done with parquet notes for now

This commit is contained in:
Pierre-Francois Loos 2022-11-21 21:31:31 +01:00
parent a3a4c31b23
commit 0eef510f49

View File

@ -47,7 +47,12 @@
\newcommand{\si}{\sigma}
\newcommand{\la}{\lambda}
\newcommand{\ii}{\mathrm{i}}
\newcommand{\up}{\uparrow}
\newcommand{\dw}{\downarrow}
\newcommand{\upup}{\up\up}
\newcommand{\updw}{\up\dw}
\newcommand{\dwup}{\dw\up}
\newcommand{\dwdw}{\dw\downarrow}
% addresses
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
@ -145,8 +150,8 @@ with
\end{gather}
One must be very careful not to double-count diagrams in the pp sector.
The complete ($\Gamma$ and $\Gamma_P$) and irreducible vertices ($\Gamma^\pp$, $\Gamma^\ph$, and $\Bar{\Gamma}^\ph$) are usually spin adapted.
For example, $\Gamma^\ph$ is written as a sum of its density ($\Gamma^\ph_\text{d}$) and magnetic ($\Gamma^\ph_\text{m}$) components, while $\Gamma^\pp$ is decomposed in its singlet ($\Gamma^\ph_\text{s}$) and triplet ($\Gamma^\ph_\text{t}$) components.
The complete ($\Gamma$ and $\Gamma_P$) and irreducible vertices ($\Gamma^\pp$, $\Gamma^\ph$, and $\Bar{\Gamma}^\ph$) are usually spin adapted (see below).
For example, $\Gamma^\ph$ is written as a sum of its density ($\Gamma^\ph_\text{d}$) and magnetic ($\Gamma^\ph_\text{m}$) components, while $\Gamma^\pp$ is decomposed in its singlet ($\Gamma^\pp_\text{s}$) and triplet ($\Gamma^\pp_\text{t}$) components.
Similar expressions can be found for $\Bar{\Gamma}^\ph$ (crossing relation), and the approximated forms of $\Gamma$ and $\Gamma_P$ (but usually violate crossing conditions).
@ -230,7 +235,7 @@ Now, we focus on the self-energy which can be written as a non-scattering and a
\begin{equation}
\Sigma(11') = \Sigma_1(11') + \Sigma_2(11')
\end{equation}
where, after various manipulations, on gets
where, after various manipulations, one gets
\begin{equation}
\begin{split}
\Sigma_2(11')
@ -254,9 +259,157 @@ where, after various manipulations, on gets
Thanks to the spin adaptation, we have the following picture: the electrons interacting through the exchange of four varieties of composite ``bosons'' made of electrons and holes which themselves strongly interact through the exchange of other bosons: density, magnetic, singlet-pair, and triplet-pair fluctuations.
Thanks to the crossing symmetry of the complete vertices, the parquet equations automatically build in the nonlinear coupling between dressed electron and boson excitations necessary for full consistency.
We now explicitly treat the spin degrees of freedom starting from the ph vertex functions that we decompose in density and magnetic components.
We hence remove the spin variable from the composite variable $1 \equiv (\br_1,t_1)$.
Defining the density and magnetic operators
\begin{gather}
d(12) = \frac{1}{\sqrt{2}} \qty[ \cre{1\up}\ani{2\up} + \cre{1\dw}\ani{2\dw} ]
\\
m(12) = \frac{1}{\sqrt{2}} \qty[ \cre{1\up}\ani{2\up} - \cre{1\dw}\ani{2\dw} ]
\end{gather}
we have
\begin{gather}
\Gamma_\text{m}^{+1}(12;34) = \Gamma_{\updw,\updw}(12;34)
\\
\Gamma_\text{m}^{-1}(12;34) = \Gamma_{\dwup,\dwup}(12;34)
\end{gather}
and
\begin{gather}
\Gamma_\text{d}(12;34) = \Gamma_{\upup,\upup}(12;34) + \Gamma_{\upup,\dwdw}(12;34)
\\
\Gamma_\text{m}^{0}(12;34) = \Gamma_{\upup,\upup}(12;34) - \Gamma_{\upup,\dwdw}(12;34)
\end{gather}
Hence, $\Gamma_\text{m} \equiv \Gamma_\text{m}^{0} = \Gamma_\text{m}^{\pm1}$.
Now, let us decompose the pp vertex functions into their singlet and triplet components in very much the same way.
Again, the 3 triplet components
\begin{gather}
\Gamma_\text{t}^{+1}(12;34) = \Gamma_{\upup,\upup}(12;34)
\\
\Gamma_\text{t}^{-1}(12;34) = \Gamma_{\dwdw,\dwdw}(12;34)
\\
\Gamma_\text{t}^{0}(12;34) = \Gamma_{\updw,\updw}(12;34) - \Gamma_{\updw,\dwup}(12;34)
\end{gather}
are equal and abbreviated as $\Gamma_\text{t}$ while the singlet component reads
\begin{equation}
\Gamma_\text{s}^{0}(12;34) = \Gamma_{\updw,\updw}(12;34) + \Gamma_{\updw,\dwup}(12;34)
\end{equation}
We recover the fact that the singlet component is symmetric under the exchange of space-time labels, while the triplets are antisymmetric, i.e.
\begin{gather}
\Gamma_\text{s}(12;34) = + \Gamma_\text{s}(12;43)
\\
\Gamma_\text{t}(12;34) = - \Gamma_\text{t}(12;43)
\end{gather}
We are now ready to write down the parquet equations in a spin-adapted basis.
Defining
\begin{gather}
\Phi_\text{d/m}(12;34) = \qty[ \Gamma_\text{d/m}^\ph (\bI - G^\ph \Gamma_\text{d/m}^\ph)^{-1} G^\ph \Gamma_\text{d/m}^\ph ](12;34)
\\
\Psi_\text{s/t}(12;34) = \qty[ \Gamma_\text{s/t}^\pp (\bI - G^\pp \Gamma_\text{s/t}^\pp)^{-1} G^\pp \Gamma_\text{s/t}^\pp ](12;34)
\end{gather}
we get
\begin{align}
\begin{split}
\Gamma_\text{d}^\ph(12;34)
= \Lambda_\text{d}^\irr(12;34)
& - \frac{1}{2} \Phi_\text{d}(42;31)
- \frac{3}{2} \Phi_\text{m}(42;31)
\\
& + \frac{1}{2} \Psi_\text{s}(41;32)
+ \frac{3}{2} \Psi_\text{t}(41;32)
\end{split}
\\
\begin{split}
\Gamma_\text{m}^\ph(12;34)
= \Lambda_\text{m}^\irr(12;34)
& - \frac{1}{2} \Phi_\text{d}(42;31)
+ \frac{1}{2} \Phi_\text{m}(42;31)
\\
& - \frac{1}{2} \Psi_\text{s}(41;32)
+ \frac{1}{2} \Psi_\text{t}(41;32)
\end{split}
\\
\begin{split}
\Gamma_\text{s}^\pp(12;34)
= \Lambda_\text{s}^\irr(12;34)
& + \frac{1}{2} \Phi_\text{d}(24;31)
- \frac{3}{2} \Phi_\text{m}(24;31)
\\
& + \frac{1}{2} \Psi_\text{s}(14;32)
- \frac{3}{2} \Psi_\text{t}(14;32)
\end{split}
\\
\begin{split}
\Gamma_\text{t}^\pp(12;34)
= \Lambda_\text{t}^\irr(12;34)
& + \frac{1}{2} \Phi_\text{d}(24;31)
+ \frac{1}{2} \Phi_\text{m}(24;31)
\\
& - \frac{1}{2} \Psi_\text{s}(14;32)
- \frac{1}{2} \Psi_\text{t}(14;32)
\end{split}
\end{align}
Check out this nice symmetry!
Now that we have the parquet equations written in a convenient spin-adapted form, the last step is to write down the self-energy via the Dyson-Schwinger equation.
Doing so displays the four varieties of composite bosons mentioned previously:
\begin{equation}
\label{eq:Sig2_sa}
\begin{split}
\Sigma_2(11')
= \frac{1}{2} \Bigg\{
& - \frac{1}{2} G(76) \qty[
\frac{1}{2} \Lambda_\text{d}^\irr G^\ph v_\text{d} + \frac{3}{2} \Lambda_\text{m}^\irr G^\ph v_\text{m} ](17;1'6)
\\
& + G(67) \qty[ \frac{1}{2} \Lambda_\text{s}^\irr G^\pp v_\text{s} + \frac{3}{2} \Lambda_\text{t}^\irr G^\pp v_\text{t} ](17;1'6)
\Bigg\}
\\
& - G(76) \qty[ \frac{1}{2} \Phi_\text{d} G^\ph v_\text{d} + \frac{3}{2} \Phi_\text{m} G^\ph v_\text{m} ](17;1'6)
\\
& + G(67) \qty[ \frac{1}{2} \Psi_\text{s} G^\pp v_\text{s} + \frac{3}{2} \Psi_\text{t} G^\pp v_\text{t} ](17;1'6)
\end{split}
\end{equation}
Finally, the crossing relations become
\begin{gather}
\Gamma_\text{m}(12;34) = - \frac{1}{2} \Gamma_\text{d}(42;31) + \frac{1}{2} \Gamma_\text{m}(42;31)
\\
\Gamma_\text{m}(12;34) = - \frac{1}{2} \Gamma_\text{s}(14;32) - \frac{1}{2} \Gamma_\text{t}(14;32)
\end{gather}
%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Fluctuation-exchange approximation}
%%%%%%%%%%%%%%%%%%%%%%%%%
The FLEX approximation is a variant of the Baym-Kadanoff approximation and then focuses on the self-energy itself.
This lack of two-body self-consistency limits quantitative accuracy of FLEX compared to parquet.
In FLEX, one sets $\Lambda^\irr = \Gamma^\ph = \Gamma^\pp = v$.
Equation \eqref{eq:Sig2_sa} then becomes
\begin{equation}
\label{eq:Sig2_sa}
\begin{split}
\Sigma_2(11')
= \frac{1}{2} \Bigg\{
& - \frac{1}{2} G(76) \qty[
\frac{1}{2} v_\text{d} G^\ph v_\text{d} + \frac{3}{2} v_\text{m} G^\ph v_\text{m} ](17;1'6)
\\
& + G(67) \qty[ \frac{1}{2} v_\text{s} G^\pp v_\text{s} + \frac{3}{2} v_\text{t} G^\pp v_\text{t} ](17;1'6)
\Bigg\}
\\
& - G(76) \Big[
\frac{1}{2} v_\text{d} (\bI - G^\ph v_\text{d})^{-1} (G^\ph v_\text{d})^2
\\
& + \frac{3}{2} v_\text{m} (\bI - G^\ph v_\text{m})^{-1} (G^\ph v_\text{m})^2
\Big](17;1'6)
\\
& + G(67) \Big[
\frac{1}{2} v_\text{s} (\bI - G^\pp)^{-1} (G^\pp v_\text{s})^2
\\
& + \frac{3}{2} v_\text{t} (\bI - G^\pp)^{-1} (G^\pp v_\text{t})^2
\Big](17;1'6)
\end{split}
\end{equation}
Because FLEX is a parquet with non-self-consistent two-body vertices, their expressions are a bit different and two flavours exist.
The first flavour includes the single-fluctuation-exchange diagrams while the second flavor includes also the so-called Aslamazov-Larkin diagrams.
When the vertex functions are spin-diagonalized omitting the Aslamazov-Larkin contributions, we recover the parquet equations where one sets $\Lambda^\irr = \Gamma^\ph = \Gamma^\pp = v$.
It has been shown that the Aslamazov-Larkin diagrams deterioetas the accuray of the two-body vertices obtained via FLEX.
%%%%%%%%%%%%%%%%%%%%%%%%
\acknowledgements{