add figure
This commit is contained in:
parent
2133d8ae06
commit
7b6565a298
@ -516,14 +516,25 @@ The second-order renormalized quasiparticle equation is given by
|
||||
% \qty[ \widetilde{\bF}(s) + \widetilde{\bSig}(\omega; s) ] \bX = \omega \bX,
|
||||
\qty[ \widetilde{\bF}(s) + \widetilde{\bSig}(\omega = \epsilon_p; s) ] \psi_p(\bx) = \epsilon_p \psi_p(\bx),
|
||||
\end{equation}
|
||||
with
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\widetilde{\bF}(s) &= \bF^{(0)}+\bF^{(2)}(s),\\
|
||||
with a regularized Fock matrix of the form
|
||||
\begin{equation}
|
||||
\widetilde{\bF}(s) = \bF^{(0)}+\bF^{(2)}(s),
|
||||
\end{equation}
|
||||
and a regularized dynamical self-energy
|
||||
\begin{equation}
|
||||
\label{eq:srg_sigma}
|
||||
\widetilde{\bSig}(\omega; s) &= \bV^{(1)}(s) \left(\omega \bI - \bC^{(0)}\right)^{-1} (\bV^{(1)}(s))^{\dagger}.
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
\widetilde{\bSig}(\omega; s) = \bV^{(1)}(s) \left(\omega \bI - \bC^{(0)}\right)^{-1} (\bV^{(1)}(s))^{\dagger},
|
||||
\end{equation}
|
||||
with elements
|
||||
\begin{equation}
|
||||
\label{eq:SRG-GW_selfenergy}
|
||||
\begin{split}
|
||||
\widetilde{\bSig}_{pq}(\omega; s)
|
||||
&= \sum_{i\nu} \frac{W_{p,i\nu} W_{q,i\nu}}{\omega - \epsilon_i + \Omega_{\nu} - \ii \eta} e^{-(\Delta_{pi\nu}^2 + \Delta_{qi\nu}^2) s} \\
|
||||
&+ \sum_{a\nu} \frac{W_{p,a\nu}W_{q,a\nu}}{\omega - \epsilon_a - \Omega_{\nu} + \ii \eta}e^{-(\Delta_{pa\nu}^2 + \Delta_{qa\nu}^2) s}.
|
||||
\end{split}
|
||||
\end{equation}
|
||||
|
||||
As can be readily seen above, $\bF^{(2)}$ is the only second-order block of the effective Hamiltonian contributing to the second-order SRG quasiparticle equation.
|
||||
Collecting every second-order term in the flow equation and performing the block matrix products results in the following differential equation
|
||||
\begin{multline}
|
||||
@ -547,19 +558,20 @@ For $s\to\infty$, it tends towards the following static limit
|
||||
\end{equation}
|
||||
while the dynamic part of the self-energy [see Eq.~\eqref{eq:srg_sigma}] tends to zero, \ie,
|
||||
\begin{equation}
|
||||
\lim_{s\to\infty} \widetilde{\bSig}(\omega; s) = 0.
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:SRG-GW_selfenergy}
|
||||
\begin{split}
|
||||
\widetilde{\bSig}_{pq}(\omega; s)
|
||||
&= \sum_{i\nu} \frac{W_{p,i\nu} W_{q,i\nu}}{\omega - \epsilon_i + \Omega_{\nu} - \ii \eta} e^{-(\Delta_{pi\nu}^2 + \Delta_{qi\nu}^2) s} \\
|
||||
&+ \sum_{a\nu} \frac{W_{p,a\nu}W_{q,a\nu}}{\omega - \epsilon_a - \Omega_{\nu} + \ii \eta}e^{-(\Delta_{pa\nu}^2 + \Delta_{qa\nu}^2) s}.
|
||||
\end{split}
|
||||
\lim_{s\to\infty} \widetilde{\bSig}(\omega; s) = \bO.
|
||||
\end{equation}
|
||||
Therefore, the SRG flow continuously transforms the dynamical self-energy $\widetilde{\bSig}(\omega; s)$ into a static correction $\widetilde{\bF}^{(2)}(s)$.
|
||||
This transformation is done gradually starting from the states that have the largest denominators in Eq.~\eqref{eq:static_F2}.
|
||||
As illustrated in Fig.~\ref{fig:flow}, this transformation is done gradually starting from the states that have the largest denominators in Eq.~\eqref{eq:static_F2}.
|
||||
|
||||
%%% FIG 1 %%%
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=\linewidth]{flow}
|
||||
\caption{
|
||||
Evolution of the quasiparticle equation as a function of the flow parameter $s$ in the case of the dynamic SRG-$GW$ flow (magenta) and the static SRG-qs$GW$ flow (cyan).
|
||||
\label{fig:flow}}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%///////////////////////////%
|
||||
\subsection{Alternative form of the static self-energy}
|
||||
|
BIN
Manuscript/flow.pdf
Normal file
BIN
Manuscript/flow.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user