From b20c2b2e8bf43a33665feb604669786e448226f9 Mon Sep 17 00:00:00 2001 From: Antoine MARIE Date: Thu, 2 Feb 2023 22:02:51 +0100 Subject: [PATCH] making it compile --- Manuscript/SRGGW.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Manuscript/SRGGW.tex b/Manuscript/SRGGW.tex index bb83972..7b3cfce 100644 --- a/Manuscript/SRGGW.tex +++ b/Manuscript/SRGGW.tex @@ -455,7 +455,7 @@ The two first equations imply \end{align} and thanks to the diagonal structure of $\bF^{(0)}$ and $\bC^{(0)}$ the differential equations for the coupling elements are easily solved and give \begin{equation} - W_{p,q\nu}^{(1)}(s) &= W_{p,q\nu}^{(1)}(0) e^{- (F_{pp}^{(0)} - C_{q\nu,q\nu}^{(0)})^2 s} + W_{p,q\nu}^{(1)}(s) = W_{p,q\nu}^{(1)}(0) e^{- (F_{pp}^{(0)} - C_{q\nu,q\nu}^{(0)})^2 s} \end{equation} At $s=0$ the elements $W_{p,q\nu}^{(1)}(0)$ are equal to the two-electron screened integrals defined in Eq.~\eqref{eq:GW_sERI} while for $s\to\infty$ they go to zero. Therefore, $W_{p,q\nu}^{(1)}(s)$ are renormalized two-electrons screened integrals.