all PT-SRG equations of Evangelista 2014 written in details
This commit is contained in:
parent
fb7d6f9624
commit
8603722476
@ -147,19 +147,18 @@
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
\section{Introduction}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
|
||||
The aim of this document is two-fold.
|
||||
First, we want to re-derive the perturbative analysis of the similarity renormalisation group (SRG) formalism applied to the non-relativistic electronic Hamiltonian.
|
||||
In a second time, we want to apply the same formalism to the unfolded GW Hamiltonian.
|
||||
Before jumping into these analysis, we do a brief presentation of the SRG formalism.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
\section{The similarity renormalisation group}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
|
||||
The similarity renormalization group aims at continuously transforming an Hamiltonian to a diagonal form, or more often to a block-diagonal form.
|
||||
Therefore, the transformed Hamiltonian
|
||||
@ -200,9 +199,9 @@ This generator has the advantage of defining a true renormalisation scheme, \ie
|
||||
One of the flaws of this generator is that it generates a stiff set of ODE which is difficult to solve numerically.
|
||||
However, here we consider analytical perturbative expressions so we will not be affected by this problem.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
\section{The electronic Hamiltonian}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
|
||||
In this part, we derive the perturbative expression for the SRG applied to the non-relativistic electronic Hamiltonian
|
||||
\begin{equation}
|
||||
@ -219,7 +218,7 @@ In this case, we want to decouple the reference determinant from every singly an
|
||||
Hence, we define the off-diagonal Hamiltonian as
|
||||
\begin{equation}
|
||||
\label{eq:hamiltonianOffDiagonal}
|
||||
\hH^{\text{od}}(s) = \sum_{ia} + f_i^a(s)\no{a}{i} + \frac{1}{4} \sum_{ijab}v(s)_{ij}^{ab}\no{ab}{ij}.
|
||||
\hH^{\text{od}}(s) = \sum_{ia} f_i^a(s)\no{a}{i} + \frac{1}{4} \sum_{ijab}v(s)_{ij}^{ab}\no{ab}{ij}.
|
||||
\end{equation}
|
||||
Note that each coefficients depend on $s$.
|
||||
|
||||
@ -239,6 +238,11 @@ Now, we want to compute the terms at each order of the following development
|
||||
\bH(s) = \bH^{(0)}(s) + \bH^{(1)}(s) + \bH^{(2)}(s) + \bH^{(3)}(s) + \dots
|
||||
\end{equation}
|
||||
by integrating Eq.~\eqref{eq:flowEquation}.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Zeroth order Hamiltonian}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
First, we start by showing that the zeroth order Hamiltonian is independant of $s$ and therefore equal to $\bH^{(0)}(0)$
|
||||
\begin{align}
|
||||
\bH(\delta s) &= \bH(0) + \delta s \dv{\bH(s)}{s}\bigg|_{s=0} + O(\delta s^2) \\
|
||||
@ -252,6 +256,10 @@ Which gives us the following equality
|
||||
\end{equation}
|
||||
meaning that the zeroth order Hamiltonian is independant of $s$.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{First order Hamiltonian}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
The right-hand side of \eqref{eq:flowEquation} has no zeroth order, so we want to compute its first order term.
|
||||
To do so, we first need to compute the first order term of $\boldsymbol{\eta}(s)$.
|
||||
We have seen that $\bH^\text{od}(0)$ has no zeroth order contribution so we have
|
||||
@ -262,31 +270,104 @@ According to the appendix the one-body part of $\boldsymbol{\eta}^{(1)}(s) $ has
|
||||
In addition, the term $\left[A_{1}, B_{2}\right]_{p}^{q}$ involves the coefficients $A_i^a = f_i^a(0) = 0$.
|
||||
So finally we only have one term
|
||||
\begin{align}
|
||||
\eta_a^{i,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(1)}(s)} \\
|
||||
\eta_a^{i,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(1)}(s)}_a^i \\
|
||||
&= \sum_r \left( f_a^r(0) f_r^{i,(1)}(s) - f_r^i(0) f_a^{r,(1)}(s) \right) \\
|
||||
&= (\epsilon_a - \epsilon_i)f_a^{i,(1)}(s)
|
||||
\end{align}
|
||||
Now turning to the two-body part of $\boldsymbol{\eta}^{(1)}(s) $ and once again two terms are zero because the two-body part of $\bH^{\text{d},(0)}(0)$ is equal to zero.
|
||||
So we have
|
||||
\begin{align}
|
||||
\eta_{ab}^{ij,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_2^{\text{od},(1)}(s)} \\
|
||||
&= \sum_t [P(ab) f_a^t(0) v_{tb}^{ij,(1)}(s) - P(ij) f_t^i(0) v_{ab}^{tj,(1)}(s) ] \\
|
||||
&= \sum_t [ P(ab) \epsilon_a \delta_{at}v_{tb}^{ij,(1)}(s) - P(ij) \epsilon_i \delta_{it} v_{ab}^{tj,(1)}(s) ] \\
|
||||
&= P(ab) \epsilon_a v_{ab}^{ij,(1)}(s) - P(ij) \epsilon_i v_{ab}^{ij,(1)}(s) \\
|
||||
&= \left( \epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j \right) v_{ab}^{ij,(1)}
|
||||
\eta_{ab}^{ij,(1)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_2^{\text{od},(1)}(s)}_{ab}^{ij} \\
|
||||
&= \sum_t [P(ab) f_a^t(0) v_{tb}^{ij,(1)}(s) - P(ij) f_t^i(0) v_{ab}^{tj,(1)}(s) ] \notag \\
|
||||
&= \sum_t [ P(ab) \epsilon_a \delta_{at}v_{tb}^{ij,(1)}(s) - P(ij) \epsilon_i \delta_{it} v_{ab}^{tj,(1)}(s) ] \notag \\
|
||||
&= P(ab) \epsilon_a v_{ab}^{ij,(1)}(s) - P(ij) \epsilon_i v_{ab}^{ij,(1)}(s) \notag\\
|
||||
&= \left( \epsilon_a + \epsilon_b - \epsilon_i - \epsilon_j \right) v_{ab}^{ij,(1)} \notag
|
||||
\end{align}
|
||||
|
||||
WIP...
|
||||
We can now compute the first order contribution to Eq.~\eqref{eq:flowEquation}. We have seen that $\eta$ has no zeroth order contribution so
|
||||
\begin{equation}
|
||||
\dv{\bH^{(1)}(s)}{s} = \comm{\boldsymbol{\eta}^{(1)}(s)}{\bH^{(0)}(s)}
|
||||
\end{equation}
|
||||
We start with the scalar contribution, \ie the PT1 energy
|
||||
\begin{equation}
|
||||
\dv{E_0^{(1)}(s)}{s} = \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(0)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(0)}(s)}}{\phi}
|
||||
\end{equation}
|
||||
where the second term is equal to zero.
|
||||
Thus we have
|
||||
\begin{align}
|
||||
\label{eq:diffEqScalPT1}
|
||||
\dv{E_0^{(1)}(s)}{s} &= \sum_{ip}\eta_i^{p,(1)}f_p^i(0) - \eta_p^{i,(1)}f_i^p(0) \\
|
||||
&= \sum_i \epsilon_i(\eta_i^{i,(1)} - \eta_i^{i,(1)}) \notag \\
|
||||
&= 0 \notag
|
||||
\end{align}
|
||||
Using the exact same reasoning as above we can show that there is only of the four terms of the one-body part of the commutator that is non-zero.
|
||||
\begin{align}
|
||||
\dv{f_a^{i,(1)}(s)}{s} &= \comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(0)}(s)}_a^i \\
|
||||
&= \sum_r \eta_a^{r,(1)}(s)f_r^i(0) - \eta_r^{i,(1)}f_a^r(0) \notag \\
|
||||
&= (\epsilon_i - \epsilon_a) \eta_a^{i,(1)}(s) \notag \\
|
||||
&= -(\epsilon_i - \epsilon_a) ^2f_a^{i,(1)}(s) \notag
|
||||
\end{align}
|
||||
The derivation for the two-body part to first order is once again similar
|
||||
\begin{align}
|
||||
\dv{v_{ab}^{ij,(1)}(s)}{s} &= \comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_1^{(0)}(s)}_{ab}^{ij} \\
|
||||
&= -(\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b) ^2v_{ab}^{ij,(1)}(s) \notag
|
||||
\end{align}
|
||||
These three differential equations can be integrated to obtain the analytical form of the Hamiltonian coefficients up to first order of perturbation theory.
|
||||
\begin{align}
|
||||
E_0^{(1)}(s) &= E_0^{(1)}(0) = 0 \\
|
||||
f_a^{i,(1)}(s) &= f_a^{i,(1)}(0) e^{-s (\Delta_a^i )^2} = 0 \\
|
||||
v_{ab}^{ij,(1)}(s) &= v_{ab}^{ij,(1)}(0) e^{-s (\Delta_{ab}^{ij})^2} = \aeri{ij}{ab} e^{-s (\Delta_{ab}^{ij})^2}
|
||||
\end{align}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{The unfolded GW Hamiltonian}
|
||||
\subsection{Second order Hamiltonian}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
To compute the second order contribution to the Hamiltonian coefficients, we first need to compute the second order contribution to $\boldsymbol{\eta}(s)$.
|
||||
\begin{equation}
|
||||
\boldsymbol{\eta}^{(2)}(s) = \comm{\bH^{\text{d},(0)}(0)}{\bH^{\text{od},(2)}(s)} + \comm{\bH^{\text{d},(1)}(s)}{\bH^{\text{od},(1)}(s)}
|
||||
\end{equation}
|
||||
The expressions for the first commutator are computed analogously to the one of the previous subsection.
|
||||
We focus on deriving expressions for the second term.
|
||||
The one-body part of $\bH^{\text{od},(1)}(s)$ is equal to zero so two of the four terms contributing to the one-body part of $\comm{\bH^{\text{d},(1)}(s)}{\bH^{\text{od},(1)}(s)}$ are zero.
|
||||
In addition, the term $\comm{A_1}{B_2}$ is equal to zero as well because the coefficients $A_{1,i}^a$ are zero (see expression in Appendix).
|
||||
So we have
|
||||
\begin{align}
|
||||
\eta_a^{i,(2)}(s) &= \comm{\bH_1^{\text{d},(0)}(0)}{\bH_1^{\text{od},(2)}(s)}_a^i + \comm{\bH_2^{\text{d},(1)}(s)}{\bH_2^{\text{od},(1)}(s)}_a^i \\
|
||||
&= (\epsilon_a - \epsilon_i)f_a^{i,(2)}(s) + \dots
|
||||
\end{align}
|
||||
Need to continue this derivation but this not needed for EPT2.
|
||||
|
||||
|
||||
Now turning to the differential equations, we start by computing the scalar part of Eq.~\eqref{eq:flowEquation}, \ie the differential equation for the second order energy.
|
||||
\begin{align}
|
||||
\dv{E_0^{(2)}(s)}{s} & = \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(2)}(s)}{\bH_1^{(0)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(2)}(s)}{\bH_2^{(0)}(s)}}{\phi} \\
|
||||
&+ \mel{\phi}{\comm{\boldsymbol{\eta}_1^{(1)}(s)}{\bH_1^{(1)}(s)}}{\phi} + \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(1)}(s)}}{\phi}
|
||||
\end{align}
|
||||
The two first terms are equal to zero for the same reason as the PT1 scalar differential equation (see Eq.~\eqref{eq:diffEqScalPT1}).
|
||||
In addition, the one-body hamiltonian has no first order contribution so
|
||||
\begin{align}
|
||||
\dv{E_0^{(2)}(s)}{s} &= \mel{\phi}{\comm{\boldsymbol{\eta}_2^{(1)}(s)}{\bH_2^{(1)}(s)}}{\phi} \\
|
||||
&= \frac{1}{4} \sum_{i j} \sum_{a b}\left(\eta_{i j}^{ab,(1)} H_{ab}^{i j,(1)} - H_{i j}^{ab,(1)} \eta_{ab}^{i j,(1)}\right) \\
|
||||
&=\frac{1}{4} \sum_{i j} \sum_{a b}\left(\eta_{i j}^{ab,(1)} - \eta_{ab}^{i j,(1)}\right) v_{ab}^{ij,(1)} \\
|
||||
&= \frac{1}{4} \sum_{i j} \sum_{a b}\left(\Delta_{ab}^{ij}v_{ij}^{ab,(1)} - (-\Delta_{ab}^{ij} v_{ab}^{ij,(1)}) \right) \aeri{ij}{ab} e^{-s (\Delta_{ab}^{ij})^2} \\
|
||||
&= \frac{1}{2} \sum_{i j} \sum_{a b} \Delta_{ab}^{ij} (v_{ab}^{ij,(1)})^2 \\
|
||||
&= \frac{1}{2} \sum_{i j} \sum_{a b} \Delta_{ab}^{ij} \aeri{ij}{ab}^2 e^{-2s (\Delta_{ab}^{ij})^2}
|
||||
\end{align}
|
||||
After integration, using the initial condition $E_0^{(2)}(0)=0$, we obtain
|
||||
\begin{equation}
|
||||
E_0^{(2)}(s) = \frac{1}{4} \sum_{i j} \sum_{a b} \frac{\Delta_{ab}^{ij}}{\aeri{ij}{ab}}\left(1-e^{-2s (\Delta_{ab}^{ij})^2}\right)
|
||||
\end{equation}
|
||||
|
||||
%=================================================================%
|
||||
\section{The unfolded GW Hamiltonian}
|
||||
%=================================================================%
|
||||
|
||||
\appendix
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
\section{Matrix elements of $C=[A, B]_{1,2}$}
|
||||
%%%%%%%%%%%%%%%%%%%%%%
|
||||
%=================================================================%
|
||||
|
||||
An operator $A$ containing at most two-body terms may be written in normal ordered form with respect to the reference $\Phi$ as
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user