saving work

This commit is contained in:
Antoine Marie 2023-01-22 17:11:24 +01:00
parent 4ab91030ca
commit a4a303353e

View File

@ -480,9 +480,10 @@ Collecting every second-order terms in the flow equation and performing the bloc
\dv{\bF^{(2)}}{s} = \bF^{(0)}\bV^{(1)}\bV^{(1),\dagger} + \bV^{(1)}\bV^{(1),\dagger}\bF^{(0)} - 2 \bV^{(1)}\bC^{(0)}\bV^{(1),\dagger} .
\end{equation}
This can be solved by simple integration along with the initial condition $\bF^{(2)}=\bO$ to give
\begin{equation}
F_{pq}^{(2)}(s) = \sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W^{\dagger}_{(r,v),q}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right).
\end{equation}
\begin{align}
&F_{pq}^{(2)}(s) = \\
&\sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W^{\dagger}_{(r,v),q}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right), \notag
\end{align}
with $\Delta_{prv} = \epsilon_p - \epsilon_r - \text{sign}(\epsilon_r-\epsilon_F)\Omega_v$.
At $s=0$, this second-order correction is null while for $s\to\infty$ it tends towards the following static limit
@ -495,10 +496,11 @@ Therefore, the SRG flow transforms the dynamic part of $\bSig(\omega)$ into a st
This transformation is done gradually starting from the states that have the largest denominators in Eq.~\eqref{eq:static_F2}.
Interestingly, the static limit, \ie $s\to\infty$ limit, of Eq.~\eqref{eq:GW_renorm} defines an alternative qs$GW$ approximation to the one defined by Eq.~\eqref{eq:sym_qsgw} which matrix elements read as
\begin{equation}
\label{eq:static_F2}
\Sigma_{pq}^{\text{qs}GW}(\eta) = \sum_{r,v} \left( \frac{\Delta_{prv}}{\Delta_{prv}^2 + \eta^2} +\frac{\Delta_{qrv}}{\Delta_{qrv}^2 + \eta^2} \right) W_{p,(r,v)} W^{\dagger}_{(r,v),q}.
\end{equation}
\begin{align}
\label{eq:sym_qsGW}
&\Sigma_{pq}^{\text{qs}GW}(\eta) = \\
&\frac{1}{2} \sum_{r,v} \left( \frac{\Delta_{prv}}{\Delta_{prv}^2 + \eta^2} +\frac{\Delta_{qrv}}{\Delta_{qrv}^2 + \eta^2} \right) W_{p,(r,v)} W^{\dagger}_{(r,v),q}. \notag
\end{align}
Yet, both approximation are closely related as they share the same diagonal terms when $\eta=0$.
Also, note that the SRG static approximation is naturally Hermitian as opposed to the symmetrized case where it is enforced by symmetrization.
@ -508,7 +510,8 @@ Indeed, in qs$GW$ calculation using the symmetrized static form, increasing $\et
Therefore, we will define the SRG-qs$GW$ static effective Hamiltonian as
\begin{align}
\label{eq:SRG_qsGW}
\Sigma_{pq}^{\text{SRG}}(s) = \frac{1}{2} \sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W_{q,(r,v)}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right)
&\Sigma_{pq}^{\text{SRG}}(s) = \\
&\sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W_{q,(r,v)}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right) \notag
\end{align}
which depends on one regularising parameter $s$ analogously to $\eta$ in the usual case.
The fact that the $s\to\infty$ static limit does not always converge when used in a qs$GW$ calculation could have been predicted because in this limit even the intruder states have been included in $\tilde{\bF}$.
@ -541,7 +544,6 @@ This means that the cations used an unrestricted HF reference while the neutral
\label{sec:results}
%=================================================================%
%%%%%%%%%%%%%%%%%%%%%%
\section{Conclusion}
%%%%%%%%%%%%%%%%%%%%%%