small changes
This commit is contained in:
parent
abfcb11267
commit
56825e6400
@ -124,39 +124,40 @@
|
|||||||
}_{\bHod(s)}
|
}_{\bHod(s)}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
%
|
|
||||||
\begin{block}{Components of the Hamiltonian}
|
\begin{block}{Components of the Hamiltonian}
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\bH(s) & = \bH^{(0)}(s) + \la \bH^{(1)}(s) + \la^2 \bH^{(2)}(s) + \cdots
|
\bH(s) & = \bH^{(0)}(s) + \la \bH^{(1)}(s) + \la^2 \bH^{(2)}(s) + \cdots
|
||||||
\\
|
\\
|
||||||
\bC(s) & = \bC^{(0)}(s) + \la \bC^{(1)}(s) + \la^2 \bC^{(2)}(s) + \cdots
|
\bF(s) &= \bF^{(0)}(s) + \la \bF^{(1)}(s) + \la^2 \bF^{(2)}(s) + \cdots
|
||||||
\\
|
\\
|
||||||
\bV(s) & = \bV^{(0)}(s) + \la \bV^{(1)}(s) + \la^2 \bV^{(2)}(s) + \cdots
|
\bC(s) & = \bC^{(0)}(s) + \la \bC^{(1)}(s) + \la^2 \bC^{(2)}(s) + \cdots
|
||||||
\end{align}
|
\\
|
||||||
\end{subequations}
|
\bV(s) & = \bV^{(0)}(s) + \la \bV^{(1)}(s) + \la^2 \bV^{(2)}(s) + \cdots
|
||||||
|
\end{align}
|
||||||
|
\end{subequations}
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{Wegner generator}
|
\begin{block}{Wegner generator}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\bEta(s)
|
\bEta(s)
|
||||||
= \comm{\bHd(s)}{\bHod(s)}
|
= \comm{\bHd(s)}{\bHod(s)}
|
||||||
= \bEta^{(0)}(s) + \la \bEta^{(1)}(s) + \la^2 \bEta^{(2)}(s) + \cdots
|
= \bEta^{(0)}(s) + \la \bEta^{(1)}(s) + \la^2 \bEta^{(2)}(s) + \cdots
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
|
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
\begin{frame}{Zeroth-Order Terms}
|
\begin{frame}{Zeroth-Order Terms}
|
||||||
\begin{block}{Wegner generator}
|
\begin{block}{Wegner generator}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\bEta^{(0)}(s)
|
\bEta^{(0)}(s)
|
||||||
= \comm{\bHd^{(0)}(s)}{\bHod^{(0)}(s)}
|
= \comm{\bHd^{(0)}(s)}{\bHod^{(0)}(s)}
|
||||||
= \bO
|
= \bO
|
||||||
\qq{because}
|
\qq{because}
|
||||||
\bHod^{(0)}(s) = \bO
|
\bHod^{(0)}(s) = \bO
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
%
|
%
|
||||||
\begin{block}{Zeroth-order Hamiltonian}
|
\begin{block}{Zeroth-order Hamiltonian}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
@ -220,16 +221,16 @@
|
|||||||
\begin{block}{Diagonal terms}
|
\begin{block}{Diagonal terms}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\dv{\bF^{(1)}}{s} = \bO
|
\dv{\bF^{(1)}}{s} = \bO
|
||||||
\land
|
\Leftrightarrow
|
||||||
\bF^{(1)}(0) = \bO
|
\bF^{(1)}(s) = \bF^{(1)}(0)
|
||||||
\Rightarrow
|
\Leftrightarrow
|
||||||
\boxed{\bF^{(1)}(s) = \bO}
|
\boxed{\bF^{(1)}(s) = \bO}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\dv{\bC^{(1)}}{s}
|
\dv{\bC^{(1)}}{s} = \bO
|
||||||
\land
|
\Leftrightarrow
|
||||||
\bC^{(1)}(0) = \bO
|
\bC^{(1)}(s) = \bC^{(1)}(0)
|
||||||
\Rightarrow
|
\Leftrightarrow
|
||||||
\boxed{\bC^{(1)}(s) = \bO}
|
\boxed{\bC^{(1)}(s) = \bO}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\end{block}
|
\end{block}
|
||||||
@ -308,16 +309,8 @@
|
|||||||
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
- 2 \bV^{(1)} \bC^{(0)} \bV^{(1),\dag}
|
||||||
\\
|
\\
|
||||||
\Rightarrow
|
\Rightarrow
|
||||||
F_{pq}^{(2)}(s) = \sum_{(r,v)} \frac{\Delta_p^{(r,v)} + \Delta_q^{(r,v)}}{(\Delta_p^{(r,v)})^2 + (\Delta_q^{(r,v)})^2 } W_{p,(r,v)}^{(1)}(0)W_{q,(r,v)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{q}^{(r,v)})^2s})
|
F_{pq}^{(2)}(s) = \sum_{(r,v)} \frac{\Delta_p^{(r,v)} + \Delta_q^{(r,v)}}{(\Delta_p^{(r,v)})^2 + (\Delta_q^{(r,v)})^2 } W_{p,(r,v)}^{(1)}(0)W_{q,(r,v)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{q}^{(r,v)})^2s}) \\
|
||||||
\end{gather}
|
\qq{with} \Delta_{q}^{(r,v)} = \epsilon_q - \epsilon_r \pm \Omega_v \notag
|
||||||
\begin{gather}
|
|
||||||
\dv{\bC^{(2)}}{s}
|
|
||||||
= \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
|
||||||
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
|
|
||||||
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
|
||||||
\\
|
|
||||||
\Rightarrow
|
|
||||||
C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s})
|
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{block}
|
\end{block}
|
||||||
\begin{block}{Off-diagonal terms}
|
\begin{block}{Off-diagonal terms}
|
||||||
@ -358,6 +351,21 @@
|
|||||||
\end{block}
|
\end{block}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
%-----------------------------------------------------
|
||||||
|
\begin{frame}{Integration of the Second-Order Terms}
|
||||||
|
\begin{block}{Diagonal terms}
|
||||||
|
\begin{gather}
|
||||||
|
\dv{\bC^{(2)}}{s}
|
||||||
|
= \bC^{(0)} \bV^{(1)} \bV^{(1),\dag}
|
||||||
|
+ \bV^{(1)} \bV^{(1),\dag} \bC^{(0)}
|
||||||
|
- 2 \bV^{(1)} \bF^{(0)} \bV^{(1),\dag}
|
||||||
|
\\
|
||||||
|
\Rightarrow
|
||||||
|
C_{(r,v),(s,t)}^{(2)}(s) = \sum_{p} \frac{-\Delta_p^{(r,v)} - \Delta_p^{(s,t)}}{(\Delta_p^{(r,v)})^2 + (\Delta_p^{(s,t)})^2 } W_{p,(r,v)}^{(1)}(0)W_{p,(s,t)}^{(1)}(0)\qty(1-e^{-(\Delta_{p}^{(r,v)})^2s} e^{-(\Delta_{p}^{(s,t)})^2s})
|
||||||
|
\end{gather}
|
||||||
|
\end{block}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
%-----------------------------------------------------
|
%-----------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user