diff --git a/Notes/PerturbativeAnalysis.tex b/Notes/PerturbativeAnalysis.tex index bcadbd0..751c9d2 100644 --- a/Notes/PerturbativeAnalysis.tex +++ b/Notes/PerturbativeAnalysis.tex @@ -500,10 +500,12 @@ Recalling that $\bHod{0} = \bO$ and $\bHd{1} = \bO$, we derive \dv{\bV{}{(2),\dagger}}{s} & \dv{\bC{}{(2)}}{s} \end{pmatrix} \\ \dv{\bF^{(2)}}{s} &= \bF^{(0)}\bV{}{(1)}\bV{}{(1),\dagger} + \bV{}{(1)}\bV{}{(1),\dagger}\bF^{(0)} - 2 \bV{}{(1)}\bC{\text{d}}{(0)}\bV{}{(1),\dagger}\\ - \dv{\bC{}{(2)}}{s} &= \\ + \dv{\bC{}{(2)}}{s} &= 2 \bC{\text{d}}{(0)}\bC{\text{od}}{(2)}\bC{\text{d}}{(0)}- (\bC{\text{d}}{(0)})^2\bC{\text{od}}{(2)} - \bC{\text{od}}{(2)}(\bC{\text{d}}{(0)})^2 \\ + &-2 \bC{\text{d}}{(1)}\bC{\text{od}}{(0)}\bC{\text{d}}{(1)}- (\bC{\text{d}}{(1)})^2\bC{\text{od}}{(0)} - \bC{\text{od}}{(0)}(\bC{\text{d}}{(1)})^2 \notag \\ \dv{\bV{}{(2)}}{s} &= 2 \bF^{(0)}\bV{}{(2)}\bC{\text{d}}{(0)} - (\bF^{(0)})^2\bV{}{(2)} - \bV{}{(2)}(\bC{\text{d}}{(0)})^2 \\ - &- 2 \bV{}{(1)} \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} + \bF^{(0)} \bV{}{(1)} \bC{\text{od}}{(1)} + \bV{}{(1)} \bC{\text{od}}{(1)} \bC{\text{d}}{(0)} \\ - \dv{\bV{}{(2),\dagger}}{s} &= + &- 2 \bV{}{(1)} \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} + \bF^{(0)} \bV{}{(1)} \bC{\text{od}}{(1)} + \bV{}{(1)} \bC{\text{od}}{(1)} \bC{\text{d}}{(0)} \notag \\ + \dv{\bV{}{(2),\dagger}}{s} &= 2 \bC{\text{d}}{(0)}\bV{}{(2),\dagger}\bF^{(0)} - \bV{}{(2),\dagger}(\bF^{(0)})^2 - (\bC{\text{d}}{(0)})^2\bV{}{(2),\dagger} \\ + &- 2 \bC{\text{od}}{(1)} \bC{\text{d}}{(0)} \bV{}{(1),\dagger} + \bC{\text{od}}{(1)} \bV{}{(1),\dagger} \bF^{(0)} + \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} \bV{}{(1),\dagger} \notag \end{align} \begin{align} @@ -516,6 +518,13 @@ Recalling that $\bHod{0} = \bO$ and $\bHd{1} = \bO$, we derive &\color{red}{\boxed{\color{black}{- \sum_R \frac{\eps^{(0)}_{p} + \eps^{(0)}_{q} - 2 \Delta\eps^{(0)}_R}{(\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2}(1 - e^{-s [ (\eps^{(0)}_p - \Delta\eps^{(0)}_R)^2+ (\eps^{(0)}_q - \Delta\eps^{(0)}_R)^2]})}}} \notag \end{align} +\begin{align} + (\dv{\bV{}{(2)}}{s})_{pQ} &= (2 \bF^{(0)}\bV{}{(2)}\bC{\text{d}}{(0)} - (\bF^{(0)})^2\bV{}{(2)} - \bV{}{(2)}(\bC{\text{d}}{(0)})^2 \\ + & - 2 \bV{}{(1)} \bC{\text{d}}{(0)} \bC{\text{od}}{(1)} + \bF^{(0)} \bV{}{(1)} \bC{\text{od}}{(1)} + \bV{}{(1)} \bC{\text{od}}{(1)} \bC{\text{d}}{(0)})_{pQ} \notag \\ + v^{(2)}_{pQ}(s) &= v^{(2)}_{pQ}(0) e^{-s(\epsilon^{(0)}_p - \Delta\epsilon^{(0)}_Q )^2} + \text{Non-homogeneous solution} \notag \\ + v^{(2)}_{pQ}(s) &= \text{Non-homogeneous solution} +\end{align} + %%%%%%%%%%%%%%%%%%%%%% \subsection{Downfolding the SRG-transformed matrix} %%%%%%%%%%%%%%%%%%%%%%