captions and table
This commit is contained in:
parent
89db450a0c
commit
d15b4d65a2
@ -681,8 +681,8 @@ Then, the accuracy of the principal IPs and EAs produced by the qs$GW$ and SRG-q
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{fig3.pdf}
|
||||
\caption{
|
||||
Principal IP of the water molecule in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
|
||||
Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines.
|
||||
Error [with respect to $\Delta$CCSD(T)] in the principal IP of water in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
|
||||
The HF and qs$GW$ (with and without TDA) values are reported as dashed lines.
|
||||
\PFL{Should we have a similar figure for EAs? (maybe not water though)}
|
||||
\ANT{I did the plot, let's discuss it at the next meeting}
|
||||
\label{fig:fig2}}
|
||||
@ -693,8 +693,8 @@ Then, the accuracy of the principal IPs and EAs produced by the qs$GW$ and SRG-q
|
||||
\begin{figure*}
|
||||
\includegraphics[width=\linewidth]{fig4.pdf}
|
||||
\caption{
|
||||
Principal IP of the \ce{Li2}, \ce{LiH} and \ce{BeO} in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
|
||||
Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines.
|
||||
Error [with respect to $\Delta$CCSD(T)] in the principal IP of \ce{Li2}, \ce{LiH} and \ce{BeO} in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
|
||||
The HF and qs$GW$ (with and without TDA) values are reported as dashed lines.
|
||||
\label{fig:fig3}}
|
||||
\end{figure*}
|
||||
%%% %%% %%% %%%
|
||||
@ -766,8 +766,8 @@ Therefore, it seems that the effect of the TDA cannot be systematically predicte
|
||||
\begin{figure*}
|
||||
\includegraphics[width=\linewidth]{fig5.pdf}
|
||||
\caption{
|
||||
Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first ionization potential of the GW50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$.
|
||||
\PFL{Add MAE and MSE values to each figure.}
|
||||
Histogram of the errors [with respect to $\Delta$CCSD(T)] for the principal IP of the $GW$50 test set calculated using HF, $G_0W_0$@HF, qs$GW$, and SRG-qs$GW$.
|
||||
All calculations are performed with the aug-cc-pVTZ basis.
|
||||
\label{fig:fig4}}
|
||||
\end{figure*}
|
||||
%%% %%% %%% %%%
|
||||
@ -789,12 +789,16 @@ The evolution of the statistical descriptors with respect to the various methods
|
||||
The decrease of the MSE and SDE correspond to a shift of the maximum toward zero and a shrink of the distribution width, respectively.
|
||||
|
||||
\begin{table*}
|
||||
\caption{First ionization potential (left) and first electron attachment (right) in eV calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$. The statistical descriptors are computed for the errors with respect to the reference.}
|
||||
\caption{Principal IP and EA (in eV) of the $GW$50 test set calculated using $\Delta$CCSD(T) (reference), HF, $G_0W_0$@HF, qs$GW$, and SRG-qs$GW$.
|
||||
The statistical descriptors associated with the errors with respect to the reference values are also reported.
|
||||
All calculations are performed with the aug-cc-pVTZ basis.}
|
||||
\label{tab:tab1}
|
||||
\begin{ruledtabular}
|
||||
\begin{tabular}{l|ddddd|ddddd}
|
||||
Mol. & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\
|
||||
& \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} \\
|
||||
\begin{tabular}{ldddddddddd}
|
||||
& \mc{5}{c}{Principal IP} & \mc{5}{c}{Principal EA} \\
|
||||
\cline{2-6} \cline{7-11}
|
||||
& \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\
|
||||
Mol. & \mcc{(Ref.)} & & \mcc{($\eta=\num{e-3}$)} & \mcc{($\eta=\num{e-1}$)} & \mcc{($s=\num{e3}$)} & \mcc{(Ref.)} & & \mcc{($\eta=\num{e-3}$)} & \mcc{($\eta=\num{e-1}$)} & \mcc{($s=\num{e3}$)} \\
|
||||
\hline
|
||||
\ce{He} & 24.54 & 24.98 & 24.59 & 24.58 & 24.55 & -2.66 & -2.70 & -2.66 & -2.66 & -2.66 \\
|
||||
\ce{Ne} & 21.47 & 23.15 & 21.46 & 21.83 & 21.59 & -5.09 & -5.47 & -5.25 & -5.19 & -5.19 \\
|
||||
@ -846,10 +850,7 @@ The decrease of the MSE and SDE correspond to a shift of the maximum toward zero
|
||||
\ce{OCS} & 11.23 & 11.44 & 11.52 & 11.37 & 11.32 & -1.43 & -1.27 & -1.03 & -0.97 & -0.98 \\
|
||||
\ce{SO2} & 10.48 & 11.47 & 11.38 & 10.85 & 10.82 & 2.24 & 1.84 & 2.82 & 2.74 & 2.68 \\
|
||||
\ce{C2H3Cl} & 10.17 & 10.13 & 10.39 & 10.27 & 10.24 & -0.61 & -0.79 & -0.66 & -0.65 & -0.65 \\
|
||||
\hline
|
||||
& \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} & \mcc{$\Delta\text{CCSD(T)}$} & \mcc{HF} & \mcc{$G_0W_0$@HF} & \mcc{qs$GW$} & \mcc{SRG-qs$GW$} \\
|
||||
& \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} & \mcc{(Reference)} & & \mcc{$\eta=\num{e-3}$} & \mcc{$\eta=\num{e-1}$} & \mcc{$s=\num{e3}$} \\
|
||||
\hline
|
||||
\hline
|
||||
MSE & & 0.56 & 0.29 & 0.23 & 0.17 & & -0.25 & 0.02 & 0.04 & 0.04 \\
|
||||
MAE & & 0.69 & 0.33 & 0.25 & 0.19 & & 0.31 & 0.16 & 0.13 & 0.12 \\
|
||||
SDE & & 0.68 & 0.31 & 0.18 & 0.16 & & 0.43 & 0.29 & 0.23 & 0.22 \\
|
||||
@ -864,7 +865,7 @@ The decrease of the MSE and SDE correspond to a shift of the maximum toward zero
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{fig6.pdf}
|
||||
\caption{
|
||||
SRG-qs$GW$ and qs$GW$ MAE of the IPs for the GW50 test set. The bottom and top axes are equivalent and related by $\eta=1/2s^2$. A different marker has been used for qs$GW$ at $\eta=0.05$ because the MAE includes only 48 molecules.
|
||||
SRG-qs$GW$ and qs$GW$ MAEs for the principal IPs of the $GW$50 test set. The bottom and top axes are equivalent and related by $\eta=1/(2s^2)$. A different marker has been used for qs$GW$ at $\eta=0.05$ because the MAE includes only 48 molecules.
|
||||
\label{fig:fig5}}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
@ -889,8 +890,8 @@ On the other hand, the imaginary shift regularizer acts equivalently on intruder
|
||||
\begin{figure*}
|
||||
\includegraphics[width=\linewidth]{fig7.pdf}
|
||||
\caption{
|
||||
Histogram of the errors (with respect to $\Delta$CCSD(T)) for the first electron attachment of the GW50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$.
|
||||
\PFL{Add MAE and MSE values to each figure.}
|
||||
Histogram of the errors [with respect to $\Delta$CCSD(T)] for the principal EA of the $GW$50 test set calculated using HF, $G_0W_0$@HF, qs$GW$ and SRG-qs$GW$.
|
||||
All calculations are performed with the aug-cc-pVTZ basis.
|
||||
\label{fig:fig6}}
|
||||
\end{figure*}
|
||||
%%% %%% %%% %%%
|
||||
|
Loading…
Reference in New Issue
Block a user