small changes

This commit is contained in:
Antoine Marie 2022-11-14 08:42:30 +01:00
parent abfcb11267
commit 56825e6400

View File

@ -124,12 +124,13 @@
}_{\bHod(s)}
\end{equation}
\end{block}
%
\begin{block}{Components of the Hamiltonian}
\begin{subequations}
\begin{align}
\bH(s) & = \bH^{(0)}(s) + \la \bH^{(1)}(s) + \la^2 \bH^{(2)}(s) + \cdots
\\
\bF(s) &= \bF^{(0)}(s) + \la \bF^{(1)}(s) + \la^2 \bF^{(2)}(s) + \cdots
\\
\bC(s) & = \bC^{(0)}(s) + \la \bC^{(1)}(s) + \la^2 \bC^{(2)}(s) + \cdots
\\
\bV(s) & = \bV^{(0)}(s) + \la \bV^{(1)}(s) + \la^2 \bV^{(2)}(s) + \cdots
@ -220,16 +221,16 @@
\begin{block}{Diagonal terms}
\begin{equation}
\dv{\bF^{(1)}}{s} = \bO
\land
\bF^{(1)}(0) = \bO
\Rightarrow
\Leftrightarrow
\bF^{(1)}(s) = \bF^{(1)}(0)
\Leftrightarrow
\boxed{\bF^{(1)}(s) = \bO}
\end{equation}
\begin{equation}
\dv{\bC^{(1)}}{s}
\land
\bC^{(1)}(0) = \bO
\Rightarrow
\dv{\bC^{(1)}}{s} = \bO
\Leftrightarrow
\bC^{(1)}(s) = \bC^{(1)}(0)
\Leftrightarrow
\boxed{\bC^{(1)}(s) = \bO}
\end{equation}
\end{block}
@ -308,16 +309,8 @@
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
\\
\Rightarrow
F_{pq}^{(2)}(s) = \sum_{(r,v)} \frac{\Delta_p^{(r,v)} + \Delta_q^{(r,v)}}{(\Delta_p^{(r,v)})^2 + (\Delta_q^{(r,v)})^2 } W_{p,(r,v)}^{(1)}(0)W_{q,(r,v)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{q}^{(r,v)})^2s})
\end{gather}
\begin{gather}
\dv{\bC^{(2)}}{s}
= \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
\\
\Rightarrow
C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s})
F_{pq}^{(2)}(s) = \sum_{(r,v)} \frac{\Delta_p^{(r,v)} + \Delta_q^{(r,v)}}{(\Delta_p^{(r,v)})^2 + (\Delta_q^{(r,v)})^2 } W_{p,(r,v)}^{(1)}(0)W_{q,(r,v)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{q}^{(r,v)})^2s}) \\
\qq{with} \Delta_{q}^{(r,v)} = \epsilon_q - \epsilon_r \pm \Omega_v \notag
\end{gather}
\end{block}
\begin{block}{Off-diagonal terms}
@ -358,6 +351,21 @@
\end{block}
\end{frame}
%-----------------------------------------------------
\begin{frame}{Integration of the Second-Order Terms}
\begin{block}{Diagonal terms}
\begin{gather}
\dv{\bC^{(2)}}{s}
= \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
\\
\Rightarrow
C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s})
\end{gather}
\end{block}
\end{frame}
%-----------------------------------------------------