This commit is contained in:
Pierre-Francois Loos 2023-02-02 11:39:19 +01:00
parent f191b3269d
commit 98dc855a43

View File

@ -55,6 +55,8 @@
\newcommand{\trashant}[1]{\textcolor{teal}{\sout{#1}}} \newcommand{\trashant}[1]{\textcolor{teal}{\sout{#1}}}
\newcommand{\ANT}[1]{\ant{(\underline{\bf ANT}: #1)}} \newcommand{\ANT}[1]{\ant{(\underline{\bf ANT}: #1)}}
\DeclareMathOperator{\sgn}{sgn}
% addresses % addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
@ -363,7 +365,7 @@ For finite values of $s$, we have the following perturbation expansion of the Ha
\label{eq:perturbation_expansionH} \label{eq:perturbation_expansionH}
\bH(s) = \bH^{(0)}(s) + \lambda ~ \bH^{(1)}(s) + \lambda^2 \bH^{(2)}(s) + \cdots. \bH(s) = \bH^{(0)}(s) + \lambda ~ \bH^{(1)}(s) + \lambda^2 \bH^{(2)}(s) + \cdots.
\end{equation} \end{equation}
Hence, the generator $\boldsymbol{\eta}(s)$ admits a perturbation expansion of the same form. Hence, the generator $\boldsymbol{\eta}(s)$ admits a similar perturbation expansion.
Then, as performed in Sec.~\ref{sec:srggw}, one can collect order by order the terms in Eq.~\eqref{eq:flowEquation} and solve analytically the low-order differential equations. Then, as performed in Sec.~\ref{sec:srggw}, one can collect order by order the terms in Eq.~\eqref{eq:flowEquation} and solve analytically the low-order differential equations.
%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%
@ -442,7 +444,7 @@ where $\bW^{(0)}(s)= \bV^{(0)}(s) \bU$.
The matrix elements of $\bU$ and $\bD^{(0)}$ are The matrix elements of $\bU$ and $\bD^{(0)}$ are
\begin{align} \begin{align}
U_{p\nu,q\mu} &= \delta_{pq} \bX_{\nu\mu} \\ U_{p\nu,q\mu} &= \delta_{pq} \bX_{\nu\mu} \\
D_{p\nu,q\mu}^{(0)} &= \left(\epsilon_p + \text{sign}(\epsilon_p-\epsilon_\text{F})\Omega_\nu\right)\delta_{pq}\delta_{\nu\mu} D_{p\nu,q\mu}^{(0)} &= \left(\epsilon_p + \sgn(\epsilon_p-\epsilon_\text{F})\Omega_\nu\right)\delta_{pq}\delta_{\nu\mu}
\end{align} \end{align}
where $\epsilon_\text{F}$ is the Fermi level. where $\epsilon_\text{F}$ is the Fermi level.
Note that the matrix $\bU$ is also used in the downfolding process of Eq.~\eqref{eq:GWlin}. \cite{Bintrim_2021} Note that the matrix $\bU$ is also used in the downfolding process of Eq.~\eqref{eq:GWlin}. \cite{Bintrim_2021}
@ -475,7 +477,7 @@ Once again the two first equations are easily solved
and the first order coupling elements are given by (up to a multiplication by $\bU^{-1}$) and the first order coupling elements are given by (up to a multiplication by $\bU^{-1}$)
\begin{align} \begin{align}
W_{p,q\nu}^{(1)}(s) &= W_{p,q\nu}^{(1)}(0) e^{- (F_{pp}^{(0)} - D_{q\nu,q\nu}^{(0)})^2 s} \\ W_{p,q\nu}^{(1)}(s) &= W_{p,q\nu}^{(1)}(0) e^{- (F_{pp}^{(0)} - D_{q\nu,q\nu}^{(0)})^2 s} \\
&= W_{p,q\nu}^{(1)}(0) e^{- (\epsilon_p - \epsilon_q - \text{sign}(\epsilon_q-\epsilon_F)\Omega_\nu)^2 s} \notag &= W_{p,q\nu}^{(1)}(0) e^{- [\epsilon_p - \epsilon_q - \sgn(\epsilon_q-\epsilon_F)\Omega_\nu]^2 s} \notag
\end{align} \end{align}
At $s=0$ the elements $W_{p,q\nu}^{(1)}(0)$ are equal to the two-electron screened integrals defined in Eq.~\eqref{eq:GW_sERI} while for $s\to\infty$ they go to zero. At $s=0$ the elements $W_{p,q\nu}^{(1)}(0)$ are equal to the two-electron screened integrals defined in Eq.~\eqref{eq:GW_sERI} while for $s\to\infty$ they go to zero.
Therefore, $W_{p,q\nu}^{(1)}(s)$ are renormalized two-electrons screened integrals. Therefore, $W_{p,q\nu}^{(1)}(s)$ are renormalized two-electrons screened integrals.
@ -508,12 +510,12 @@ This can be solved by simple integration along with the initial condition $\bF^{
F_{pq}^{(2)}(s) = \sum_{r\mu} \frac{\Delta_{pr\mu}+ \Delta_{qr\mu}}{\Delta_{pr\mu}^2 + \Delta_{qr\mu}^2} W_{p,r\mu} W^{\dagger}_{r\mu,q} \times \\ F_{pq}^{(2)}(s) = \sum_{r\mu} \frac{\Delta_{pr\mu}+ \Delta_{qr\mu}}{\Delta_{pr\mu}^2 + \Delta_{qr\mu}^2} W_{p,r\mu} W^{\dagger}_{r\mu,q} \times \\
\left(1 - e^{-(\Delta_{pr\mu}^2 + \Delta_{qr\mu}^2) s}\right), \left(1 - e^{-(\Delta_{pr\mu}^2 + \Delta_{qr\mu}^2) s}\right),
\end{multline} \end{multline}
with $\Delta_{prv} = \epsilon_p - \epsilon_r - \text{sign}(\epsilon_r-\epsilon_F)\Omega_v$. with $\Delta_{prv} = \epsilon_p - \epsilon_r - \sgn(\epsilon_r-\epsilon_F)\Omega_v$.
At $s=0$, this second-order correction is null while for $s\to\infty$ it tends towards the following static limit At $s=0$, this second-order correction is null while for $s\to\infty$ it tends towards the following static limit
\begin{equation} \begin{equation}
\label{eq:static_F2} \label{eq:static_F2}
F_{pq}^{(2)}(\infty) = \sum_{r,v} \frac{\Delta_{prv}+ \Delta_{qrv}}{\Delta_{prv}^2 + \Delta_{qrv}^2} W_{p,r\mu} W^{\dagger}_{r\mu,q}. F_{pq}^{(2)}(\infty) = \sum_{r\nu} \frac{\Delta_{pr\nu}+ \Delta_{qr\nu}}{\Delta_{pr\nu}^2 + \Delta_{qr\nu}^2} W_{p,r\nu} W^{\dagger}_{r\nu,q}.
\end{equation} \end{equation}
Note that in the $s\to\infty$ limit the dynamic part of the self-energy [see Eq.~\eqref{eq:srg_sigma}] tends to zero. Note that in the $s\to\infty$ limit the dynamic part of the self-energy [see Eq.~\eqref{eq:srg_sigma}] tends to zero.
Therefore, the SRG flow transforms the dynamic part of $\bSig(\omega)$ into a static correction. Therefore, the SRG flow transforms the dynamic part of $\bSig(\omega)$ into a static correction.