Discussion about the two choice of regularizers

This commit is contained in:
Antoine Marie 2022-11-10 16:13:58 +01:00
parent 927060dd49
commit 2611c5456b

View File

@ -248,6 +248,7 @@ In addition, the one-body hamiltonian has no first order contribution so
\end{align}
After integration, using the initial condition $E_0^{(2)}(0)=0$, we obtain
\begin{equation}
\label{eq:SRG_MP2}
E_0^{(2)}(s) = \frac{1}{4} \sum_{i j} \sum_{a b} \frac{\aeri{ij}{ab}^2}{\Delta_{ab}^{ij}}\left(1-e^{-2s (\Delta_{ab}^{ij})^2}\right)
\end{equation}
@ -655,7 +656,7 @@ The constant is determined as
\end{align}
Which finally gives
\begin{align}
F_{pq}^{(2)}(s) &= -\sum_{r,v} \frac{\epsilon_{p}^{(0)} + \epsilon_{q}^{(0)} - 2 (\epsilon_r^{(0)} \pm \Omega_v)}{(\epsilon_p^{(0)} - \epsilon_r^{(0)} \pm \Omega_v)^2 + (\epsilon_q^{(0)} - \epsilon_r^{(0)} \pm \Omega_v)^2} W^{(0)}_{p,(r,v)} \notag \\
F_{pq}^{(2)}(s) &= \sum_{r,v} \frac{\epsilon_{p}^{(0)} + \epsilon_{q}^{(0)} - 2 (\epsilon_r^{(0)} \pm \Omega_v)}{(\epsilon_p^{(0)} - \epsilon_r^{(0)} \pm \Omega_v)^2 + (\epsilon_q^{(0)} - \epsilon_r^{(0)} \pm \Omega_v)^2} W^{(0)}_{p,(r,v)} \notag \\
&\times W^{(0),\dagger}_{(r,v),q}\left(1 - e^{-(\epsilon_p - \epsilon_r \pm \Omega_v)^2s} e^{-(\epsilon_q - \epsilon_r \pm \Omega_v)^2s}\right) \notag
\end{align}
@ -663,9 +664,9 @@ Which finally gives
The expression for the GF(2) case is
\begin{align}
F_{pq}^{(2)}(s) &= - \frac{1}{2} \sum_{ija} \frac{\epsilon_{p}^{(0)} + \epsilon_{q}^{(0)} - 2\Delta_{ij}^a}{(\epsilon_p^{(0)} - \Delta_{ij}^a)^2 + (\epsilon_q^{(0)} - \Delta_{ij}^a)^2} \aeri{pa}{ij}\notag \\
F_{pq}^{(2)}(s) &= \frac{1}{2} \sum_{ija} \frac{\epsilon_{p}^{(0)} + \epsilon_{q}^{(0)} - 2\Delta_{ij}^a}{(\epsilon_p^{(0)} - \Delta_{ij}^a)^2 + (\epsilon_q^{(0)} - \Delta_{ij}^a)^2} \aeri{pa}{ij}\notag \\
&\times\aeri{qa}{ij} \left(1 - e^{-(\epsilon_p - \Delta_{ij}^a)^2s} e^{-(\epsilon_q - \Delta_{ij}^a)^2s}\right) \notag \\
& - \frac{1}{2} \sum_{iab} \frac{\epsilon_{p}^{(0)} + \epsilon_{q}^{(0)} - 2\Delta_{i}^{ab}}{(\epsilon_p^{(0)} - \Delta_{ij}^a)^2 + (\epsilon_q^{(0)} - \Delta_{i}^{ab})^2} \aeri{pi}{ab}\notag \\
& + \frac{1}{2} \sum_{iab} \frac{\epsilon_{p}^{(0)} + \epsilon_{q}^{(0)} - 2\Delta_{i}^{ab}}{(\epsilon_p^{(0)} - \Delta_{ij}^a)^2 + (\epsilon_q^{(0)} - \Delta_{i}^{ab})^2} \aeri{pi}{ab}\notag \\
&\times\aeri{qi}{ab} \left(1 - e^{-(\epsilon_p - \Delta_{i}^{ab})^2s} e^{-(\epsilon_q - \Delta_{i}^{ab})^2s}\right) \notag
\end{align}
@ -808,8 +809,40 @@ One of the con of the static approximation is that we loose information about th
However, SRG allows us to stop at a finite value $s$ corresponding to a renormalized coupling but the coupling is still present.
Therefore the satellites can still be observed due to the non-linearity induced by the renormalized coupling.
%=================================================================%
\section{Discussion on the choice of regularizers}
\label{sec:regularizers}
%=================================================================%
% =================================================================%
Before discussing the regularizers in MBPT, we start by analyzing behavior of the second order SRG correction to the energy derived in Eq.~(\ref{eq:SRG_MP2}). The equation is written here again for readability and also we used $s = 1/\Lambda^2$ where $\Lambda$ is the characteristic cutoff energy.
\begin{equation}
E_0^{(2)}(s= 1/\Lambda^2) = \frac{1}{4} \sum_{i j} \sum_{a b} \frac{\aeri{ij}{ab}^2}{\Delta_{ab}^{ij}}\left(1-e^{-2\left(\frac{\Delta_{ab}^{ij}}{\Lambda}\right)^2}\right)
\end{equation}
For $s=0$ the SRG-MP2 energy is equal to the MP2 one while for $s \to \infty$ the SRG-MP2 energy goes to zero.
For a finite value of $s$, hence a finite energy cutoff $\Lambda$, then the term of the sum with $\Delta_{ab}^{ij} < \Lambda$ are almost zero. Therefore a small cutoff removes only the divergent $1/\Delta_{ab}^{ij}$.
A similar analysis can be done about the regularized correlation self-energy introduced by Monino and Loos. Here we discuss only the GW self-energy but without loss of generality.
\begin{align}
\label{eq:GW_selfenergy_regularized}
(\Sigma_c^{\GW}(\omega,\Lambda))_{pq} &= \sum_{iv} \frac{W_{pi,v}^{\GW} W_{qi,v}^{\GW}}{\omega - \Omega_{i,v}^{\dRPA} - \ii \eta}\left(1-e^{-2\left( \frac{\omega - \Omega_{i,v}^{\dRPA} - \ii \eta}{\Lambda} \right)^2}\right) \notag \\
&+ \sum_{av} \frac{W_{pa,v}^{\GW}W_{qa,v}^{\GW}}{\omega - \Omega_{a,v}^{\dRPA} + \ii \eta}\left(1-e^{-2\left( \frac{\omega - \Omega_{a,v}^{\dRPA} + \ii \eta}{\Lambda} \right)^2}\right) \notag
\end{align}
Similarly to the SRG-MP2 case, here we see that for small $\Lambda$ only the divergent denominators are removed.
These denominators are precisely the one responsible of the discontinuities which explain the good results of regularized GW to remove discontinuities seen in Enzo's paper.
Enzo also showed that for larger $\Lambda$ the quasiparticle energies are still smooth yet less accurate.
This is because in addition to the divergent denominators we are removing more and more terms from the self-energy which leads to worse energies.
Finally, we discuss the renormalized correlation self-energy introduced in this work.
\begin{align}
\label{eq:GW_selfenergy_renormalized}
(\Sigma_c^{\GW}(\omega,\Lambda))_{pq} &= \sum_{iv} \frac{W_{pi,v}^{\GW}W_{qi,v}^{\GW}}{\omega -\Omega_{i,v}^{\dRPA} - \ii \eta}e^{-\left( \frac{\epsilon_p - \Omega_{i,v}^{\dRPA} }{\Lambda} \right)^2} e^{-\left( \frac{\epsilon_p - \Omega_{i,v}^{\dRPA} }{\Lambda} \right)^2} \notag \\
&+ \sum_{av} \frac{W_{pa,v}^{\GW} W_{qa,v}^{\GW}}{\omega - \Omega_{a,v}^{\dRPA} + \ii \eta} e^{-\left( \frac{\epsilon_p - \Omega_{a,v}^{\dRPA}}{\Lambda} \right)^2}e^{-\left( \frac{\epsilon_q - \Omega_{a,v}^{\dRPA} }{\Lambda} \right)^2} \notag
\end{align}
In this case the situation is reversed, \ie the divergent denominators will be the last removed when $\Lambda$ is increased.
Therefore the renormalized self-energy seems not to be the good strategy to remove discontinuities.
However, it defines SRG-PT2 approximations to the quasiparticle energies which have the same pros as the SRG-MP2 discussed above.
%=================================================================%
\section{Towards second quantized effective Hamiltonians for MBPT?}
\label{sec:second_quant_mbpt}
%=================================================================%