working on notations

This commit is contained in:
Antoine Marie 2023-01-13 11:31:12 +01:00
parent e9f5252396
commit bb827476b7

View File

@ -202,6 +202,8 @@ and the corresponding coupling blocks read
& &
V^\text{2p1h}_{p,kcd} & = \eri{pk}{dc}. V^\text{2p1h}_{p,kcd} & = \eri{pk}{dc}.
\end{align} \end{align}
Throughout the manuscript $p,q,r,s$ indices are used for general orbitals while $i,j,k,l$ and $a,b,c,d$ refers to occupied and virtual orbitals, respectively.
The indices $v$ and $w$ will be used for neutral excitations, \ie composite indices $v=(ia)$.
The usual $GW$ non-linear equation can be obtained by applying L\"odwin partitioning technique to Eq.~(\ref{eq:GWlin}) \cite{Lowdin_1963,Bintrim_2021} The usual $GW$ non-linear equation can be obtained by applying L\"odwin partitioning technique to Eq.~(\ref{eq:GWlin}) \cite{Lowdin_1963,Bintrim_2021}
\begin{equation} \begin{equation}
\label{eq:GWnonlin} \label{eq:GWnonlin}
@ -327,7 +329,7 @@ As hinted at the end of section~\ref{sec:gw}, the diagonal and off-diagonal part
\end{pmatrix} \end{pmatrix}
\end{align} \end{align}
where we have omitted the $s$ dependence of the matrix elements for the sake of brevity. where we have omitted the $s$ dependence of the matrix elements for the sake of brevity.
Then, the aim of this section is to solve analytically the flow equation [see Eq.~(\ref{eq:flowEquation})] order by order knowing that the initial conditions are Then, the aim of this section is to solve order by order the flow equation [see Eq.~(\ref{eq:flowEquation})] knowing that the initial conditions are
\begin{align} \begin{align}
\bHd{0}(0) &= \begin{pmatrix} \bHd{0}(0) &= \begin{pmatrix}
\bF{}{} & \bO \\ \bF{}{} & \bO \\
@ -346,7 +348,7 @@ Then, the aim of this section is to solve analytically the flow equation [see Eq
\bV{}{\dagger} & \bO \notag \bV{}{\dagger} & \bO \notag
\end{pmatrix} \notag \end{pmatrix} \notag
\end{align} \end{align}
where we have defined $\bC$ and $\bV$ that collects the 2h1p and 2p1h channels for the sake of conciseness. where we have defined the matrix $\bC$ and $\bV$ that collects the 2h1p and 2p1h channels for the sake of conciseness.
Then, the perturbative expansions can be inserted in Eq.~(\ref{eq:GWlin}) before downfolding to obtain a renormalised quasi-particle equation. Then, the perturbative expansions can be inserted in Eq.~(\ref{eq:GWlin}) before downfolding to obtain a renormalised quasi-particle equation.
In particular, in this manuscript the focus will be on the second-order renormalized quasi-particle equation. In particular, in this manuscript the focus will be on the second-order renormalized quasi-particle equation.
@ -367,6 +369,8 @@ and performing the block matrix products gives the following system of equations
\dv{\bV^{(0)}}{s} &= 2 \bF^{(0)}\bV^{(0)}\bC^{(0)} - (\bF^{(0)})^2\bV^{(0)} - \bV^{(0)}(\bC^{(0)})^2 \dv{\bV^{(0)}}{s} &= 2 \bF^{(0)}\bV^{(0)}\bC^{(0)} - (\bF^{(0)})^2\bV^{(0)} - \bV^{(0)}(\bC^{(0)})^2
\end{align} \end{align}
\end{subequations} \end{subequations}
where the $s$ dependence of $\bV^{(0)}$ and $\bV^{(0),\dagger}$ has been dropped in the last two equations.
$\bF^{(0)}$ and $\bC^{(0)}$ do not depend on $s$ as a consequence of the first two equations.
The last equation can be solved by introducing $\bU$ the matrix that diagonalizes $\bC^{(0)} = \bU \bD^{(0)} \bU^{-1}$ such that the differential equation for $\bV^{(0)}$ becomes The last equation can be solved by introducing $\bU$ the matrix that diagonalizes $\bC^{(0)} = \bU \bD^{(0)} \bU^{-1}$ such that the differential equation for $\bV^{(0)}$ becomes
\begin{equation} \begin{equation}
\dv{\bW^{(0)}}{s} = 2 \bF^{(0)}\bW^{(0)} \bD^{(0)} - (\bF^{(0)})^2\bW^{(0)} - \bW^{(0)} (\bD^{(0)})^2 \dv{\bW^{(0)}}{s} = 2 \bF^{(0)}\bW^{(0)} \bD^{(0)} - (\bF^{(0)})^2\bW^{(0)} - \bW^{(0)} (\bD^{(0)})^2
@ -383,6 +387,12 @@ The two first equations of the system are trivial and finally we have
\bH^{(0)}(s) = \bH^{(0)}(0) \bH^{(0)}(s) = \bH^{(0)}(0)
\end{equation} \end{equation}
which shows that the zero-th order matrix elements are independent of $s$. which shows that the zero-th order matrix elements are independent of $s$.
The matrix elements of $\bU$ and $\bD$ are
\begin{align}
U_{(p,v),(q,w)}^{(0)} &= \delta_{pq} \bX_{v,w} \\
D_{(p,v),(q,w)}^{(0)} &= \left(\epsilon_p + \text{sign}(\epsilon_p-\epsilon_F)\Omega_v\right)\delta_{pq}\delta_{vw}
\end{align}
where $\epsilon_F$ is the Fermi level.
%///////////////////////////% %///////////////////////////%
\subsubsection{First order matrix elements} \subsubsection{First order matrix elements}
@ -399,9 +409,10 @@ Once again the two first equations are easily solved
\bF^{(1)}(s) &= \bF^{(1)}(0) = \bO & \bC^{(1)}(s) &= \bC^{(1)}(0) = \bO. \bF^{(1)}(s) &= \bF^{(1)}(0) = \bO & \bC^{(1)}(s) &= \bC^{(1)}(0) = \bO.
\end{align} \end{align}
and the first order coupling elements are given by (up to a multiplication by $\bU^{-1}$) and the first order coupling elements are given by (up to a multiplication by $\bU^{-1}$)
\begin{equation} \begin{align}
W_{p,(q,v)}^{(1)}(s) = W_{p,(q,v)}^{(1)}(0) e^{- (F_{pp}^{(0)} - D_{(q,v),(q,v)}^{(0)})^2 s} W_{p,(q,v)}^{(1)}(s) &= W_{p,(q,v)}^{(1)}(0) e^{- (F_{pp}^{(0)} - D_{(q,v),(q,v)}^{(0)})^2 s} \\
\end{equation} W_{p,(q,v)}^{(1)}(s) &= \left( \sum_{ia}\eri{pi}{qa}\qty( \bX_{v})_{ia} \right) e^{- (\epsilon_p - \epsilon_q - \text{sign}(\epsilon_q-\epsilon_F)\Omega_v)^2 s}
\end{align}
Note that at $s=0$ the elements $W_{p,(q,v)}^{(1)}(0)$ are equal to the two-electron screened integrals defined in Eq.~(\ref{eq:GW_sERI}) and that for $s\to\infty$ they go to zero. Note that at $s=0$ the elements $W_{p,(q,v)}^{(1)}(0)$ are equal to the two-electron screened integrals defined in Eq.~(\ref{eq:GW_sERI}) and that for $s\to\infty$ they go to zero.
Therefore, $W_{p,(q,v)}^{(1)}(s)$ are renormalized two-electrons screened integrals. Therefore, $W_{p,(q,v)}^{(1)}(s)$ are renormalized two-electrons screened integrals.
Note the close similarity of the first-order element expressions with the ones of Evangelista in Ref.~\onlinecite{Evangelista_2014b} obtained in a second quantization formalism (see also Ref.~\onlinecite{Hergert_2016}). Note the close similarity of the first-order element expressions with the ones of Evangelista in Ref.~\onlinecite{Evangelista_2014b} obtained in a second quantization formalism (see also Ref.~\onlinecite{Hergert_2016}).
@ -418,6 +429,7 @@ The second-order renormalised quasi-particle equation is given by
with with
\begin{align} \begin{align}
\widetilde{\bF}(s) &= \bF^{(0)}+\bF^{(2)}(s)\\ \widetilde{\bF}(s) &= \bF^{(0)}+\bF^{(2)}(s)\\
\label{eq:srg_sigma}
\widetilde{\bSig}(\omega; s) &= \bV^{(1)}(s) \left(\omega \mathbb{1} - \bC^{(0)}\right)^{-1} (\bV^{(1)}(s))^{\dagger} \widetilde{\bSig}(\omega; s) &= \bV^{(1)}(s) \left(\omega \mathbb{1} - \bC^{(0)}\right)^{-1} (\bV^{(1)}(s))^{\dagger}
\end{align} \end{align}
@ -428,16 +440,18 @@ Collecting every second-order terms and performing the block matrix products res
\dv{\bF^{(2)}}{s} = \bF^{(0)}\bV^{(1)}\bV^{(1),\dagger} + \bV^{(1)}\bV^{(1),\dagger}\bF^{(0)} - 2 \bV^{(1)}\bC^{(0)}\bV^{(1),\dagger} . \dv{\bF^{(2)}}{s} = \bF^{(0)}\bV^{(1)}\bV^{(1),\dagger} + \bV^{(1)}\bV^{(1),\dagger}\bF^{(0)} - 2 \bV^{(1)}\bC^{(0)}\bV^{(1),\dagger} .
\end{equation} \end{equation}
This can be solved by simple integration along with the initial condition $\bF^{(2)}=\bO$ to give This can be solved by simple integration along with the initial condition $\bF^{(2)}=\bO$ to give
\begin{align} \begin{equation}
F_{pq}^{(2)}(s) &= \sum_{r,v} \frac{\epsilon_{p} + \epsilon_{q} - 2 (\epsilon_r \pm \Omega_v)}{(\epsilon_p - \epsilon_r \pm \Omega_v)^2 + (\epsilon_q - \epsilon_r \pm \Omega_v)^2} W_{p,(r,v)} \notag \\ F_{pq}^{(2)}(s) = \sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W^{\dagger}_{(r,v),q}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right).
&\times W^{\dagger}_{(r,v),q}\left(1 - e^{-(\epsilon_p - \epsilon_r \pm \Omega_v)^2s} e^{-(\epsilon_q - \epsilon_r \pm \Omega_v)^2s}\right). \end{equation}
\end{align} with $\Delta_{pqv} = \epsilon_p - \epsilon_q - \text{sign}(\epsilon_q-\epsilon_F)\Omega_v$.
At $s=0$, this second-order correction is null and for $s\to\infty$ it tends towards the following static limit
At $s=0$, this second-order correction is null while for $s\to\infty$ it tends towards the following static limit
\begin{equation} \begin{equation}
\label{eq:static_F2} \label{eq:static_F2}
F_{pq}^{(2)}(\infty) = \sum_{r,v} \frac{\left(\epsilon_{p} + \epsilon_{q} - 2 (\epsilon_r \pm \Omega_v)\right) W_{p,(r,v)} W_{q,(r,v)}}{(\epsilon_p - \epsilon_r \pm \Omega_v)^2 + (\epsilon_q - \epsilon_r \pm \Omega_v)^2}. F_{pq}^{(2)}(\infty) = \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W^{\dagger}_{(r,v),q}.
\end{equation} \end{equation}
Therefore, the SRG flow gradually transforms the dynamic degrees of freedom in $\bSig(\omega)$ in static ones, starting from the ones that have the largest denominators in Eq.~(\ref{eq:static_F2}). Note that in the $s\to\infty$ limit the dynamic part of the self-energy [see Eq.~\eqref{eq:srg_sigma}] tends to zero.
Therefore, the SRG flow gradually transforms the dynamic degrees of freedom of $\bSig(\omega)$ in static ones, starting from the ones that have the largest denominators in Eq.~(\ref{eq:static_F2}).
Interestingly, the static limit, \ie $s\to\infty$ limit, of Eq.~(\ref{eq:GW_renorm}) defines an alternative qs$GW$ approximation to the one defined by Eq.~(\ref{eq:sym_qsgw}). Interestingly, the static limit, \ie $s\to\infty$ limit, of Eq.~(\ref{eq:GW_renorm}) defines an alternative qs$GW$ approximation to the one defined by Eq.~(\ref{eq:sym_qsgw}).
Yet, both are closely related as they share the same diagonal terms. Yet, both are closely related as they share the same diagonal terms.
Also, note that the hermiticity is naturally enforced in the SRG static approximation as opposed to the symmetrized case. Also, note that the hermiticity is naturally enforced in the SRG static approximation as opposed to the symmetrized case.