ne}{N}
|
||||||
|
\newcommand{\Norb}{K}
|
||||||
|
\newcommand{\Nocc}{O}
|
||||||
|
\newcommand{\Nvir}{V}
|
||||||
|
|
||||||
|
% operators
|
||||||
|
\newcommand{\hH}{\Hat{H}}
|
||||||
|
\newcommand{\hS}{\Hat{S}}
|
||||||
|
\newcommand{\ani}[1]{\hat{a}_{#1}}
|
||||||
|
\newcommand{\cre}[1]{\hat{a}_{#1}^\dagger}
|
||||||
|
\newcommand{\no}[2]{\mleft\{ \hat{a}_{#1}^{#2}\mright\} }
|
||||||
|
|
||||||
|
% energies
|
||||||
|
\newcommand{\Enuc}{E^\text{nuc}}
|
||||||
|
\newcommand{\Ec}[1]{E_\text{c}^{#1}}
|
||||||
|
\newcommand{\EHF}{E^\text{HF}}
|
||||||
|
|
||||||
|
% orbital energies
|
||||||
|
\newcommand{\eps}{\epsilon}
|
||||||
|
\newcommand{\reps}{\Tilde{\epsilon}}
|
||||||
|
\newcommand{\Om}{\Omega}
|
||||||
|
|
||||||
|
% Matrix elements
|
||||||
|
\newcommand{\SigC}{\Sigma^\text{c}}
|
||||||
|
\newcommand{\rSigC}{\Tilde{\Sigma}^\text{c}}
|
||||||
|
\newcommand{\MO}[1]{\phi_{#1}}
|
||||||
|
\newcommand{\SO}[1]{\psi_{#1}}
|
||||||
|
\newcommand{\eri}[2]{\braket{#1}{#2}}
|
||||||
|
\newcommand{\aeri}[2]{\mel{#1}{}{#2}}
|
||||||
|
\newcommand{\ERI}[2]{(#1|#2)}
|
||||||
|
\newcommand{\rbra}[1]{(#1|}
|
||||||
|
\newcommand{\rket}[1]{|#1)}
|
||||||
|
|
||||||
|
|
||||||
|
% Matrices
|
||||||
|
\newcommand{\bO}{\boldsymbol{0}}
|
||||||
|
\newcommand{\bI}{\boldsymbol{1}}
|
||||||
|
\newcommand{\bH}{\boldsymbol{H}}
|
||||||
|
\newcommand{\bSigC}{\boldsymbol{\Sigma}^{\text{c}}}
|
||||||
|
\newcommand{\be}{\boldsymbol{\epsilon}}
|
||||||
|
\newcommand{\bOm}{\boldsymbol{\Omega}}
|
||||||
|
\newcommand{\bA}{\boldsymbol{A}}
|
||||||
|
\newcommand{\bB}{\boldsymbol{B}}
|
||||||
|
\newcommand{\bC}{\boldsymbol{C}}
|
||||||
|
\newcommand{\bD}{\boldsymbol{D}}
|
||||||
|
\newcommand{\bF}{\boldsymbol{F}}
|
||||||
|
\newcommand{\bU}{\boldsymbol{U}}
|
||||||
|
\newcommand{\bV}{\boldsymbol{V}}
|
||||||
|
\newcommand{\bW}{\boldsymbol{W}}
|
||||||
|
\newcommand{\bX}{\boldsymbol{X}}
|
||||||
|
\newcommand{\bY}{\boldsymbol{Y}}
|
||||||
|
\newcommand{\bZ}{\boldsymbol{Z}}
|
||||||
|
\newcommand{\bc}{\boldsymbol{c}}
|
||||||
|
|
||||||
|
% orbitals, gaps, etc
|
||||||
|
\newcommand{\IP}{I}
|
||||||
|
\newcommand{\EA}{A}
|
||||||
|
\newcommand{\HOMO}{\text{HOMO}}
|
||||||
|
\newcommand{\LUMO}{\text{LUMO}}
|
||||||
|
\newcommand{\Eg}{E_\text{g}}
|
||||||
|
\newcommand{\EgFun}{\Eg^\text{fund}}
|
||||||
|
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
||||||
|
\newcommand{\EB}{E_B}
|
||||||
|
|
||||||
|
% shortcuts for greek letters
|
||||||
|
\newcommand{\si}{\sigma}
|
||||||
|
\newcommand{\la}{\lambda}
|
||||||
|
|
||||||
|
|
||||||
|
\newcommand{\RHH}{R_{\ce{H-H}}}
|
||||||
|
\newcommand{\ii}{\mathrm{i}}
|
||||||
|
|
||||||
|
% addresses
|
||||||
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\title{Perturbative Analysis of the Similarity Renormalisation Group}
|
||||||
|
|
||||||
|
\author{Antoine \surname{Marie}}
|
||||||
|
\email{amarie@irsamc.ups-tlse.fr}
|
||||||
|
\affiliation{\LCPQ}
|
||||||
|
|
||||||
|
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
||||||
|
\email{loos@irsamc.ups-tlse.fr}
|
||||||
|
\affiliation{\LCPQ}
|
||||||
|
|
||||||
|
%\begin{abstract}
|
||||||
|
%Here comes the abstract.
|
||||||
|
%\bigskip
|
||||||
|
%\begin{center}
|
||||||
|
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
|
||||||
|
%\end{center}
|
||||||
|
%\bigskip
|
||||||
|
%\end{abstract}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Introduction}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
The aim of this document is two-fold.
|
||||||
|
First, we want to re-derive the perturbative analysis of the similarity renormalisation group (SRG) formalism applied to the non-relativistic electronic Hamiltonian.
|
||||||
|
In a second time, we want to apply the same formalism to the unfolded GW Hamiltonian.
|
||||||
|
Before jumping into these analysis, we do a brief presentation of the SRG formalism.
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{The similarity renormalisation group}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
The similarity renormalization group aims at continuously transforming an Hamiltonian to a diagonal form, or more often to a block-diagonal form.
|
||||||
|
Therefore, the transformed Hamiltonian
|
||||||
|
\begin{equation}
|
||||||
|
\bH(s) = \bU(s) \, \bH \, \bU^\dag(s)
|
||||||
|
\end{equation}
|
||||||
|
depends on a flow parameter $s$.
|
||||||
|
The resulting Hamiltonian possess up to $N$-body operators with $N$ the number of particle.
|
||||||
|
\begin{equation}
|
||||||
|
\bH(s) = E_0(s) + \bF(s) + \bV(s) + \bW(s) + \dots
|
||||||
|
\end{equation}
|
||||||
|
In the following, we will truncate every contribution superior to two-body operators.
|
||||||
|
We can easily derive an evolution equation for this Hamiltonian by taking the derivative of $\bH(s)$. This gives
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:flowEquation}
|
||||||
|
\dv{\bH(s)}{s} = \comm{\boldsymbol{\eta}(s)}{\bH(s)}
|
||||||
|
\end{equation}
|
||||||
|
where $\boldsymbol{\eta}(s)$, the flow generator, is defined as
|
||||||
|
\begin{equation}
|
||||||
|
\boldsymbol{\eta}(s) = \dv{\bU(s)}{s} \bU^\dag(s) = - \boldsymbol{\eta}^\dag(s) .
|
||||||
|
\end{equation}
|
||||||
|
To solve this equation at a cost inferior to the one of diagonalizing the initial Hamiltonian, one needs to introduce approximation for $\boldsymbol{\eta}(s)$.
|
||||||
|
Before doing so, we need to define what is the blocks to suppress in order to obtain a block-diagonal Hamiltonian.
|
||||||
|
Therefore, the Hamiltonian is separated in two parts as
|
||||||
|
\begin{equation}
|
||||||
|
\bH(s) = \underbrace{\bH^\text{d}(s)}_{\text{diagonal}} + \underbrace{\bH^\text{od}(s)}_{\text{off-diagonal}}.
|
||||||
|
\end{equation}
|
||||||
|
By definition, we have the following condition on $\bH^\text{od}$
|
||||||
|
\begin{equation}
|
||||||
|
\bH^\text{od}(\infty) = \boldsymbol{0}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
In this work, we will use Wegner's canonical generator which is defined as
|
||||||
|
\begin{equation}
|
||||||
|
\boldsymbol{\eta}^\text{W}(s) = \comm{\bH^\text{d}(s)}{\bH(s)} = \comm{\bH^\text{d}(s)}{\bH^\text{od}(s)}.
|
||||||
|
\end{equation}
|
||||||
|
This generator has the advantage of defining a true renormalisation scheme, \ie the coupling coefficients with the highest energy determinants are removed first.
|
||||||
|
One of the flaws of this generator is that it generates a stiff set of ODE which is difficult to solve numerically.
|
||||||
|
However, here we consider analytical perturbative expressions so we will not be affected by this problem.
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{The electronic Hamiltonian}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
In this part, we derive the perturbative expression for the SRG applied to the non-relativistic electronic Hamiltonian
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:hamiltonianSecondQuant}
|
||||||
|
\hH = \sum_{pq} f_{pq} \cre{p}\ani{q} + \frac{1}{4} \sum_{pqrs} \aeri{pq}{rs} \cre{p}\cre{q}\ani{r}\ani{s}
|
||||||
|
\end{equation}
|
||||||
|
which can also be written in normal order wrt a reference determinant as
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:hamiltonianNormalOrder}
|
||||||
|
\hH = E_0 + \sum_{pq} + f_p^q\no{q}{p} + \frac{1}{4} \sum_{pqrs}v_{pq}^{rs}\no{rs}{pq}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
In this case, we want to decouple the reference determinant from every singly and doubly excited determinants.
|
||||||
|
Hence, we define the off-diagonal Hamiltonian as
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:hamiltonianOffDiagonal}
|
||||||
|
\hH^{\text{od}}(s) = \sum_{ia} + f_i^a(s)\no{a}{i} + \frac{1}{4} \sum_{ijab}v(s)_{ij}^{ab}\no{ab}{ij}.
|
||||||
|
\end{equation}
|
||||||
|
Note that each coefficients depend on $s$.
|
||||||
|
|
||||||
|
The perturbative parameter $\la$ is such that
|
||||||
|
\begin{equation}
|
||||||
|
\bH(0) = E_0(0) + F(0) + \la V(0)
|
||||||
|
\end{equation}
|
||||||
|
In addition, we know the following initial conditions.
|
||||||
|
We use the HF basis set of the reference such that $F^{\text{od}}(0) = 0$ and $F^{\mathrm{d}}(0)=\delta_{pq}\epsilon_p$
|
||||||
|
Therefore, we have
|
||||||
|
\begin{align}
|
||||||
|
\bH^\text{d}(0)&=E_0(0) + F^{\mathrm{d}}(0) + \la V^{\mathrm{d}}(0) & \bH^\text{od}(0)&= \la V^{\mathrm{od}}(0)
|
||||||
|
\end{align}
|
||||||
|
Now, we want to compute the terms at each order of the following development
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:hamiltonianPTExpansion}
|
||||||
|
\bH(s) = \bH^{(0)}(s) + \bH^{(1)}(s) + \bH^{(2)}(s) + \bH^{(3)}(s) + \dots
|
||||||
|
\end{equation}
|
||||||
|
by integrating Eq.~\eqref{eq:flowEquation}.
|
||||||
|
First, we start by showing that the zeroth order Hamiltonian is independant of $s$ and therefore equal to $\bH^{(0)}(0)$
|
||||||
|
\begin{align}
|
||||||
|
\bH(\delta s) &= \bH(0) + \delta s \dv{\bH(s)}{s}\bigg|_{s=0} + O(\delta s^2) \\
|
||||||
|
\dv{\bH(s)}{s}\bigg|_{s=0} &= [ \boldsymbol{\eta}(0), \bH(0)] \\
|
||||||
|
\end{align}
|
||||||
|
However, we have seen that $\bH^\text{od}(0)$ is of order 1.
|
||||||
|
Hence, $\boldsymbol{\eta}(0)$ does not have a zero order contribution.
|
||||||
|
Which gives us the following equality
|
||||||
|
\begin{equation}
|
||||||
|
\bH^{(0)}(\delta s) = \bH^{(0)}(0)
|
||||||
|
\end{equation}
|
||||||
|
meaning that the zeroth order Hamiltonian is independant of $s$.
|
||||||
|
|
||||||
|
The right-hand side of \eqref{eq:flowEquation} has no zeroth order, so we want to compute its first order term.
|
||||||
|
To do so, we first need to compute the first order term of $\boldsymbol{\eta}(s)$.
|
||||||
|
We have seen that $\bH^\text{od}(0)$ has no zeroth order contribution so we have
|
||||||
|
\begin{equation}
|
||||||
|
\boldsymbol{\eta}^{(1)}(s) = \comm{\bH^{\text{d},(0)}(0)}{\bH^{\text{od},(1)}(s)}
|
||||||
|
\end{equation}
|
||||||
|
According to the appendix the one-body part of $\boldsymbol{\eta}^{(1)}(s) $ has four contributions. However, two of them involve the two-body part of $\bH^{\text{d},(0)}(0)$ which is equal to zero.
|
||||||
|
In addition, the term $\left[A_{1}, B_{2}\right]_{p}^{q}$ involves the coefficients $A_i^a = f_i^a(0) = 0$.
|
||||||
|
So finally we only have one term
|
||||||
|
\begin{align}
|
||||||
|
\eta_a^{i,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(1)}(s)} \\
|
||||||
|
&= \sum_r \left( f_a^r(0) f_r^{i,(1)}(s) - f_r^i(0) f_a^{r,(1)}(s) \right) \\
|
||||||
|
&= (\epsilon_a - \epsilon_i)f_a^{i,(1)}(s)
|
||||||
|
\end{align}
|
||||||
|
Now turning to the two-body part of $\boldsymbol{\eta}^{(1)}(s) $ and once again two terms are zero because the two-body part of $\bH^{\text{d},(0)}(0)$ is equal to zero.
|
||||||
|
So we have
|
||||||
|
\begin{align}
|
||||||
|
\eta_{ab}^{ij,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_2^{\text{od},(1)}(s)} \\
|
||||||
|
&= \sum_t [P(ab) f_a^t(0) v_{tb}^{ij,(1)}(s) - P(ij) f_t^i(0) v_{ab}^{tj,(1)}(s) ] \\
|
||||||
|
&= \sum_t [ P(ab) \epsilon_a \delta_{at}v_{tb}^{ij,(1)}(s) - P(ij) \epsilon_i \delta_{it} v_{ab}^{tj,(1)}(s) ] \\
|
||||||
|
&= P(ab) \epsilon_a v_{ab}^{ij,(1)}(s) - P(ij) \epsilon_i v_{ab}^{ij,(1)}(s) \\
|
||||||
|
&= \left( \epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j \right) v_{ab}^{ij,(1)}
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
WIP...
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{The unfolded GW Hamiltonian}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
\appendix
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Matrix elements of $C=[A, B]_{1,2}$}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
An operator $A$ containing at most two-body terms may be written in normal ordered form with respect to the reference $\Phi$ as
|
||||||
|
|
||||||
|
$$
|
||||||
|
A=A_{0}+A_{1}+A_{2},
|
||||||
|
$$
|
||||||
|
|
||||||
|
where $A_{0}$ is a scalar, and
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{gathered}
|
||||||
|
A_{1}=\sum_{p q} A_{p}^{q}\left\{\hat{a}_{q}^{p}\right\}, \\
|
||||||
|
A_{2}=\frac{1}{4} \sum_{p q r s} A_{p q}^{r s}\left\{\hat{a}_{r s}^{p q}\right\},
|
||||||
|
\end{gathered}
|
||||||
|
$$
|
||||||
|
|
||||||
|
with the second quantization operator written compactly as $\hat{a}_{q}^{p}=\hat{a}_{p}^{\dagger} \hat{a}_{q}$ and $\hat{a}_{r s}^{p q}=\hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{s} \hat{a}_{r}$. The commutator $C=[A, B]_{1,2}$ contains contributions from the following terms:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{gathered}
|
||||||
|
C_{0}=\left\langle\Phi\left|\left[A_{1}, B_{1}\right]\right| \Phi\right\rangle+\left\langle\Phi\left|\left[A_{2}, B_{2}\right]\right| \Phi\right\rangle, \\
|
||||||
|
C_{p}^{q}=\left[A_{1}, B_{1}\right]_{p}^{q}+\left[A_{1}, B_{2}\right]_{p}^{q}-\left[B_{1}, A_{2}\right]_{p}^{q}+\left[A_{2}, B_{2}\right]_{p}^{q}, \\
|
||||||
|
C_{p q}^{r s}=\left[A_{1}, B_{2}\right]_{p q}^{r s}-\left[B_{1}, A_{2}\right]_{p q}^{r s}+\left[A_{2}, B_{2}\right]_{p q}^{r s},
|
||||||
|
\end{gathered}
|
||||||
|
$$
|
||||||
|
|
||||||
|
where the unique contributions to the matrix elements are
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{gathered}
|
||||||
|
\left\langle\Phi\left|\left[A_{1}, B_{1}\right]\right| \Phi\right\rangle=\sum_{p} \sum_{i}\left(A_{i}^{p} B_{p}^{i}-B_{i}^{p} A_{p}^{i}\right), \\
|
||||||
|
\left\langle\Phi\left|\left[A_{2}, B_{2}\right]\right| \Phi\right\rangle=\frac{1}{4} \sum_{i j} \sum_{a b}\left(A_{i j}^{a b} B_{a b}^{i j}-B_{i j}^{a b} A_{a b}^{i j}\right), \\
|
||||||
|
{\left[A_{1}, B_{1}\right]_{p}^{q}=\sum_{r}\left(A_{p}^{r} B_{r}^{q}-B_{p}^{r} A_{r}^{q}\right),} \\
|
||||||
|
{\left[A_{1}, B_{2}\right]_{p}^{q}=\sum_{i} \sum_{a} A_{i}^{a} B_{p a}^{q i}-A_{a}^{i} B_{p i}^{q a},} \\
|
||||||
|
{\left[A_{2}, B_{2}\right]_{p}^{q}=\frac{1}{2} \sum_{i j} \sum_{a}\left(A_{a p}^{i j} B_{i j}^{a q}-A_{i j}^{a q} B_{a p}^{i j}\right)} \\
|
||||||
|
+\frac{1}{2} \sum_{i} \sum_{a b}\left(A_{i p}^{a b} B_{a b}^{i q}-A_{a b}^{i q} B_{i p}^{a b}\right), \\
|
||||||
|
{\left[A_{1}, B_{2}\right]_{p q}^{r s}=\sum_{t}\left[P(p q) A_{p}^{t} B_{t q}^{r s}-P(r s) A_{t}^{r} B_{p q}^{t s}\right],} \\
|
||||||
|
{\left[A_{2}, B_{2}\right]_{p q}^{r s}=\frac{1}{2} \sum_{a b}\left(A_{p q}^{a b} B_{a b}^{r s}-A_{a b}^{r s} B_{p q}^{a b}\right)} \\
|
||||||
|
-\frac{1}{2} \sum_{i j}\left(A_{p q}^{i j} B_{i j}^{r s}-A_{i j}^{r s} B_{p q}^{i j}\right) \\
|
||||||
|
+\sum_{i} \sum_{a} P(p q) P(r s)\left[A_{p i}^{r a} B_{q a}^{s i}-A_{p a}^{r i} B_{q i}^{s a}\right] .
|
||||||
|
\end{gathered}
|
||||||
|
$$
|
||||||
|
|
||||||
|
In these equations $P(r s)$ is the antisymmetric permutation operator.
|
||||||
|
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue
Block a user