One-body Green's functions provide a natural and elegant way to access the charged excitation energies of a physical system. \cite{CsanakBook,FetterBook,Martin_2016,Golze_2019}
The non-linear Hedin's equations provide a recipe to obtain the exact interacting one-body Green's function and therefore the exact ionization potentials and electron affinities. \cite{Hedin_1965}
In particular, the $GW$ approximation, \cite{Hedin_1965,Aryasetiawan_1998,Onida_2002,Reining_2017,Golze_2019,Bruneval_2021} which has been first introduced in the context of solids \cite{Strinati_1980,Strinati_1982a,Strinati_1982b,Hybertsen_1985,Hybertsen_1986,Godby_1986,Godby_1987,Godby_1987a,Godby_1988,Blase_1995} and is now widely used for molecules as well, \cite{Rohlfing_1999a,Horst_1999,Puschnig_2002,Tiago_2003,Rocca_2010,Boulanger_2014,Jacquemin_2015a,Bruneval_2015,Jacquemin_2015b,Hirose_2015,Jacquemin_2017a,Jacquemin_2017b,Rangel_2017,Krause_2017,Gui_2018,Blase_2018,Liu_2020,Li_2017,Li_2019,Li_2020,Li_2021,Blase_2020,Holzer_2018a,Holzer_2018b,Loos_2020e,Loos_2021,McKeon_2022} provides fairly accurate charged excitation energies for weakly correlated systems \cite{Hung_2017,vanSetten_2015,vanSetten_2018,Caruso_2016,Korbel_2014,Bruneval_2021} at a low computational cost. \cite{Foerster_2011,Liu_2016,Wilhelm_2018,Forster_2021,Duchemin_2019,Duchemin_2020,Duchemin_2021}
The $GW$ method approximates the self-energy $\Sigma$ which relates the exact interacting Green's function $G$ to a non-interacting reference one $G_S$ through a Dyson equation
%Throughout this manuscript the references are chosen to be the Hartree-Fock (HF) ones so that the self-energy only account for the missing correlation.
Approximating $\Sigma$ as the first-order term of its perturbation expansion with respect to the screened interaction $W$ yields the so-called $GW$ approximation. \cite{Hedin_1965,Martin_2016}
Alternatively one could choose to define $\Sigma$ as the $n$th-order expansion in terms of the bare Coulomb interaction leading to the GF($n$) class of approximations. \cite{SzaboBook,Ortiz_2013,Hirata_2015,Hirata_2017}
The GF(2) approximation \cite{Casida_1989,Casida_1991,Phillips_2014,Phillips_2015,Rusakov_2014,Rusakov_2016,Backhouse_2021,Backhouse_2020b,Backhouse_2020a,Pokhilko_2021a,Pokhilko_2021b,Pokhilko_2022} is also known as the second Born approximation in condensed matter physics. \cite{Stefanucci_2013}
Despite a wide range of successes, many-body perturbation theory is not flawless. \cite{vanSetten_2015,Maggio_2017,Duchemin_2020}
It has been shown that a variety of physical quantities such as charged and neutral excitations energies or correlation and total energies computed within many-body perturbation theory exhibit some discontinuities. \cite{Veril_2018,Loos_2018b,Loos_2020e,Berger_2021,DiSabatino_2021}
In addition, systems for which two quasi-particle solutions have a similar spectral weight are known to be particularly difficult to converge for partially self-consistent $GW$. \cite{Forster_2021}
In a recent study, Monino and Loos showed that these discontinuities could be removed by the introduction of a regularizer inspired by the similarity renormalization group (SRG) in the quasi-particle equation. \cite{Monino_2022}
Encouraged by the recent successes of regularization schemes in many-body quantum chemistry methods, as in single- and multi-reference perturbation theory, \cite{Lee_2018a,Shee_2021,Evangelista_2014b,ChenyangLi_2019a,Battaglia_2022} this work will investigate the application of the SRG formalism to many-body perturbation theory in its $GW$ and GF(2) variants.
The SRG has been developed independently by Wegner \cite{Wegner_1994} and Glazek and Wilson \cite{Glazek_1993,Glazek_1994} in the context of condensed matter systems and light-front quantum field theories, respectively.
This formalism has been introduced in quantum chemistry by White \cite{White_2002} before being explored in more detail by Evangelista and his co-workers in the context of multi-reference electron correlation theories. \cite{Evangelista_2014b,ChenyangLi_2015, ChenyangLi_2016,ChenyangLi_2017,ChenyangLi_2018,ChenyangLi_2019a}
The SRG has also been successful in the context of nuclear structure theory, where it was first developed as a mature computational tool thanks to the work of several research groups.
The SRG transformation aims at decoupling an internal (or reference) space from an external space while incorporating information about their coupling in the reference space.
This process can often result in the appearance of intruder states. \cite{Evangelista_2014b,ChenyangLi_2019a}
However, SRG is particularly well-suited to avoid them because the decoupling of each external configuration is inversely proportional to its energy difference with the reference space.
By definition, intruder states have energies that are close to the reference energy, and therefore are the last to be decoupled.
By stopping the SRG transformation once all external configurations except the intruder states have been decoupled,
correlation effects between the internal and external spaces can be incorporated (or folded) without the presence of intruder states.
The goal of this manuscript is to determine if the SRG formalism can effectively address the issue of intruder states in many-body perturbation theory, as it has in other areas of electronic and nuclear structure theory.
The manuscript is organized as follows.
We begin by reviewing the $GW$ approximation in Sec.~\ref{sec:gw} and then briefly review the SRG formalism in Sec.~\ref{sec:srg}.
Section~\ref{sec:theoretical} is concluded by a perturbative analysis of SRG applied to $GW$ (see Sec.~\ref{sec:srggw}).
The computational details are provided in Sec.~\ref{sec:comp_det} before turning to the results section.
where $\bF$ is the Fock matrix, \cite{SzaboBook} and $\bSig(\omega)$ is the self-energy, both are $K \times K$ matrices with $K$ the number of one-body basis functions.
Similarly to the HF case, this equation needs to be solved self-consistently.
Note that $\bSig$ is dynamical, \ie it depends on both the eigenvalues $\epsilon_p$ and eigenvectors $\psi_p$ while $\bF$ depends only on the eigenvectors.
Because of this $\omega$ dependence, fully solving this equation is a rather complicated task, hence several approximate solving schemes has been developed.
The most popular one is probably the one-shot scheme, known as $G_0W_0$ if the self-energy is the $GW$ one, in which the off-diagonal elements of Eq.~\eqref{eq:quasipart_eq} are neglected and the self-consistency is abandoned.
In fact, these cases are related to the discontinuities and convergence problems discussed earlier because the additional solutions with large weights are the previously mentioned intruder states.
Therefore, one could try to optimize the starting point to obtain the best one-shot energies possible. \cite{Korzdorfer_2012,Marom_2012,Bruneval_2013,Gallandi_2015,Caruso_2016, Gallandi_2016}
Alternatively, one could solve this equation self-consistently leading to the eigenvalue-only self-consistent scheme. \cite{Shishkin_2007,Blase_2011b,Marom_2012,Kaplan_2016,Wilhelm_2016}
To do so the energy of the quasi-particle solution of the previous iteration is used to build Eq.~\eqref{eq:G0W0} and then this equation is solved for $\omega$ again until convergence is reached.
Even if self-consistency has been reached, the starting point dependence has not been totally removed because the results still depend on the starting molecular orbitals. \cite{Marom_2012}
To take into account the effect of off-diagonal elements without fully solving the quasi-particle equation, one can resort to the quasi-particle self-consistent (qs) scheme in which $\bSig(\omega)$ is replaced by a static approximation $\bSig^{\qs}$.
The algorithm to solve the qs problem is totally analog to the HF case with $\bF$ replaced by $\bF+\bSig^{\qs}$.
This form has first been introduced by Faleev and co-workers \cite{Faleev_2004,vanSchilfgaarde_2006,Kotani_2007} before being derived as the effective Hamiltonian that minimizes the length of the gradient of the Klein functional for non-interacting Green's function. \cite{Ismail-Beigi_2017}
One of the main results of this manuscript is the derivation from first principles of an alternative static Hermitian form, this will be done in the next section.
Convergence problems arise when a shake-up configuration has an energy similar to the associated quasi-particle solution, this satellite is the so-called intruder state.
The intruder state problem can be dealt with by introducing \textit{ad hoc} regularizers.
The $\ii eta$ term that is usually added in the denominator of the self-energy (see below) is the usual imaginary-shift regularizer used in various other theories flawed by intruder states. \cite{Battaglia_2022}\ant{more ref...}
Various other regularizers are possible and in particular one of us has shown that a regularizer inspired by the SRG had some advantages, in the $GW$ case, over the imaginary shift one. \cite{Monino_2022}
But it would be more rigorous, and more instructive, to obtain this regularizer from first principles by applying the SRG formalism to many-body perturbation theory.
Therefore if we apply it, the SRG would gradually remove the coupling between the quasi-particle and the satellites resulting in a renormalized quasi-particle.
However, to do so one needs to identify the coupling terms in Eq.~\eqref{eq:quasipart_eq}, which is not straightforward.
The way around this problem is to transform Eq.~\eqref{eq:quasipart_eq} to its upfolded version and the coupling terms will elegantly appear in the process.
From now on, we will restrict ourselves to the $GW$ in the Tamm-Dancoff approximation (TDA) case but the same derivation could be done for the non-TDA $GW$ and GF(2) self-energies.
Throughout the manuscript $p,q,r,s$ indices are used for general orbitals while $i,j,k,l$ and $a,b,c,d$ refers to occupied and virtual orbitals, respectively.
The indices $v$ and $w$ will be used for neutral excitations, \ie composite indices $v=(ia)$.
can be obtained by applying L\"odwin partitioning technique to Eq.~\eqref{eq:GWlin}\cite{Lowdin_1963,Bintrim_2021} which gives the following the expression for the self-energy
We refer to Ref.~\onlinecite{Bintrim_2021} for a detailed discussion of the up/downfolding processes of the $GW$ equations (see also Chapter 8 of Ref.~\onlinecite{Schirmer_2018} for the GF(2) case).
As can be readily seen in Eq.~\eqref{eq:GWlin}, the blocks $V^\text{2h1p}$ and $ V^\text{2p1h}$ are coupling the 1h and 1p configuration to the dressed 2h1p and 2p1h configurations.
The similarity renormalization group method aims at continuously transforming a Hamiltonian to a diagonal form, or more often to a block-diagonal form.
depends on a flow parameter $s$, such that $\bH(s=0)$ is the initial untransformed Hamiltonian and $\bH(s=\infty)$ is the (block)-diagonal Hamiltonian.
To solve this equation at a cost inferior to the one of diagonalizing the initial Hamiltonian, one needs to introduce an approximation for $\boldsymbol{\eta}(s)$.
which implies that the matrix elements of the off-diagonal part will decrease in a monotonic way.
Even more, the coupling coefficients associated with the highest energy determinants are removed first as will be evidenced by the perturbative analysis after.
The main flaw of this generator is that it generates a stiff set of ODE which is therefore difficult to solve numerically. \ant{ref}
However, here we will not tackle the full SRG problem but only consider analytical low-order perturbative expressions so we will not be affected by this problem. \cite{Evangelista_2014, Hergert_2016}
Once the analytical low-order perturbative expansions are known they can be inserted in Eq.~\eqref{eq:GWlin} before downfolding to obtain a renormalized quasi-particle equation.
In particular, in this manuscript, the focus will be on the second-order renormalized quasi-particle equation.
The last equation can be solved by introducing $\bU$ the matrix that diagonalizes $\bC^{(0)}=\bU\bD^{(0)}\bU^{-1}$ such that the differential equation for $\bV^{(0)}$ becomes
which gives the same system of equations as in the previous subsection except that $\bV^{(0)}$ and $\bV^{(0),\dagger}$ should be replaced by $\bV^{(1)}$ and $\bV^{(1),\dagger}$.
Once again the two first equations are easily solved
At $s=0$ the elements $W_{p,(q,v)}^{(1)}(0)$ are equal to the two-electron screened integrals defined in Eq.~\eqref{eq:GW_sERI} while for $s\to\infty$ they go to zero.
Therefore, $W_{p,(q,v)}^{(1)}(s)$ are renormalized two-electrons screened integrals.
Note the close similarity of the first-order element expressions with the ones of Evangelista in Ref.~\onlinecite{Evangelista_2014b} obtained in a second quantization formalism (see also Ref.~\onlinecite{Hergert_2016}).
As can be readily seen above, $\bF^{(2)}$ is the only second-order block of the effective Hamiltonian contributing to the second-order SRG quasi-particle equation.
Collecting every second-order terms in the flow equation and performing the block matrix products results in the following differential equation for $\bF^{(2)}$
Interestingly, the static limit, \ie$s\to\infty$ limit, of Eq.~\eqref{eq:GW_renorm} defines an alternative qs$GW$ approximation to the one defined by Eq.~\eqref{eq:sym_qsgw} which matrix elements read as
However, as will be discussed in more detail in the results section, the convergence of the qs$GW$ scheme using $\widetilde{\bF}(\infty)$ is very poor.
which depends on one regularising parameter $s$ analogously to $\eta$ in the usual case.
The fact that the $s\to\infty$ static limit does not always converge when used in a qs$GW$ calculation could have been predicted because in this limit even the intruder states have been included in $\tilde{\bF}$.
Indeed, previously we mentioned that intruder states are responsible for both the poor convergence of qs$GW$ and discontinuities in physical quantities at the $\GOWO$ level.
So is it possible to use the SRG machinery developed above to remove discontinuities?
In fact, not directly because discontinuities are due to intruder states in the dynamic part while we have seen just above that a finite value of $s$ is well-designed to avoid the intruder states in the static part.
However, doing a change of variable such that
\begin{align}
e^{-s}&= 1-e^{-t}& 1 - e^{-s}&= e^{-t}
\end{align}
hence choosing a finite value of $t$ is well-designed to avoid discontinuities in the dynamic.
In fact, the dynamic part after the change of variable is closely related to the SRG-inspired regularizer introduced by Monino and Loos in Ref.~\onlinecite{Monino_2022}.
\acknowledgements{This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No.~863481).}
$\boldsymbol{\Omega}$ is the diagonal matrix of eigenvalues. Note that $\boldsymbol{\Omega}$ in this case has the same size as in the TDA because we consider only the positive excitations of the full dRPA problem.
Defining an unfold version of this equation that does not require a diagonalization of the RPA problem before unfolding is a tricky task (see supplementary material of Ref.~\onlinecite{Bintrim_2021}).
which already depends on the screened integrals and therefore require the knowledge of the eigenvectors of the dRPA problem defined in Eq.~\eqref{eq:full_dRPA}.
Using the SRG on this matrix instead of Eq.~\eqref{eq:GWlin} gives the same expression for $\bW^{(1)}$, $\bF^{(2)}$ and $\bSig^{\text{SRG}}$ but now the screened integrals are the one of Eq.~\eqref{eq:GWnonTDA_sERI} and the eigenvalues $\Omega$ and eigenvectors $\bX$ and $\bY$ are the ones of the full RPA problem defined in Eq.~\eqref{eq:full_dRPA}.