saving work
This commit is contained in:
parent
4ab91030ca
commit
a4a303353e
@ -480,9 +480,10 @@ Collecting every second-order terms in the flow equation and performing the bloc
|
||||
\dv{\bF^{(2)}}{s} = \bF^{(0)}\bV^{(1)}\bV^{(1),\dagger} + \bV^{(1)}\bV^{(1),\dagger}\bF^{(0)} - 2 \bV^{(1)}\bC^{(0)}\bV^{(1),\dagger} .
|
||||
\end{equation}
|
||||
This can be solved by simple integration along with the initial condition $\bF^{(2)}=\bO$ to give
|
||||
\begin{equation}
|
||||
F_{pq}^{(2)}(s) = \sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W^{\dagger}_{(r,v),q}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right).
|
||||
\end{equation}
|
||||
\begin{align}
|
||||
&F_{pq}^{(2)}(s) = \\
|
||||
&\sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W^{\dagger}_{(r,v),q}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right), \notag
|
||||
\end{align}
|
||||
with $\Delta_{prv} = \epsilon_p - \epsilon_r - \text{sign}(\epsilon_r-\epsilon_F)\Omega_v$.
|
||||
|
||||
At $s=0$, this second-order correction is null while for $s\to\infty$ it tends towards the following static limit
|
||||
@ -495,10 +496,11 @@ Therefore, the SRG flow transforms the dynamic part of $\bSig(\omega)$ into a st
|
||||
This transformation is done gradually starting from the states that have the largest denominators in Eq.~\eqref{eq:static_F2}.
|
||||
|
||||
Interestingly, the static limit, \ie $s\to\infty$ limit, of Eq.~\eqref{eq:GW_renorm} defines an alternative qs$GW$ approximation to the one defined by Eq.~\eqref{eq:sym_qsgw} which matrix elements read as
|
||||
\begin{equation}
|
||||
\label{eq:static_F2}
|
||||
\Sigma_{pq}^{\text{qs}GW}(\eta) = \sum_{r,v} \left( \frac{\Delta_{prv}}{\Delta_{prv}^2 + \eta^2} +\frac{\Delta_{qrv}}{\Delta_{qrv}^2 + \eta^2} \right) W_{p,(r,v)} W^{\dagger}_{(r,v),q}.
|
||||
\end{equation}
|
||||
\begin{align}
|
||||
\label{eq:sym_qsGW}
|
||||
&\Sigma_{pq}^{\text{qs}GW}(\eta) = \\
|
||||
&\frac{1}{2} \sum_{r,v} \left( \frac{\Delta_{prv}}{\Delta_{prv}^2 + \eta^2} +\frac{\Delta_{qrv}}{\Delta_{qrv}^2 + \eta^2} \right) W_{p,(r,v)} W^{\dagger}_{(r,v),q}. \notag
|
||||
\end{align}
|
||||
Yet, both approximation are closely related as they share the same diagonal terms when $\eta=0$.
|
||||
Also, note that the SRG static approximation is naturally Hermitian as opposed to the symmetrized case where it is enforced by symmetrization.
|
||||
|
||||
@ -508,7 +510,8 @@ Indeed, in qs$GW$ calculation using the symmetrized static form, increasing $\et
|
||||
Therefore, we will define the SRG-qs$GW$ static effective Hamiltonian as
|
||||
\begin{align}
|
||||
\label{eq:SRG_qsGW}
|
||||
\Sigma_{pq}^{\text{SRG}}(s) = \frac{1}{2} \sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W_{q,(r,v)}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right)
|
||||
&\Sigma_{pq}^{\text{SRG}}(s) = \\
|
||||
&\sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,(r,v)} W_{q,(r,v)}\left(1 - e^{-(\Delta_{prv}^2 + \Delta_{qrv}^2) s}\right) \notag
|
||||
\end{align}
|
||||
which depends on one regularising parameter $s$ analogously to $\eta$ in the usual case.
|
||||
The fact that the $s\to\infty$ static limit does not always converge when used in a qs$GW$ calculation could have been predicted because in this limit even the intruder states have been included in $\tilde{\bF}$.
|
||||
@ -541,7 +544,6 @@ This means that the cations used an unrestricted HF reference while the neutral
|
||||
\label{sec:results}
|
||||
%=================================================================%
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
Loading…
Reference in New Issue
Block a user