saving work b4 meeting
This commit is contained in:
parent
1c869980eb
commit
6116fb6cd1
@ -2,7 +2,7 @@
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{amsmath,amssymb,amsfonts,graphicx,xcolor,bm,microtype,wasysym,hyperref,tabularx,amscd,mhchem,physics}
|
||||
\usepackage{mathtools,amsmath,amssymb,amsfonts,graphicx,xcolor,bm,microtype,wasysym,hyperref,tabularx,amscd,mhchem,physics}
|
||||
|
||||
|
||||
\definecolor{darkgreen}{RGB}{0, 180, 0}
|
||||
@ -33,6 +33,11 @@
|
||||
\newcommand{\bpsi}{\boldsymbol{\psi}}
|
||||
\newcommand{\bPsi}{\boldsymbol{\Psi}}
|
||||
|
||||
\newcommand{\la}{\lambda}
|
||||
\newcommand{\om}{\omega}
|
||||
\newcommand{\Om}{\Omega}
|
||||
\newcommand{\eps}{\varepsilon}
|
||||
|
||||
\institute{Laboratoire de Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse \\
|
||||
\url{https://lcpq.github.io/pterosor}}
|
||||
\usetheme{pterosor}
|
||||
@ -46,43 +51,48 @@
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{First-Quantized Form of SRG}
|
||||
\begin{block}{General upfolded many-body perturbation theory (MBPT) problem}
|
||||
\begin{align}
|
||||
\qty[ \bF + \bSig(\omega) ] \bpsi = \omega \bpsi
|
||||
& \qq{$\Leftrightarrow$}
|
||||
\bH \bPsi = \omega \bPsi
|
||||
\begin{block}{General upfolded/downfolded many-body perturbation theory (MBPT) problem}
|
||||
\begin{equation}
|
||||
\left.
|
||||
\begin{array}{cc}
|
||||
\qty[ \bF + \bSig(\om) ] \bpsi = \om \bpsi
|
||||
\\
|
||||
\\
|
||||
\bSig(\om) = \bV \qty(\om \bI - \bC)^{-1} \bV^{\dag}
|
||||
\end{array}
|
||||
\right\}
|
||||
\qq{$\xleftrightharpoons[upfolding]{downfolding}$}
|
||||
\begin{cases}
|
||||
\bH \bPsi = \om \bPsi
|
||||
\\
|
||||
\bSig(\omega) = \bV \qty(\omega \bI - \bC)^{-1} \bV^{\dag}
|
||||
& \qq{$\Leftrightarrow$}
|
||||
\bH =
|
||||
\begin{pmatrix}
|
||||
\bF & \bV
|
||||
\\
|
||||
\bV^{\dagger} & \bC
|
||||
\end{pmatrix}
|
||||
\end{align}
|
||||
\end{cases}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
%
|
||||
\begin{block}{Perturbative partitioning}
|
||||
\begin{block}{Perturbative partitioning (one choice at least)}
|
||||
\begin{equation}
|
||||
\bH \equiv \bH(s=0) =
|
||||
\bH =
|
||||
\underbrace{
|
||||
\begin{pmatrix}
|
||||
\bF & \bO
|
||||
\\
|
||||
\bO & \bC
|
||||
\end{pmatrix}
|
||||
}_{\bHd^{(0)}(s=0)}
|
||||
+ \lambda
|
||||
}_{\bHd}
|
||||
+ \la
|
||||
\underbrace{
|
||||
\begin{pmatrix}
|
||||
\bO & \bV
|
||||
\\
|
||||
\bV^{\dagger} & \bO
|
||||
\end{pmatrix}
|
||||
}_{\bHod^{(1)}(s=0)}
|
||||
\qq{with}
|
||||
\bHd^{(1)}(s=0) = \bHod^{(0)}(s=0) = \bO
|
||||
}_{\bHod}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
@ -101,7 +111,7 @@
|
||||
\bO & \bC(s)
|
||||
\end{pmatrix}
|
||||
}_{\bHd{}(s)}
|
||||
+ \lambda
|
||||
+ \la
|
||||
\underbrace{
|
||||
\begin{pmatrix}
|
||||
\bO & \bV(s)
|
||||
@ -113,19 +123,21 @@
|
||||
\end{block}
|
||||
%
|
||||
\begin{block}{Components of the Hamiltonian}
|
||||
\begin{equation}
|
||||
\bH(s) = \bH^{(0)}(s) + \lambda \bH^{(1)}(s) + \lambda^2 \bH^{(2)}(s) + \cdots
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\bC(s) = \bC^{(0)}(s) + \lambda \bC^{(1)}(s) + \lambda^2 \bC^{(2)}(s) + \cdots
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\bV(s) = \bV^{(0)}(s) + \lambda \bV^{(1)}(s) + \lambda^2 \bV^{(2)}(s) + \cdots
|
||||
\end{equation}
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\bH(s) & = \bH^{(0)}(s) + \la \bH^{(1)}(s) + \la^2 \bH^{(2)}(s) + \cdots
|
||||
\\
|
||||
\bC(s) & = \bC^{(0)}(s) + \la \bC^{(1)}(s) + \la^2 \bC^{(2)}(s) + \cdots
|
||||
\\
|
||||
\bV(s) & = \bV^{(0)}(s) + \la \bV^{(1)}(s) + \la^2 \bV^{(2)}(s) + \cdots
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
\end{block}
|
||||
\begin{block}{Wegner generator}
|
||||
\begin{equation}
|
||||
\bEta(s) = \bEta^{(0)}(s) + \lambda \bEta^{(1)}(s) + \lambda^2 \bEta^{(2)}(s) + \cdots
|
||||
\bEta(s)
|
||||
= \comm{\bHd(s)}{\bHod(s)}
|
||||
= \bEta^{(0)}(s) + \la \bEta^{(1)}(s) + \la^2 \bEta^{(2)}(s) + \cdots
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
@ -138,6 +150,8 @@
|
||||
\bEta^{(0)}(s)
|
||||
= \comm{\bHd^{(0)}(s)}{\bHod^{(0)}(s)}
|
||||
= \bO
|
||||
\qq{because}
|
||||
\bHod^{(0)}(s) = \bO
|
||||
\end{equation}
|
||||
\end{block}
|
||||
%
|
||||
@ -147,7 +161,7 @@
|
||||
= \comm{\bEta^{(0)}(s)}{\bH^{(0)}(s)}
|
||||
= \bO
|
||||
\qq{$\Rightarrow$}
|
||||
\bH^{(0)}(s) = \bH^{(0)}{(s=0)}
|
||||
\boxed{\bH^{(0)}(s) = \bH^{(0)}{(0)} = \bHd(0)}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\alert{NB: we omit the $s$ dependency from hereon}
|
||||
@ -158,7 +172,9 @@
|
||||
\begin{frame}{First-Order Terms}
|
||||
\begin{block}{Wegner generator}
|
||||
\begin{equation}
|
||||
\bEta^{(1)} = \comm{\bHd^{(0)}}{\bHod^{(1)}}
|
||||
\bEta^{(1)}
|
||||
= \comm{\bHd^{(0)}}{\bHod^{(1)}}
|
||||
+ \underbrace{\comm{\bHd^{(1)}}{\bHod^{(0)}}}_{\bHod^{(0)} = \bHd^{(1)} = \bO}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\bO & \bF^{(0)} \bV^{(1)} - \bV^{(1)} \bC^{(0)}
|
||||
@ -170,7 +186,10 @@
|
||||
%
|
||||
\begin{block}{First-order Hamiltonian}
|
||||
\begin{equation}
|
||||
\dv{\bH^{(1)}}{s} = \comm{\bEta^{(1)}}{\bHd^{(0)}}
|
||||
\dv{\bH^{(1)}}{s}
|
||||
= \comm{\bEta^{(0)}}{\bH^{(1)}}
|
||||
+ \comm{\bEta^{(1)}}{\bH^{(0)}}
|
||||
= \comm{\bEta^{(1)}}{\bHd^{(0)}}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\dv{\bF^{(1)}}{s} & \dv{\bV^{(1)}}{s}
|
||||
@ -193,13 +212,46 @@
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Integration of the First-Order Terms}
|
||||
\begin{block}{Diagonal terms}
|
||||
\begin{equation}
|
||||
\dv{\bF^{(1)}}{s} = \bO
|
||||
\land
|
||||
\bF^{(1)}(0) = \bO
|
||||
\Rightarrow
|
||||
\boxed{\bF^{(1)}(s) = \bO}
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\dv{\bC^{(1)}}{s}
|
||||
\land
|
||||
\bC^{(1)}(0) = \bO
|
||||
\Rightarrow
|
||||
\boxed{\bC^{(1)}(s) = \bO}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
%
|
||||
\begin{block}{Off-diagonal terms}
|
||||
\begin{gather}
|
||||
\dv{\bV^{(1)}}{s}
|
||||
= 2 \bF^{(0)} \bV^{(1)} \bC^{(0)}
|
||||
- \qty[\bF^{(0)}]^2 \bV^{(1)}
|
||||
- \bV^{(1)} \qty[\bC^{(0)}]^2
|
||||
\\
|
||||
\Rightarrow
|
||||
\boxed{\bV^{(1)}(s) = \bV^{(1)}(0) \cdots}
|
||||
\end{gather}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Second-Order Terms}
|
||||
\begin{block}{Wegner generator}
|
||||
\begin{equation}
|
||||
\bEta^{(2)}
|
||||
= \comm{\bHd^{(0)}}{\bHod^{(2)}}
|
||||
+ \underbrace{\comm{\bHd^{(1)}}{\bHod^{(1)}}}_{=\bO}
|
||||
+ \underbrace{\comm{\bHd^{(1)}}{\bHod^{(1)}}}_{\bO}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\bO & \bF^{(0)} \bV^{(2)} - \bV^{(2)} \bC^{(0)}
|
||||
@ -211,7 +263,8 @@
|
||||
%
|
||||
\begin{block}{Second-order Hamiltonian}
|
||||
\begin{equation}
|
||||
\dv{\bH^{(2)}}{s} = \comm{\bEta^{(2)}}{\bHd^{(0)}} + \comm{\bEta^{(1)}}{\bHd^{(1)}}
|
||||
\dv{\bH^{(2)}}{s}
|
||||
= \comm{\bEta^{(2)}}{\bHd^{(0)}} + \underbrace{\comm{\bEta^{(1)}}{\bHd^{(1)}}}_{\bO}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\dv{\bF^{(2)}}{s} & \dv{\bV^{(2)}}{s}
|
||||
@ -219,87 +272,88 @@
|
||||
\dv{\bV^{(2),\dagger}}{s} & \dv{\bC^{(2)}}{s}
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
\dv{\bF^{(2)}}{s}
|
||||
& = \bF^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||
+ \bV^{(1)} \bV^{(1),\dag} \bF^{(0)}
|
||||
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
||||
\\
|
||||
\dv{\bC^{(2)}}{s}
|
||||
& = \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
|
||||
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
||||
\\
|
||||
\dv{\bV^{(2)}}{s}
|
||||
& = 2 \bF^{(0)} \bV^{(2)} \bC^{(0)}
|
||||
- \qty[\bF^{(0)}]^2 \bV^{(2)}
|
||||
- \bV^{(2)} \qty[\bC^{(0)}]^2
|
||||
\end{align}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Integration of the Second-Order Terms}
|
||||
\begin{block}{Diagonal terms}
|
||||
\begin{gather}
|
||||
\dv{\bF^{(2)}}{s}
|
||||
= \bF^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||
+ \bV^{(1)} \bV^{(1),\dag} \bF^{(0)}
|
||||
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
||||
\\
|
||||
\Rightarrow
|
||||
\bF^{(2)}(s) = ?
|
||||
\end{gather}
|
||||
\begin{gather}
|
||||
\dv{\bC^{(2)}}{s}
|
||||
= \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
|
||||
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
||||
\\
|
||||
\Rightarrow
|
||||
\bC^{(2)}(s) = ?
|
||||
\end{gather}
|
||||
\end{block}
|
||||
\begin{block}{Off-diagonal terms}
|
||||
\begin{equation}
|
||||
\dv{\bV^{(2)}}{s}
|
||||
= 2 \bF^{(0)} \bV^{(2)} \bC^{(0)}
|
||||
- \qty[\bF^{(0)}]^2 \bV^{(2)}
|
||||
- \bV^{(2)} \qty[\bC^{(0)}]^2
|
||||
\end{gather}
|
||||
\Rightarrow
|
||||
\boxed{\bV^{(2)}(s) = \bO}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Integration of the First-Order Terms}
|
||||
\begin{frame}{Regularized Quasiparticle Equation}
|
||||
\begin{block}{Regularized $GW$ equations up to second order}
|
||||
\begin{equation}
|
||||
\dv{\bF^{(1)}}{s} = \bO
|
||||
\land
|
||||
\bF^{(1)}(0) = \bO
|
||||
\Rightarrow
|
||||
\bF^{(1)}(s) = \bO
|
||||
\qty[ \Tilde{\bF}(s) + \Tilde{\bSig}(\om;s) ] \bpsi = \om \bpsi
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\begin{block}{Regularized Fock elements}
|
||||
\begin{equation}
|
||||
\dv{\bC^{(1)}}{s}
|
||||
\land
|
||||
\bC^{(1)}(0) = \bO
|
||||
\Rightarrow
|
||||
\bC^{(1)}(s) = \bO
|
||||
\Tilde{\bF}(s) = \bF + \bF^{(2)}(s)
|
||||
\qq{with}
|
||||
\Tilde{\bF}_{pq}(s) = \delta_{pq} \eps_{p} +
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\begin{block}{Regularized $GW$ self-energy}
|
||||
\begin{equation}
|
||||
\dv{\bV^{(1)}}{s}
|
||||
= 2 \bF^{(0)} \bV^{(1)} \bC^{(0)}
|
||||
- \qty[\bF^{(0)}]^2 \bV^{(1)}
|
||||
- \bV^{(1)} \qty[\bC^{(0)}]^2
|
||||
\land
|
||||
\Rightarrow
|
||||
\bV^{(1)}(s) = ?
|
||||
\Tilde{\Sigma}_{pq}(\om;s)
|
||||
= \sum_{im} \frac{\Tilde{W}_{pi,m}(s) \Tilde{W}_{qi,m}(s)}{\om - \eps_{i} + \Om_{m}}
|
||||
+ \sum_{am} \frac{\Tilde{W}_{pa,m}(s) \Tilde{W}_{qa,m}(s)}{\om - \eps_{a} - \Om_{m}}
|
||||
\qq{with}
|
||||
\Tilde{W}_{pq,m}(s) = W_{pq,m} e^{-(\eps_{p} - \eps_{q} + \Om_{m})^2 s}
|
||||
\end{equation}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
|
||||
%-----------------------------------------------------
|
||||
\begin{frame}{Integration of the Second-Order Terms}
|
||||
\begin{equation}
|
||||
\dv{\bF^{(2)}}{s}
|
||||
= \bF^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||
+ \bV^{(1)} \bV^{(1),\dag} \bF^{(0)}
|
||||
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
||||
\land
|
||||
\bF^{(2)}(0) = ?
|
||||
\Rightarrow
|
||||
\bF^{(2)}(s) = ?
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\dv{\bC^{(2)}}{s}
|
||||
= \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
|
||||
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
||||
\land
|
||||
\bC^{(2)}(0) = ?
|
||||
\Rightarrow
|
||||
\bC^{(2)}(s) = ?
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\dv{\bV^{(2)}}{s}
|
||||
= 2 \bF^{(0)} \bV^{(2)} \bC^{(0)}
|
||||
- \qty[\bF^{(0)}]^2 \bV^{(2)}
|
||||
- \bV^{(2)} \qty[\bC^{(0)}]^2
|
||||
\land
|
||||
\Rightarrow
|
||||
\bV^{(2)}(s) = ?
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
%-----------------------------------------------------
|
||||
|
||||
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user