From 696b66d7ca45fe702f7462db2a38eef405cede2e Mon Sep 17 00:00:00 2001 From: Antoine MARIE Date: Thu, 3 Nov 2022 14:15:42 +0100 Subject: [PATCH] Saving work in cleaned notes --- Notes/MBPTSecondQuant.tex | 301 ------------- Notes/{PerturbativeAnalysis.tex => Notes.tex} | 424 ++++++++++++------ 2 files changed, 291 insertions(+), 434 deletions(-) delete mode 100644 Notes/MBPTSecondQuant.tex rename Notes/{PerturbativeAnalysis.tex => Notes.tex} (60%) diff --git a/Notes/MBPTSecondQuant.tex b/Notes/MBPTSecondQuant.tex deleted file mode 100644 index 18a1a2a..0000000 --- a/Notes/MBPTSecondQuant.tex +++ /dev/null @@ -1,301 +0,0 @@ -\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1} -\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,mleftright} -\usepackage[version=4]{mhchem} - -\usepackage[utf8]{inputenc} -\usepackage[T1]{fontenc} -\usepackage{txfonts} - -\usepackage[ - colorlinks=true, - citecolor=blue, - breaklinks=true - ]{hyperref} -\urlstyle{same} - -\newcommand{\ie}{\textit{i.e.}} -\newcommand{\eg}{\textit{e.g.}} -\newcommand{\alert}[1]{\textcolor{red}{#1}} -\usepackage[normalem]{ulem} -\newcommand{\titou}[1]{\textcolor{red}{#1}} -\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}} -\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} - -\newcommand{\mc}{\multicolumn} -\newcommand{\fnm}{\footnotemark} -\newcommand{\fnt}{\footnotetext} -\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} -\newcommand{\QP}{\textsc{quantum package}} -\newcommand{\T}[1]{#1^{\intercal}} -\newcommand{\Sig}[2]{\Sigma_{#1}^{#2}} -\newcommand{\dRPA}{\text{dRPA}} - -% coordinates -\newcommand{\br}{\boldsymbol{r}} -\newcommand{\bx}{\boldsymbol{x}} -\newcommand{\dbr}{d\br} -\newcommand{\dbx}{d\bx} - -% methods -\newcommand{\GW}{\text{$GW$}} -\newcommand{\GT}{\text{$GT$}} -\newcommand{\evGW}{ev$GW$} -\newcommand{\qsGW}{qs$GW$} -\newcommand{\GOWO}{$G_0W_0$} -\newcommand{\Hxc}{\text{Hxc}} -\newcommand{\xc}{\text{xc}} -\newcommand{\Ha}{\text{H}} -\newcommand{\co}{\text{c}} -\newcommand{\x}{\text{x}} -\newcommand{\KS}{\text{KS}} -\newcommand{\HF}{\text{HF}} -\newcommand{\RPA}{\text{RPA}} -\newcommand{\Om}[2]{\Omega_{#1}^{#2}} -\newcommand{\sERI}[2]{(#1|#2)} -\newcommand{\e}[2]{\epsilon_{#1}^{#2}} - -% -\newcommand{\Ne}{N} -\newcommand{\Norb}{K} -\newcommand{\Nocc}{O} -\newcommand{\Nvir}{V} - -% operators -\newcommand{\hH}{\Hat{H}} -\newcommand{\hS}{\Hat{S}} -\newcommand{\ani}[1]{\hat{a}_{#1}} -\newcommand{\cre}[1]{\hat{a}_{#1}^\dagger} -\newcommand{\no}[2]{\mleft\{ \hat{a}_{#1}^{#2}\mright\} } - -% energies -\newcommand{\Enuc}{E^\text{nuc}} -\newcommand{\Ec}[1]{E_\text{c}^{#1}} -\newcommand{\EHF}{E^\text{HF}} - -% orbital energies -\newcommand{\eps}{\epsilon} -\newcommand{\reps}{\Tilde{\epsilon}} - -% Matrix elements -\newcommand{\SigC}{\Sigma^\text{c}} -\newcommand{\rSigC}{\Tilde{\Sigma}^\text{c}} -\newcommand{\MO}[1]{\phi_{#1}} -\newcommand{\SO}[1]{\psi_{#1}} -\newcommand{\eri}[2]{\braket{#1}{#2}} -\newcommand{\aeri}[2]{\mel{#1}{}{#2}} -\newcommand{\ERI}[2]{(#1|#2)} -\newcommand{\rbra}[1]{(#1|} -\newcommand{\rket}[1]{|#1)} - - -% Matrices -\newcommand{\bO}{\boldsymbol{0}} -\newcommand{\bI}{\boldsymbol{1}} -\newcommand{\bH}{\boldsymbol{H}} -\newcommand{\bSigC}{\boldsymbol{\Sigma}^{\text{c}}} -\newcommand{\be}{\boldsymbol{\epsilon}} -\newcommand{\bOm}{\boldsymbol{\Omega}} -\newcommand{\bA}{\boldsymbol{A}} -\newcommand{\bB}{\boldsymbol{B}} -\newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}} -\newcommand{\bD}{\boldsymbol{D}} -\newcommand{\bF}{\boldsymbol{F}} -\newcommand{\bU}{\boldsymbol{U}} -\newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}} -\newcommand{\bW}{\boldsymbol{W}} -\newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}} -\newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}} -\newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}} -\newcommand{\bc}{\boldsymbol{c}} - -% orbitals, gaps, etc -\newcommand{\IP}{I} -\newcommand{\EA}{A} -\newcommand{\HOMO}{\text{HOMO}} -\newcommand{\LUMO}{\text{LUMO}} -\newcommand{\Eg}{E_\text{g}} -\newcommand{\EgFun}{\Eg^\text{fund}} -\newcommand{\EgOpt}{\Eg^\text{opt}} -\newcommand{\EB}{E_B} - -% shortcuts for greek letters -\newcommand{\si}{\sigma} -\newcommand{\la}{\lambda} - - -\newcommand{\RHH}{R_{\ce{H-H}}} -\newcommand{\ii}{\mathrm{i}} - -\newcommand{\bEta}[1]{\boldsymbol{\eta}^{(#1)}(s)} -\newcommand{\bHd}[1]{\bH_\text{d}^{(#1)}} -\newcommand{\bHod}[1]{\bH_\text{od}^{(#1)}} - -% addresses -\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} - -\begin{document} - -\title{Notes on the project: Similarity Renormalization Group formalism applied to Green's function theory} - -\author{Antoine \surname{Marie}} - \email{amarie@irsamc.ups-tlse.fr} - \affiliation{\LCPQ} - -\author{Pierre-Fran\c{c}ois \surname{Loos}} - \email{loos@irsamc.ups-tlse.fr} - \affiliation{\LCPQ} - -%\begin{abstract} -%Here comes the abstract. -%\bigskip -%\begin{center} -% \boxed{\includegraphics[width=0.5\linewidth]{TOC}} -%\end{center} -%\bigskip -%\end{abstract} - -\maketitle - -%=================================================================% -\section{Introduction} -%=================================================================% - -The many-body perturbation theory formalism and its various approximations are naturally derived using time-dependent Feynman diagrams. -These derivation are quite different from wave function methods based on one-body orbitals and second quantization. -One can study the link between these formalisms by expanding the MBPT Feynman diagrams into time-independent Goldstone diagrams and then compare them to the ones that appear in WFT. -However, that would be valuable to extend this connection by expressing the MBPT approximations in the second quantization. -This is the aim of these notes. - -%=================================================================% -\section{The unfolded Green's function} -%=================================================================% - -In order to use MBPT in practice, one needs to rely on approximations of the self-energy. -In the following, we will focus on the GF(2), GW and GT approximations. -The GF($n$) formalism is defined such that the self-energy includes every diagram up to $n$-th order of MP perturbation theory. -On the other hand, the GW self-energy is obtained by taking the RPA polarizability and removing the vertex correction in the exact definition of the self-energy. -Finally, the GT approximation corresponds to another approximation to the polarizability than in GW, namely the one coming from pp-hh-RPA -The corresponding self-energies read as -\begin{align} - \label{eq:selfenergies} -\Sig{pq}{GF(2)}(\omega) & = \sum_{klc} \frac{\aeri{pc}{kl}\aeri{qc}{kl}}{\omega + \eps _c -\eps_k -\eps_l - \ii \eta} \\ - & + \sum_{kcd} \frac{\aeri{pk}{cd}\aeri{qk}{cd}}{\omega + \eps _k -\eps_c -\eps_d + \ii \eta} \notag \\ - \Sig{pq}{\GW}(\omega) & = \sum_{im} \frac{\sERI{pi}{m} \sERI{qi}{m}}{\omega - \e{i}{} + \Om{m}{\dRPA} - \ii \eta}\\ - & + \sum_{am} \frac{\sERI{pa}{m} \sERI{qa}{m}}{\omega - \e{a}{} - \Om{m}{\dRPA} + \ii \eta} \notag \displaybreak \\ - \Sig{pq}{\GT}(\omega) & = \sum_{im} \frac{\eri{pi}{\chi^{N+2}_m}\eri{qi}{\chi^{N+2}_m}}{\omega + \e{i}{} - \Om{m}{N+2} - \ii \eta} \\ - &+ \sum_{am} \frac{\eri{pa}{\chi^{N-2}_m}\eri{qa}{\chi^{N-2}_m}}{\omega + \e{a}{} - \Om{m}{N-2} + \ii \eta} \notag -\end{align} - -\begin{align} - \label{eq:sERI} - \sERI{pq}{m} &= \sum_{ia} \ERI{pi}{qa} \qty( \bX{m}{\dRPA} + \bY{m}{\dRPA} )_{ia} \\ - \eri{pi}{\chi^{N+2}_m} &= \sum_{c