slide
This commit is contained in:
parent
2611c5456b
commit
cb9b4d3145
@ -21,13 +21,16 @@
|
|||||||
\newcommand{\pub}[1]{\textcolor{purple}{#1}}
|
\newcommand{\pub}[1]{\textcolor{purple}{#1}}
|
||||||
|
|
||||||
\newcommand{\bC}{\boldsymbol{C}}
|
\newcommand{\bC}{\boldsymbol{C}}
|
||||||
|
\newcommand{\bD}{\boldsymbol{D}}
|
||||||
\newcommand{\bF}{\boldsymbol{F}}
|
\newcommand{\bF}{\boldsymbol{F}}
|
||||||
\newcommand{\bH}{\boldsymbol{H}}
|
\newcommand{\bH}{\boldsymbol{H}}
|
||||||
\newcommand{\bHd}{\boldsymbol{H}_\text{d}}
|
\newcommand{\bHd}{\boldsymbol{H}_\text{d}}
|
||||||
\newcommand{\bHod}{\boldsymbol{H}_\text{od}}
|
\newcommand{\bHod}{\boldsymbol{H}_\text{od}}
|
||||||
\newcommand{\bO}{\boldsymbol{0}}
|
\newcommand{\bO}{\boldsymbol{0}}
|
||||||
\newcommand{\bI}{\boldsymbol{1}}
|
\newcommand{\bI}{\boldsymbol{1}}
|
||||||
|
\newcommand{\bU}{\boldsymbol{U}}
|
||||||
\newcommand{\bV}{\boldsymbol{V}}
|
\newcommand{\bV}{\boldsymbol{V}}
|
||||||
|
\newcommand{\bW}{\boldsymbol{W}}
|
||||||
\newcommand{\bEta}{\boldsymbol{\eta}}
|
\newcommand{\bEta}{\boldsymbol{\eta}}
|
||||||
\newcommand{\bSig}{\boldsymbol{\Sigma}}
|
\newcommand{\bSig}{\boldsymbol{\Sigma}}
|
||||||
\newcommand{\bpsi}{\boldsymbol{\psi}}
|
\newcommand{\bpsi}{\boldsymbol{\psi}}
|
||||||
@ -55,10 +58,10 @@
|
|||||||
\begin{equation}
|
\begin{equation}
|
||||||
\left.
|
\left.
|
||||||
\begin{array}{cc}
|
\begin{array}{cc}
|
||||||
\qty[ \bF + \bSig(\om) ] \bpsi = \om \bpsi
|
\qty[ \bF + \bSig_c(\om) ] \bpsi = \om \bpsi
|
||||||
\\
|
\\
|
||||||
\\
|
\\
|
||||||
\bSig(\om) = \bV \qty(\om \bI - \bC)^{-1} \bV^{\dag}
|
\bSig_c(\om) = \bV \qty(\om \bI - \bC)^{-1} \bV^{\dag}
|
||||||
\end{array}
|
\end{array}
|
||||||
\right\}
|
\right\}
|
||||||
\qq{$\xleftrightharpoons[upfolding]{downfolding}$}
|
\qq{$\xleftrightharpoons[upfolding]{downfolding}$}
|
||||||
@ -238,8 +241,10 @@
|
|||||||
- \qty[\bF^{(0)}]^2 \bV^{(1)}
|
- \qty[\bF^{(0)}]^2 \bV^{(1)}
|
||||||
- \bV^{(1)} \qty[\bC^{(0)}]^2
|
- \bV^{(1)} \qty[\bC^{(0)}]^2
|
||||||
\\
|
\\
|
||||||
|
\dv{\bW^{(1)}}{s} = 2 \bF^{(0)}\bW^{(1)} \bD^{(0)} - \qty[\bF^{(0)}]^2\bW^{(1)} - \bW^{(1)} \qty[\bD^{(0)}]^2 \\
|
||||||
|
\qq{with} \bW^{(1)} = \bV^{(1)} \bU \qq{and} \bC^{(0)} = \bU \bD^{(0)} \bU^{-1}\\
|
||||||
\Rightarrow
|
\Rightarrow
|
||||||
\boxed{\bV^{(1)}(s) = \bV^{(1)}(0) \cdots}
|
\boxed{W^{(1)}_{p,(q,v)}(s) = W_{p,(q,v)}^{(1)}(0)e^{-(\eps_p -\Omega_{q,v})^2s} = W_{p,(q,v)}^{(1)}(0)e^{-(\Delta_{p}^{(q,v)})^2s} }
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{block}
|
\end{block}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
@ -303,7 +308,7 @@
|
|||||||
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
||||||
\\
|
\\
|
||||||
\Rightarrow
|
\Rightarrow
|
||||||
\bF^{(2)}(s) = ?
|
F_{pq}^{(2)}(s) = \sum_{(r,v)} \frac{\Delta_p^{(r,v)} + \Delta_q^{(r,v)}}{(\Delta_p^{(r,v)})^2 + (\Delta_q^{(r,v)})^2 } W_{p,(r,v)}^{(1)}(0)W_{q,(r,v)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{q}^{(r,v)})^2s})
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\dv{\bC^{(2)}}{s}
|
\dv{\bC^{(2)}}{s}
|
||||||
@ -312,7 +317,7 @@
|
|||||||
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
||||||
\\
|
\\
|
||||||
\Rightarrow
|
\Rightarrow
|
||||||
\bC^{(2)}(s) = ?
|
C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s})
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{Off-diagonal terms}
|
\begin{block}{Off-diagonal terms}
|
||||||
@ -337,9 +342,9 @@
|
|||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{Regularized Fock elements}
|
\begin{block}{Regularized Fock elements}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\Tilde{\bF}(s) = \bF + \bF^{(2)}(s)
|
\Tilde{\bF}(s) = \bF + \bF^{(2)}(s)
|
||||||
\qq{with}
|
\qq{with}
|
||||||
\Tilde{\bF}_{pq}(s) = \delta_{pq} \eps_{p} - \sum_{rm} \frac{\Delta_m^{pr} \Delta_m^{qr}}
|
\Tilde{\bF}_{pq}(s) = \delta_{pq} \eps_{p} - \sum_{rm} \frac{\Tilde{W}_{pi,m}(s) \Tilde{W}_{qi,m}(s)}{\Delta_m^{pr} \Delta_m^{qr}}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{Regularized $GW$ self-energy}
|
\begin{block}{Regularized $GW$ self-energy}
|
||||||
|
Loading…
Reference in New Issue
Block a user