From 3e995e464000db7427de6d191190621b5f14c2de Mon Sep 17 00:00:00 2001 From: Antoine MARIE Date: Mon, 14 Nov 2022 14:25:20 +0100 Subject: [PATCH] small changes --- Slides/SRG-GF.tex | 66 ++++++++++++++++++++++++----------------------- 1 file changed, 34 insertions(+), 32 deletions(-) diff --git a/Slides/SRG-GF.tex b/Slides/SRG-GF.tex index 3ce594e..6c61360 100644 --- a/Slides/SRG-GF.tex +++ b/Slides/SRG-GF.tex @@ -104,27 +104,27 @@ %----------------------------------------------------- \begin{frame}{Perturbative Expansions} % - \begin{block}{Perturbative partitioning in the SRG framework} - \begin{equation} - \bH(s) = - \underbrace{ - \begin{pmatrix} - \bF(s) & \bO - \\ - \bO & \bC(s) - \end{pmatrix} - }_{\bHd{}(s)} - + \la - \underbrace{ - \begin{pmatrix} - \bO & \bV(s) - \\ - \bV^{\dagger}(s) & \bO - \end{pmatrix} - }_{\bHod(s)} - \end{equation} - \end{block} - \begin{block}{Components of the Hamiltonian} + % \begin{block}{Perturbative partitioning in the SRG framework} + % \begin{equation} + % \bH(s) = + % \underbrace{ + % \begin{pmatrix} + % \bF(s) & \bO + % \\ + % \bO & \bC(s) + % \end{pmatrix} + % }_{\bHd{}(s)} + % + \la + % \underbrace{ + % \begin{pmatrix} + % \bO & \bV(s) + % \\ + % \bV^{\dagger}(s) & \bO + % \end{pmatrix} + % }_{\bHod(s)} + % \end{equation} + % \end{block} + \begin{block}{Components of the effective Hamiltonian} \begin{subequations} \begin{align} \bH(s) & = \bH^{(0)}(s) + \la \bH^{(1)}(s) + \la^2 \bH^{(2)}(s) + \cdots @@ -159,7 +159,7 @@ \end{equation} \end{block} % - \begin{block}{Zeroth-order Hamiltonian} + \begin{block}{Zeroth-order effective Hamiltonian} \begin{equation} \dv{\bH^{(0)}(s)}{s} = \comm{\bEta^{(0)}(s)}{\bH^{(0)}(s)} @@ -188,7 +188,7 @@ \end{equation} \end{block} % - \begin{block}{First-order Hamiltonian} + \begin{block}{First-order effective Hamiltonian} \begin{equation} \dv{\bH^{(1)}}{s} = \comm{\bEta^{(0)}}{\bH^{(1)}} @@ -234,7 +234,7 @@ \boxed{\bC^{(1)}(s) = \bO} \end{equation} \end{block} - % + \pause[2] \begin{block}{Off-diagonal terms} \begin{gather} \dv{\bV^{(1)}}{s} @@ -270,7 +270,7 @@ \end{equation} \end{block} % - \begin{block}{Second-order Hamiltonian} + \begin{block}{Second-order effective Hamiltonian} \begin{equation} \dv{\bH^{(2)}}{s} = \comm{\bEta^{(2)}}{\bHd^{(0)}} + \underbrace{\comm{\bEta^{(1)}}{\bHd^{(1)}}}_{\bO} @@ -316,7 +316,8 @@ = \sum_{rm} \frac{\Delta_{pr}^{m} + \Delta_{qr}^{m}}{(\Delta_{pr}^{m})^2 + (\Delta_{qr}^{m})^2 } W_{pr,m}^{(1)}(0) W_{qr,m}^{(1)}(0) \qty[ 1 - e^{-(\Delta_{pr}^{m})^2s} e^{-(\Delta_{qr}^{m})^2s} ] \end{gather} - \end{block} + \end{block} + \pause[2] \begin{block}{Off-diagonal terms} \begin{equation} \dv{\bV^{(2)}}{s} @@ -332,12 +333,13 @@ %----------------------------------------------------- \begin{frame}{Regularized Quasiparticle Equation} - \begin{block}{Regularized $GW$ equations up to second order} - \begin{equation} - \qty[ \Tilde{\bF}(s) + \Tilde{\bSig}(\om;s) ] \bpsi = \om \bpsi - \end{equation} - \end{block} - \begin{block}{Regularized Fock elements} + \begin{block}{Regularized $GW$ equations up to second order} + \begin{equation} + \qty[ \Tilde{\bF}(s) + \Tilde{\bSig}(\om;s) ] \bpsi = \om \bpsi + \end{equation} + \end{block} + \pause[2] + \begin{block}{Regularized Fock elements} \begin{equation} \Tilde{\bF}(s) = \bF + \bF^{(2)}(s) \qq{with}