diff --git a/Slides/SRG-GF.tex b/Slides/SRG-GF.tex index f85f2e8..646fb36 100644 --- a/Slides/SRG-GF.tex +++ b/Slides/SRG-GF.tex @@ -21,13 +21,16 @@ \newcommand{\pub}[1]{\textcolor{purple}{#1}} \newcommand{\bC}{\boldsymbol{C}} +\newcommand{\bD}{\boldsymbol{D}} \newcommand{\bF}{\boldsymbol{F}} \newcommand{\bH}{\boldsymbol{H}} \newcommand{\bHd}{\boldsymbol{H}_\text{d}} \newcommand{\bHod}{\boldsymbol{H}_\text{od}} \newcommand{\bO}{\boldsymbol{0}} \newcommand{\bI}{\boldsymbol{1}} +\newcommand{\bU}{\boldsymbol{U}} \newcommand{\bV}{\boldsymbol{V}} +\newcommand{\bW}{\boldsymbol{W}} \newcommand{\bEta}{\boldsymbol{\eta}} \newcommand{\bSig}{\boldsymbol{\Sigma}} \newcommand{\bpsi}{\boldsymbol{\psi}} @@ -55,10 +58,10 @@ \begin{equation} \left. \begin{array}{cc} - \qty[ \bF + \bSig(\om) ] \bpsi = \om \bpsi + \qty[ \bF + \bSig_c(\om) ] \bpsi = \om \bpsi \\ \\ - \bSig(\om) = \bV \qty(\om \bI - \bC)^{-1} \bV^{\dag} + \bSig_c(\om) = \bV \qty(\om \bI - \bC)^{-1} \bV^{\dag} \end{array} \right\} \qq{$\xleftrightharpoons[upfolding]{downfolding}$} @@ -238,8 +241,10 @@ - \qty[\bF^{(0)}]^2 \bV^{(1)} - \bV^{(1)} \qty[\bC^{(0)}]^2 \\ + \dv{\bW^{(1)}}{s} = 2 \bF^{(0)}\bW^{(1)} \bD^{(0)} - \qty[\bF^{(0)}]^2\bW^{(1)} - \bW^{(1)} \qty[\bD^{(0)}]^2 \\ + \qq{with} \bW^{(1)} = \bV^{(1)} \bU \qq{and} \bC^{(0)} = \bU \bD^{(0)} \bU^{-1}\\ \Rightarrow - \boxed{\bV^{(1)}(s) = \bV^{(1)}(0) \cdots} + \boxed{W^{(1)}_{p,(q,v)}(s) = W_{p,(q,v)}^{(1)}(0)e^{-(\eps_p -\Omega_{q,v})^2s} = W_{p,(q,v)}^{(1)}(0)e^{-(\Delta_{p}^{(q,v)})^2s} } \end{gather} \end{block} \end{frame} @@ -303,7 +308,7 @@ - 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag} \\ \Rightarrow - \bF^{(2)}(s) = ? + F_{pq}^{(2)}(s) = \sum_{(r,v)} \frac{\Delta_p^{(r,v)} + \Delta_q^{(r,v)}}{(\Delta_p^{(r,v)})^2 + (\Delta_q^{(r,v)})^2 } W_{p,(r,v)}^{(1)}(0)W_{q,(r,v)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{q}^{(r,v)})^2s}) \end{gather} \begin{gather} \dv{\bC^{(2)}}{s} @@ -312,7 +317,7 @@ - 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag} \\ \Rightarrow - \bC^{(2)}(s) = ? + C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s}) \end{gather} \end{block} \begin{block}{Off-diagonal terms} @@ -337,9 +342,9 @@ \end{block} \begin{block}{Regularized Fock elements} \begin{equation} - \Tilde{\bF}(s) = \bF + \bF^{(2)}(s) - \qq{with} - \Tilde{\bF}_{pq}(s) = \delta_{pq} \eps_{p} - \sum_{rm} \frac{\Delta_m^{pr} \Delta_m^{qr}} + \Tilde{\bF}(s) = \bF + \bF^{(2)}(s) + \qq{with} + \Tilde{\bF}_{pq}(s) = \delta_{pq} \eps_{p} - \sum_{rm} \frac{\Tilde{W}_{pi,m}(s) \Tilde{W}_{qi,m}(s)}{\Delta_m^{pr} \Delta_m^{qr}} \end{equation} \end{block} \begin{block}{Regularized $GW$ self-energy}