modifs in computational details
This commit is contained in:
parent
8ccfc903d9
commit
5acaa961c0
@ -1,7 +1,7 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% https://bibdesk.sourceforge.io/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2023-02-03 22:09:44 +0100
|
||||
%% Created for Pierre-Francois Loos at 2023-02-13 18:31:47 -0500
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
@ -83,7 +83,8 @@
|
||||
pages = {4399-4414},
|
||||
title = {Improving the Efficiency of the Multireference Driven Similarity Renormalization Group via Sequential Transformation, Density Fitting, and the Noninteracting Virtual Orbital Approximation},
|
||||
volume = {15},
|
||||
year = {2019}}
|
||||
year = {2019},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.9b00353}}
|
||||
|
||||
@article{ChenyangLi_2021,
|
||||
author = {Li,Chenyang and Evangelista,Francesco A.},
|
||||
@ -95,7 +96,8 @@
|
||||
pages = {114111},
|
||||
title = {Spin-free formulation of the multireference driven similarity renormalization group: A benchmark study of first-row diatomic molecules and spin-crossover energetics},
|
||||
volume = {155},
|
||||
year = {2021}}
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://doi.org/10.1063/5.0059362}}
|
||||
|
||||
@article{Wang_2021,
|
||||
author = {Wang, Shuhe and Li, Chenyang and Evangelista, Francesco A.},
|
||||
@ -107,7 +109,8 @@
|
||||
pages = {7666-7681},
|
||||
title = {Analytic Energy Gradients for the Driven Similarity Renormalization Group Multireference Second-Order Perturbation Theory},
|
||||
volume = {17},
|
||||
year = {2021}}
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.1c00980}}
|
||||
|
||||
@article{Wang_2023,
|
||||
author = {Wang, Meng and Fang, Wei-Hai and Li, Chenyang},
|
||||
@ -119,7 +122,8 @@
|
||||
pages = {122-136},
|
||||
title = {Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases},
|
||||
volume = {19},
|
||||
year = {2023}}
|
||||
year = {2023},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.2c00966}}
|
||||
|
||||
@misc{Scott_2023,
|
||||
author = {Scott, Charles J. C. and Backhouse, Oliver J. and Booth, George H.},
|
||||
@ -382,7 +386,8 @@
|
||||
pages = {7570-7585},
|
||||
title = {Benchmark of GW Methods for Core-Level Binding Energies},
|
||||
volume = {18},
|
||||
year = {2022}}
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jctc.2c00617}}
|
||||
|
||||
@incollection{CsanakBook,
|
||||
author = {Csanak, Gy and Taylor, HS and Yaris, Robert},
|
||||
@ -461,41 +466,40 @@
|
||||
bdsk-url-2 = {https://doi.org/10.1016/0009-2614(94)01183-4}}
|
||||
|
||||
@article{Frosini_2022,
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Som{\`a}, V.},
|
||||
year = {2022},
|
||||
journal = {Eur. Phys. J. A},
|
||||
volume = {58},
|
||||
number = {4},
|
||||
pages = {62},
|
||||
issn = {1434-601X},
|
||||
doi = {10.1140/epja/s10050-022-00692-z}
|
||||
}
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Som{\`a}, V.},
|
||||
doi = {10.1140/epja/s10050-022-00692-z},
|
||||
issn = {1434-601X},
|
||||
journal = {Eur. Phys. J. A},
|
||||
number = {4},
|
||||
pages = {62},
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
volume = {58},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00692-z}}
|
||||
|
||||
@article{Frosini_2022a,
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Bally, B. and Mongelli, T. and Rodr{\'i}guez, T. R. and Roth, R. and Som{\`a}, V.},
|
||||
year = {2022},
|
||||
journal = {Eur. Phys. J. A},
|
||||
volume = {58},
|
||||
number = {4},
|
||||
pages = {63},
|
||||
issn = {1434-601X},
|
||||
doi = {10.1140/epja/s10050-022-00693-y}
|
||||
}
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Bally, B. and Mongelli, T. and Rodr{\'\i}guez, T. R. and Roth, R. and Som{\`a}, V.},
|
||||
doi = {10.1140/epja/s10050-022-00693-y},
|
||||
issn = {1434-601X},
|
||||
journal = {Eur. Phys. J. A},
|
||||
number = {4},
|
||||
pages = {63},
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
volume = {58},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00693-y}}
|
||||
|
||||
@article{Frosini_2022b,
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Bally, B. and Hergert, H. and Rodr{\'i}guez, T. R. and Roth, R. and Yao, J. M. and Som{\`a}, V.},
|
||||
year = {2022},
|
||||
journal = {Eur. Phys. J. A},
|
||||
volume = {58},
|
||||
number = {4},
|
||||
pages = {64},
|
||||
issn = {1434-601X},
|
||||
doi = {10.1140/epja/s10050-022-00694-x}
|
||||
}
|
||||
|
||||
author = {Frosini, M. and Duguet, T. and Ebran, J.-P. and Bally, B. and Hergert, H. and Rodr{\'\i}guez, T. R. and Roth, R. and Yao, J. M. and Som{\`a}, V.},
|
||||
doi = {10.1140/epja/s10050-022-00694-x},
|
||||
issn = {1434-601X},
|
||||
journal = {Eur. Phys. J. A},
|
||||
number = {4},
|
||||
pages = {64},
|
||||
title = {Multi-Reference Many-Body Perturbation Theory for Nuclei},
|
||||
volume = {58},
|
||||
year = {2022},
|
||||
bdsk-url-1 = {https://doi.org/10.1140/epja/s10050-022-00694-x}}
|
||||
|
||||
@misc{Tolle_2022,
|
||||
archiveprefix = {arXiv},
|
||||
@ -1315,17 +1319,6 @@
|
||||
year = {2016},
|
||||
bdsk-url-1 = {https://doi.org/10.1088/1402-4896/92/2/023002}}
|
||||
|
||||
@article{Hergert_2016a,
|
||||
author = {Hergert, H. and Bogner, S. K. and Morris, T. D. and Schwenk, A. and Tsukiyama, K.},
|
||||
doi = {10.1016/j.physrep.2015.12.007},
|
||||
issn = {0370-1573},
|
||||
journal = {Phys. Rep.},
|
||||
pages = {165--222},,
|
||||
title = {The {{In-Medium Similarity Renormalization Group}}: {{A}} Novel Ab Initio Method for Nuclei},
|
||||
volume = {621},
|
||||
year = {2016},
|
||||
bdsk-url-1 = {https://doi.org/10.1016/j.physrep.2015.12.007}}
|
||||
|
||||
@article{Tsukiyama_2011,
|
||||
author = {Tsukiyama, K. and Bogner, S. K. and Schwenk, A.},
|
||||
doi = {10.1103/PhysRevLett.106.222502},
|
||||
@ -1468,7 +1461,7 @@
|
||||
author = {Battaglia, Stefano and Frans{\'e}n, Lina and Fdez. Galv{\'a}n, Ignacio and Lindh, Roland},
|
||||
doi = {10.1021/acs.jctc.2c00368},
|
||||
issn = {1549-9618},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
journal = {J. Chem. Theory Comput.},
|
||||
number = {8},
|
||||
pages = {4814--4825},
|
||||
title = {Regularized {{CASPT2}}: An {{Intruder-State-Free Approach}}},
|
||||
@ -1900,7 +1893,8 @@
|
||||
pages = {6203-6210},
|
||||
title = {Renormalized Singles Green's Function in the T-Matrix Approximation for Accurate Quasiparticle Energy Calculation},
|
||||
volume = {12},
|
||||
year = {2021}}
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://doi.org/10.1021/acs.jpclett.1c01723}}
|
||||
|
||||
@article{Scuseria_2013,
|
||||
author = {Scuseria,Gustavo E. and Henderson,Thomas M. and Bulik,Ireneusz W.},
|
||||
@ -1924,7 +1918,8 @@
|
||||
pages = {012809},
|
||||
title = {Hydrogen-molecule spectrum by the many-body $GW$ approximation and the Bethe-Salpeter equation},
|
||||
volume = {103},
|
||||
year = {2021}}
|
||||
year = {2021},
|
||||
bdsk-url-1 = {https://doi.org/10.1103/PhysRevA.103.012809}}
|
||||
|
||||
@article{Vitale_2020,
|
||||
author = {Vitale, Eugenio and Alavi, Ali and Kats, Daniel},
|
||||
@ -2148,11 +2143,10 @@
|
||||
title = {Gaussin~09 {R}evision {E}.01}}
|
||||
|
||||
@misc{g16,
|
||||
author={M. J. Frisch and G. W. Trucks and H. B. Schlegel and G. E. Scuseria and M. A. Robb and J. R. Cheeseman and G. Scalmani and V. Barone and G. A. Petersson and H. Nakatsuji and X. Li and M. Caricato and A. V. Marenich and J. Bloino and B. G. Janesko and R. Gomperts and B. Mennucci and H. P. Hratchian and J. V. Ortiz and A. F. Izmaylov and J. L. Sonnenberg and D. Williams-Young and F. Ding and F. Lipparini and F. Egidi and J. Goings and B. Peng and A. Petrone and T. Henderson and D. Ranasinghe and V. G. Zakrzewski and J. Gao and N. Rega and G. Zheng and W. Liang and M. Hada and M. Ehara and K. Toyota and R. Fukuda and J. Hasegawa and M. Ishida and T. Nakajima and Y. Honda and O. Kitao and H. Nakai and T. Vreven and K. Throssell and Montgomery, {Jr.}, J. A. and J. E. Peralta and F. Ogliaro and M. J. Bearpark and J. J. Heyd and E. N. Brothers and K. N. Kudin and V. N. Staroverov and T. A. Keith and R. Kobayashi and J. Normand and K. Raghavachari and A. P. Rendell and J. C. Burant and S. S. Iyengar and J. Tomasi and M. Cossi and J. M. Millam and M. Klene and C. Adamo and R. Cammi and J. W. Ochterski and R. L. Martin and K. Morokuma and O. Farkas and J. B. Foresman and D. J. Fox},
|
||||
title={Gaussian˜16 {R}evision {C}.01},
|
||||
year={2016},
|
||||
note={Gaussian Inc. Wallingford CT}
|
||||
}
|
||||
author = {M. J. Frisch and G. W. Trucks and H. B. Schlegel and G. E. Scuseria and M. A. Robb and J. R. Cheeseman and G. Scalmani and V. Barone and G. A. Petersson and H. Nakatsuji and X. Li and M. Caricato and A. V. Marenich and J. Bloino and B. G. Janesko and R. Gomperts and B. Mennucci and H. P. Hratchian and J. V. Ortiz and A. F. Izmaylov and J. L. Sonnenberg and D. Williams-Young and F. Ding and F. Lipparini and F. Egidi and J. Goings and B. Peng and A. Petrone and T. Henderson and D. Ranasinghe and V. G. Zakrzewski and J. Gao and N. Rega and G. Zheng and W. Liang and M. Hada and M. Ehara and K. Toyota and R. Fukuda and J. Hasegawa and M. Ishida and T. Nakajima and Y. Honda and O. Kitao and H. Nakai and T. Vreven and K. Throssell and Montgomery, {Jr.}, J. A. and J. E. Peralta and F. Ogliaro and M. J. Bearpark and J. J. Heyd and E. N. Brothers and K. N. Kudin and V. N. Staroverov and T. A. Keith and R. Kobayashi and J. Normand and K. Raghavachari and A. P. Rendell and J. C. Burant and S. S. Iyengar and J. Tomasi and M. Cossi and J. M. Millam and M. Klene and C. Adamo and R. Cammi and J. W. Ochterski and R. L. Martin and K. Morokuma and O. Farkas and J. B. Foresman and D. J. Fox},
|
||||
note = {Gaussian Inc. Wallingford CT},
|
||||
title = {Gaussian˜16 {R}evision {C}.01},
|
||||
year = {2016}}
|
||||
|
||||
@article{QChem,
|
||||
author = {Shao, Y. and Fusti-Molnar, L. and Jung, Y. and Kussmann, J. and Ochsenfeld, C. and Brown, S. T. and Gilbert, A. T. B. and Slipchenko, L. V. and Levchenko, S. V. and O'Neill, D. P. and Distasio Jr., R. A. and Lochan, R. C. and Wang, T. and Beran, G. J. O. and Besley, N. A. and Herbert, J. M. and Lin, C. Y. and Van Voorhis, T. and Chien, S. H. and Sodt, A. and Steele, R. P. and Rassolov, V. A. and Maslen, P. E. and Korambath, P. P. and Adamson, R. D. and Austin, B. and Baker, J. and Byrd, E. F. C. and Dachsel, H. and Doerksen, R. J. and Dreuw, A. and Dunietz, B. D. and Dutoi, A. D. and Furlani, T. R. and Gwaltney, S. R. and Heyden, A. and Hirata, S. and Hsu, C.-P. and Kedziora, G. and Khalliulin, R. Z. and Klunzinger, P. and Lee, A. M. and Lee, M. S. and Liang, W. and Lotan, I. and Nair, N. and Peters, B. and Proynov, E. I. and Pieniazek, P. A. and Rhee, Y. M. and Ritchie, J. and Rosta, E. and Sherrill, C. D. and Simmonett, A. C. and Subotnik, J. E. and Woodcock III, H. L. and Zhang, W. and Bell, A. T. and Chakraborty, A. K. and Chipman, D. M. and Keil, F. J. and Warshel, A. and Hehre, W. J. and Schaefer III, H. F. and Kong , J. and Krylov, A. I. and Gill, P. M. W. and Head-Gordon, M.},
|
||||
@ -2164,19 +2158,17 @@ note={Gaussian Inc. Wallingford CT}
|
||||
volume = {8},
|
||||
year = {2006}}
|
||||
|
||||
|
||||
@article{CFOUR,
|
||||
title = {Coupled-Cluster Techniques for Computational Chemistry: {{The CFOUR}} Program Package},
|
||||
author = {Matthews, Devin A. and Cheng, Lan and Harding, Michael E. and Lipparini, Filippo and Stopkowicz, Stella and Jagau, Thomas-C. and Szalay, P{\'e}ter G. and Gauss, J{\"u}rgen and Stanton, John F.},
|
||||
year = {2020},
|
||||
journal = {J. Chem. Phys.},
|
||||
volume = {152},
|
||||
number = {21},
|
||||
pages = {214108},
|
||||
issn = {0021-9606},
|
||||
doi = {10.1063/5.0004837}
|
||||
}
|
||||
|
||||
author = {Matthews, Devin A. and Cheng, Lan and Harding, Michael E. and Lipparini, Filippo and Stopkowicz, Stella and Jagau, Thomas-C. and Szalay, P{\'e}ter G. and Gauss, J{\"u}rgen and Stanton, John F.},
|
||||
doi = {10.1063/5.0004837},
|
||||
issn = {0021-9606},
|
||||
journal = {J. Chem. Phys.},
|
||||
number = {21},
|
||||
pages = {214108},
|
||||
title = {Coupled-Cluster Techniques for Computational Chemistry: {{The CFOUR}} Program Package},
|
||||
volume = {152},
|
||||
year = {2020},
|
||||
bdsk-url-1 = {https://doi.org/10.1063/5.0004837}}
|
||||
|
||||
@article{Hirata_2004,
|
||||
author = {Hirata, S.},
|
||||
@ -17110,8 +17102,7 @@ note={Gaussian Inc. Wallingford CT}
|
||||
number = {20},
|
||||
title = {Optical Excitations in Organic Molecules, Clusters, and Defects Studied by First-Principles {{Green}}'s Function Methods},
|
||||
volume = {73},
|
||||
year = {2006}
|
||||
}
|
||||
year = {2006}}
|
||||
|
||||
@article{Ou_2016,
|
||||
author = {Ou, Qi and Subotnik, Joseph E.},
|
||||
@ -17216,16 +17207,15 @@ note={Gaussian Inc. Wallingford CT}
|
||||
year = {1998}}
|
||||
|
||||
@article{Schindlmayr_1998,
|
||||
title = {Systematic {{Vertex Corrections}} through {{Iterative Solution}} of {{Hedin}}'s {{Equations Beyond}} the \$\textbackslash mathit\{\vphantom\}{{GW}}\vphantom\{\}\$ {{Approximation}}},
|
||||
author = {Schindlmayr, Arno and Godby, R. W.},
|
||||
year = {1998},
|
||||
journal = {Phys. Rev. Lett.},
|
||||
volume = {80},
|
||||
number = {8},
|
||||
pages = {1702--1705},
|
||||
doi = {10.1103/PhysRevLett.80.1702}
|
||||
}
|
||||
|
||||
author = {Schindlmayr, Arno and Godby, R. W.},
|
||||
doi = {10.1103/PhysRevLett.80.1702},
|
||||
journal = {Phys. Rev. Lett.},
|
||||
number = {8},
|
||||
pages = {1702--1705},
|
||||
title = {Systematic {{Vertex Corrections}} through {{Iterative Solution}} of {{Hedin}}'s {{Equations Beyond}} the \$\textbackslash mathit\{\vphantom\}{{GW}}\vphantom\{\}\$ {{Approximation}}},
|
||||
volume = {80},
|
||||
year = {1998},
|
||||
bdsk-url-1 = {https://doi.org/10.1103/PhysRevLett.80.1702}}
|
||||
|
||||
@article{Schindlmayr_2013,
|
||||
author = {Schindlmayr, Arno},
|
||||
|
@ -620,17 +620,17 @@ The dynamic part after the change of variable is actually closely related to the
|
||||
%=================================================================%
|
||||
|
||||
% Reference comp det
|
||||
The geometries have been optimized without frozen core approximation at the CC3 level in the aug-cc-pVTZ basis set using the CFOUR program. \cite{CFOUR}
|
||||
The reference CCSD(T) ionization potential (IP) energies have been obtained using the default parameters of Gaussian 16. \cite{g16}
|
||||
This means that the cations use an unrestricted HF reference while the neutral ground-state energies have been obtained in a restricted HF formalism.
|
||||
\titou{Our set is composed by XX closed-shell organic molecules, displayed in Fig.~??, with singlet ground states.}
|
||||
Following the same philosophy as the \textsc{quest} database for neutral excited states, \cite{Loos_2020d,Veril_2021} their geometries have been optimized at the CC3 level \cite{Christiansen_1995b,Koch_1997} in the aug-cc-pVTZ basis set using the \textsc{cfour} program. \cite{CFOUR}
|
||||
The reference CCSD(T) principal ionization potentials (IPs) and electron affinities (EAs) have been obtained using Gaussian 16 \cite{g16} with default parameters, that is, within the restricted and unrestriced HF formalism for the neutral and charged species, respectively.
|
||||
|
||||
% GW comp det
|
||||
The two qs$GW$ variants considered in this work have been implemented in an in-house program.
|
||||
The $GW$ implementation closely follows the one of mol$GW$. \cite{Bruneval_2016}
|
||||
All $GW$ calculations were performed without the frozen-core approximation and in the aug-cc-pVTZ cartesian basis set.
|
||||
The DIIS space size and the maximum of iterations were set to 5 and 64, respectively.
|
||||
In practice, one could (and should) achieve convergence in some cases by adjusting these parameters or by using an alternative mixing scheme.
|
||||
However, in order to perform a black-box comparison of the methods these parameters have been fixed to these default values.
|
||||
The two qs$GW$ variants considered in this work have been implemented in an in-house program, named \textsc{quack}. \cite{QuAcK}
|
||||
The $GW$ implementation closely follows the one of \textsc{molgw}. \cite{Bruneval_2016}
|
||||
In all $GW$ calculations, we use the aug-cc-pVTZ cartesian basis set and self-consistency is performed on all (occupied and virtual) orbitals, including core orbitals.
|
||||
The maximum size of the DIIS space \cite{Pulay_1980,Pulay_1982} and the maximum number of iterations were set to 5 and 64, respectively.
|
||||
In practice, one may achieve convergence, in some cases, by adjusting these parameters or by using an alternative mixing scheme.
|
||||
However, in order to perform a black-box comparison, these parameters have been fixed to these default values.
|
||||
|
||||
%=================================================================%
|
||||
\section{Results}
|
||||
@ -652,6 +652,7 @@ Then the accuracy of the IP yielded by the traditional and SRG schemes will be s
|
||||
\caption{
|
||||
Principal IP of the water molecule in the aug-cc-pVTZ basis set as a function of the flow parameter $s$ for the SRG-qs$GW$ method with and without TDA.
|
||||
Reference values (HF, qs$GW$ with and without TDA) are also reported as dashed lines.
|
||||
\PFL{Should we have a similar figure for EAs? (maybe not water though)}
|
||||
\label{fig:fig2}}
|
||||
\end{figure}
|
||||
%%% %%% %%% %%%
|
||||
|
Loading…
Reference in New Issue
Block a user