301 lines
12 KiB
TeX
301 lines
12 KiB
TeX
|
\documentclass[aip,jcp,reprint,noshowkeys,superscriptaddress]{revtex4-1}
|
||
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,longtable,wrapfig,txfonts,mleftright}
|
||
|
\usepackage[version=4]{mhchem}
|
||
|
|
||
|
\usepackage[utf8]{inputenc}
|
||
|
\usepackage[T1]{fontenc}
|
||
|
\usepackage{txfonts}
|
||
|
|
||
|
\usepackage[
|
||
|
colorlinks=true,
|
||
|
citecolor=blue,
|
||
|
breaklinks=true
|
||
|
]{hyperref}
|
||
|
\urlstyle{same}
|
||
|
|
||
|
\newcommand{\ie}{\textit{i.e.}}
|
||
|
\newcommand{\eg}{\textit{e.g.}}
|
||
|
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||
|
\usepackage[normalem]{ulem}
|
||
|
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
||
|
\newcommand{\trashPFL}[1]{\textcolor{r\ed}{\sout{#1}}}
|
||
|
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
||
|
|
||
|
\newcommand{\mc}{\multicolumn}
|
||
|
\newcommand{\fnm}{\footnotemark}
|
||
|
\newcommand{\fnt}{\footnotetext}
|
||
|
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||
|
\newcommand{\QP}{\textsc{quantum package}}
|
||
|
\newcommand{\T}[1]{#1^{\intercal}}
|
||
|
\newcommand{\Sig}[2]{\Sigma_{#1}^{#2}}
|
||
|
\newcommand{\dRPA}{\text{dRPA}}
|
||
|
|
||
|
% coordinates
|
||
|
\newcommand{\br}{\boldsymbol{r}}
|
||
|
\newcommand{\bx}{\boldsymbol{x}}
|
||
|
\newcommand{\dbr}{d\br}
|
||
|
\newcommand{\dbx}{d\bx}
|
||
|
|
||
|
% methods
|
||
|
\newcommand{\GW}{\text{$GW$}}
|
||
|
\newcommand{\GT}{\text{$GT$}}
|
||
|
\newcommand{\evGW}{ev$GW$}
|
||
|
\newcommand{\qsGW}{qs$GW$}
|
||
|
\newcommand{\GOWO}{$G_0W_0$}
|
||
|
\newcommand{\Hxc}{\text{Hxc}}
|
||
|
\newcommand{\xc}{\text{xc}}
|
||
|
\newcommand{\Ha}{\text{H}}
|
||
|
\newcommand{\co}{\text{c}}
|
||
|
\newcommand{\x}{\text{x}}
|
||
|
\newcommand{\KS}{\text{KS}}
|
||
|
\newcommand{\HF}{\text{HF}}
|
||
|
\newcommand{\RPA}{\text{RPA}}
|
||
|
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
||
|
\newcommand{\sERI}[2]{(#1|#2)}
|
||
|
\newcommand{\e}[2]{\epsilon_{#1}^{#2}}
|
||
|
|
||
|
%
|
||
|
\newcommand{\Ne}{N}
|
||
|
\newcommand{\Norb}{K}
|
||
|
\newcommand{\Nocc}{O}
|
||
|
\newcommand{\Nvir}{V}
|
||
|
|
||
|
% operators
|
||
|
\newcommand{\hH}{\Hat{H}}
|
||
|
\newcommand{\hS}{\Hat{S}}
|
||
|
\newcommand{\ani}[1]{\hat{a}_{#1}}
|
||
|
\newcommand{\cre}[1]{\hat{a}_{#1}^\dagger}
|
||
|
\newcommand{\no}[2]{\mleft\{ \hat{a}_{#1}^{#2}\mright\} }
|
||
|
|
||
|
% energies
|
||
|
\newcommand{\Enuc}{E^\text{nuc}}
|
||
|
\newcommand{\Ec}[1]{E_\text{c}^{#1}}
|
||
|
\newcommand{\EHF}{E^\text{HF}}
|
||
|
|
||
|
% orbital energies
|
||
|
\newcommand{\eps}{\epsilon}
|
||
|
\newcommand{\reps}{\Tilde{\epsilon}}
|
||
|
|
||
|
% Matrix elements
|
||
|
\newcommand{\SigC}{\Sigma^\text{c}}
|
||
|
\newcommand{\rSigC}{\Tilde{\Sigma}^\text{c}}
|
||
|
\newcommand{\MO}[1]{\phi_{#1}}
|
||
|
\newcommand{\SO}[1]{\psi_{#1}}
|
||
|
\newcommand{\eri}[2]{\braket{#1}{#2}}
|
||
|
\newcommand{\aeri}[2]{\mel{#1}{}{#2}}
|
||
|
\newcommand{\ERI}[2]{(#1|#2)}
|
||
|
\newcommand{\rbra}[1]{(#1|}
|
||
|
\newcommand{\rket}[1]{|#1)}
|
||
|
|
||
|
|
||
|
% Matrices
|
||
|
\newcommand{\bO}{\boldsymbol{0}}
|
||
|
\newcommand{\bI}{\boldsymbol{1}}
|
||
|
\newcommand{\bH}{\boldsymbol{H}}
|
||
|
\newcommand{\bSigC}{\boldsymbol{\Sigma}^{\text{c}}}
|
||
|
\newcommand{\be}{\boldsymbol{\epsilon}}
|
||
|
\newcommand{\bOm}{\boldsymbol{\Omega}}
|
||
|
\newcommand{\bA}{\boldsymbol{A}}
|
||
|
\newcommand{\bB}{\boldsymbol{B}}
|
||
|
\newcommand{\bC}[2]{\boldsymbol{C}_{#1}^{#2}}
|
||
|
\newcommand{\bD}{\boldsymbol{D}}
|
||
|
\newcommand{\bF}{\boldsymbol{F}}
|
||
|
\newcommand{\bU}{\boldsymbol{U}}
|
||
|
\newcommand{\bV}[2]{\boldsymbol{V}_{#1}^{#2}}
|
||
|
\newcommand{\bW}{\boldsymbol{W}}
|
||
|
\newcommand{\bX}[2]{\boldsymbol{X}_{#1}^{#2}}
|
||
|
\newcommand{\bY}[2]{\boldsymbol{Y}_{#1}^{#2}}
|
||
|
\newcommand{\bZ}[2]{\boldsymbol{Z}_{#1}^{#2}}
|
||
|
\newcommand{\bc}{\boldsymbol{c}}
|
||
|
|
||
|
% orbitals, gaps, etc
|
||
|
\newcommand{\IP}{I}
|
||
|
\newcommand{\EA}{A}
|
||
|
\newcommand{\HOMO}{\text{HOMO}}
|
||
|
\newcommand{\LUMO}{\text{LUMO}}
|
||
|
\newcommand{\Eg}{E_\text{g}}
|
||
|
\newcommand{\EgFun}{\Eg^\text{fund}}
|
||
|
\newcommand{\EgOpt}{\Eg^\text{opt}}
|
||
|
\newcommand{\EB}{E_B}
|
||
|
|
||
|
% shortcuts for greek letters
|
||
|
\newcommand{\si}{\sigma}
|
||
|
\newcommand{\la}{\lambda}
|
||
|
|
||
|
|
||
|
\newcommand{\RHH}{R_{\ce{H-H}}}
|
||
|
\newcommand{\ii}{\mathrm{i}}
|
||
|
|
||
|
\newcommand{\bEta}[1]{\boldsymbol{\eta}^{(#1)}(s)}
|
||
|
\newcommand{\bHd}[1]{\bH_\text{d}^{(#1)}}
|
||
|
\newcommand{\bHod}[1]{\bH_\text{od}^{(#1)}}
|
||
|
|
||
|
% addresses
|
||
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\title{Notes on the project: Similarity Renormalization Group formalism applied to Green's function theory}
|
||
|
|
||
|
\author{Antoine \surname{Marie}}
|
||
|
\email{amarie@irsamc.ups-tlse.fr}
|
||
|
\affiliation{\LCPQ}
|
||
|
|
||
|
\author{Pierre-Fran\c{c}ois \surname{Loos}}
|
||
|
\email{loos@irsamc.ups-tlse.fr}
|
||
|
\affiliation{\LCPQ}
|
||
|
|
||
|
%\begin{abstract}
|
||
|
%Here comes the abstract.
|
||
|
%\bigskip
|
||
|
%\begin{center}
|
||
|
% \boxed{\includegraphics[width=0.5\linewidth]{TOC}}
|
||
|
%\end{center}
|
||
|
%\bigskip
|
||
|
%\end{abstract}
|
||
|
|
||
|
\maketitle
|
||
|
|
||
|
%=================================================================%
|
||
|
\section{Introduction}
|
||
|
%=================================================================%
|
||
|
|
||
|
The many-body perturbation theory formalism and its various approximations are naturally derived using time-dependent Feynman diagrams.
|
||
|
These derivation are quite different from wave function methods based on one-body orbitals and second quantization.
|
||
|
One can study the link between these formalisms by expanding the MBPT Feynman diagrams into time-independent Goldstone diagrams and then compare them to the ones that appear in WFT.
|
||
|
However, that would be valuable to extend this connection by expressing the MBPT approximations in the second quantization.
|
||
|
This is the aim of these notes.
|
||
|
|
||
|
%=================================================================%
|
||
|
\section{The unfolded Green's function}
|
||
|
%=================================================================%
|
||
|
|
||
|
In order to use MBPT in practice, one needs to rely on approximations of the self-energy.
|
||
|
In the following, we will focus on the GF(2), GW and GT approximations.
|
||
|
The GF($n$) formalism is defined such that the self-energy includes every diagram up to $n$-th order of MP perturbation theory.
|
||
|
On the other hand, the GW self-energy is obtained by taking the RPA polarizability and removing the vertex correction in the exact definition of the self-energy.
|
||
|
Finally, the GT approximation corresponds to another approximation to the polarizability than in GW, namely the one coming from pp-hh-RPA
|
||
|
The corresponding self-energies read as
|
||
|
\begin{align}
|
||
|
\label{eq:selfenergies}
|
||
|
\Sig{pq}{GF(2)}(\omega) & = \sum_{klc} \frac{\aeri{pc}{kl}\aeri{qc}{kl}}{\omega + \eps _c -\eps_k -\eps_l - \ii \eta} \\
|
||
|
& + \sum_{kcd} \frac{\aeri{pk}{cd}\aeri{qk}{cd}}{\omega + \eps _k -\eps_c -\eps_d + \ii \eta} \notag \\
|
||
|
\Sig{pq}{\GW}(\omega) & = \sum_{im} \frac{\sERI{pi}{m} \sERI{qi}{m}}{\omega - \e{i}{} + \Om{m}{\dRPA} - \ii \eta}\\
|
||
|
& + \sum_{am} \frac{\sERI{pa}{m} \sERI{qa}{m}}{\omega - \e{a}{} - \Om{m}{\dRPA} + \ii \eta} \notag \displaybreak \\
|
||
|
\Sig{pq}{\GT}(\omega) & = \sum_{im} \frac{\eri{pi}{\chi^{N+2}_m}\eri{qi}{\chi^{N+2}_m}}{\omega + \e{i}{} - \Om{m}{N+2} - \ii \eta} \\
|
||
|
&+ \sum_{am} \frac{\eri{pa}{\chi^{N-2}_m}\eri{qa}{\chi^{N-2}_m}}{\omega + \e{a}{} - \Om{m}{N-2} + \ii \eta} \notag
|
||
|
\end{align}
|
||
|
|
||
|
\begin{align}
|
||
|
\label{eq:sERI}
|
||
|
\sERI{pq}{m} &= \sum_{ia} \ERI{pi}{qa} \qty( \bX{m}{\dRPA} + \bY{m}{\dRPA} )_{ia} \\
|
||
|
\eri{pi}{\chi^{N+2}_m} &= \sum_{c<d} \aeri{pq}{cd} \bX{cd,m}{N+2} \\
|
||
|
\eri{pa}{\chi^{N-2}_m} &= \sum_{k<l} \aeri{pq}{kl} \bX{kl,m}{N-2}
|
||
|
\end{align}
|
||
|
The GW and GT
|
||
|
\begin{align}
|
||
|
\label{eq:selfenergiesGWGT}
|
||
|
\Sig{pq}{\GW}(\omega) & = \sum_{klc} \frac{\eri{pk}{cl}\eri{qk}{cl}}{\omega - (\e{k}{} + \e{l}{} - \e{c}{}) - \ii \eta}\\
|
||
|
& + \sum_{kcd} \frac{\eri{pd}{kc}\eri{qd}{kc}}{\omega - (\e{c}{} + \e{d}{} - \e{k}{}) + \ii \eta} \notag \\
|
||
|
\Sig{pq}{\GT}(\omega) & = \sum_{klc} \frac{\aeri{pc}{kl}\aeri{qc}{kl}}{\omega - (\e{k}{} + \e{l}{} - \e{c}{}) - \ii \eta} \\
|
||
|
&+ \sum_{kcd} \frac{\aeri{pk}{cd}\aeri{qk}{cd}}{\omega - (\e{c}{} + \e{d}{} - \e{k}{}) + \ii \eta} \notag
|
||
|
\end{align}
|
||
|
|
||
|
The quasi-particle equations involving these self energies can be unfolded into larger linear problems
|
||
|
\begin{equation}
|
||
|
\label{eqGF(2)lin}
|
||
|
H_{MBPT} =
|
||
|
\begin{pmatrix}
|
||
|
\bF{}{} & \bV{}{\text{2h1p}} & \bV{}{\text{2p1h}} \\
|
||
|
\T{(\bV{}{\text{2h1p}})} & \bC{}{\text{2h1p}} & \bO \\
|
||
|
\T{(\bV{}{\text{2p1h}})} & \bO & \bC{}{\text{2p1h}} \\
|
||
|
\end{pmatrix}
|
||
|
\end{equation}
|
||
|
In the GF(2) case, the coupling blocks are
|
||
|
\begin{align}
|
||
|
V^\text{2h1p}_{p,klc} & = \aeri{pc}{kl}
|
||
|
&
|
||
|
V^\text{2p1h}_{p,kcd} & = \aeri{pk}{dc}
|
||
|
\end{align}
|
||
|
and the 2h1p and 2p1h matrix elements are
|
||
|
\begin{subequations}
|
||
|
\begin{align}
|
||
|
C^\text{2h1p}_{ija,klc} & = \qty( \e{i}{} + \e{j}{} - \e{a}{}) \delta_{jl} \delta_{ac} \delta_{ik}
|
||
|
\\
|
||
|
C^\text{2p1h}_{iab,kcd} & = \qty( \e{a}{} + \e{b}{} - \e{i}{}) \delta_{ik} \delta_{ac} \delta_{bd}
|
||
|
\end{align}
|
||
|
\end{subequations}
|
||
|
The GW coupling blocks are
|
||
|
\begin{align}
|
||
|
V^\text{2h1p}_{p,klc} & = \eri{pc}{kl}
|
||
|
&
|
||
|
V^\text{2p1h}_{p,kcd} & = \eri{pk}{dc}
|
||
|
\end{align}
|
||
|
and the 2h1p and 2p1h matrix elements are
|
||
|
\begin{subequations}
|
||
|
\begin{align}
|
||
|
C^\text{2h1p}_{ija,klc} &= \qty[ \qty( \e{i}{} + \e{j}{} - \e{a}{}) \delta_{jl} \delta_{ac} - \eri{jc}{al} ] \delta_{ik} \\
|
||
|
C^\text{2p1h}_{iab,kcd} &= \qty[ \qty( \e{a}{} + \e{b}{} - \e{i}{}) \delta_{ik} \delta_{ac} + \eri{ak}{ic} ] \delta_{bd}
|
||
|
\end{align}
|
||
|
\end{subequations}
|
||
|
The GT coupling blocks are
|
||
|
\begin{align}
|
||
|
V^\text{2h1p}_{p,klc} & = \aeri{pc}{kl}
|
||
|
&
|
||
|
V^\text{2p1h}_{p,kcd} & = \aeri{pk}{dc}
|
||
|
\end{align}
|
||
|
and the 2h1p and 2p1h matrix elements are
|
||
|
\begin{subequations}
|
||
|
\begin{align}
|
||
|
C^\text{2h1p}_{ija,klc} &= \qty[ \qty( \e{i}{} + \e{j}{} - \e{a}{}) \delta_{jl} \delta_{ac} - \aeri{ij}{kl} ] \delta_{ik} \\
|
||
|
C^\text{2p1h}_{iab,kcd} &= \qty[ \qty( \e{a}{} + \e{b}{} - \e{i}{}) \delta_{ik} \delta_{ac} + \aeri{ab}{cd} ] \delta_{bd}
|
||
|
\end{align}
|
||
|
\end{subequations}
|
||
|
|
||
|
\textbf{\textcolor{red}{That would be nice to add electron-hole T matrix to see it also correspond to one term that can be found in the CI below.}}
|
||
|
|
||
|
%=================================================================%
|
||
|
\section{The IP/EA CI}
|
||
|
%=================================================================%
|
||
|
|
||
|
We would like to find second quantized effective hamiltonians for each of these MBPT approximate methods such that if these hamiltonians are put in the basis $\{\ket{\Psi_i},\ket{\Psi^a},\ket{\Psi_{ij}^a},\ket{\Psi_i^{ab}} \}$ we get back the matrices above.
|
||
|
The natural first idea is to put the electronic Hamiltonian into this IP/EA basis. This gives
|
||
|
\begin{equation}
|
||
|
\label{eq:H_IPEA}
|
||
|
H_{CI} =
|
||
|
\begin{pmatrix}
|
||
|
\be_i & \bO & \bV{1h}{\text{2h1p}} & \bO \\
|
||
|
\bO & \be_a & \bO &\bV{1p}{\text{2p1h}} \\
|
||
|
\bV{1h}{\text{2h1p},\dagger} & \bO & C^\text{2h1p}_{ija,klc} & \bO \\
|
||
|
\bO & \bV{1p}{\text{2p1h},\dagger} & \bO & C^\text{2p1h}_{iab,kcd} \\
|
||
|
\end{pmatrix}
|
||
|
\end{equation}
|
||
|
|
||
|
\begin{align}
|
||
|
V_{i,klc} &= \aeri{kl}{ci} \\
|
||
|
V_{a,kcd} &= \aeri{ka}{dc} \\
|
||
|
C^\text{2h1p}_{ija,klc} &= \\
|
||
|
C^\text{2p1h}_{iab,kcd} &= (-\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc}) f_{ki} \notag \\
|
||
|
&+ \delta_{ik}(\delta_{ac}f_{bd} + \delta_{ad}f_{bc} - \delta_{bc}f_{ad} + \delta_{bd}f_{ac}) \notag \\
|
||
|
&+ \delta_{ac}\aeri{kb}{di} - \delta_{ad}\aeri{kb}{ci} - \delta_{bc}\aeri{ka}{di} \notag \\
|
||
|
& + \delta_{bd}\aeri{ka}{ci} + \delta_{ik}\aeri{ba}{dc} \notag \\
|
||
|
&= \delta_{ac}\delta_{bd}\delta_{ik} (-\eps_i + \eps_a + \eps_b) \notag \\
|
||
|
&- \delta_{ad}\delta_{bc}\delta_{ik}(\eps_i - \eps_a - \eps_b) \notag \\
|
||
|
&+ \delta_{ac}\aeri{kb}{di} - \delta_{ad}\aeri{kb}{ci} - \delta_{bc}\aeri{ka}{di} \notag \\
|
||
|
& + \delta_{bd}\aeri{ka}{ci} + \delta_{ik}\aeri{ba}{dc} \notag
|
||
|
\end{align}
|
||
|
|
||
|
%=================================================================%
|
||
|
\section{Can we second quantized MBPT?}
|
||
|
% =================================================================%
|
||
|
|
||
|
|
||
|
|
||
|
\appendix
|
||
|
|
||
|
%=================================================================%
|
||
|
\section{Appendix A}
|
||
|
%=================================================================%
|
||
|
|
||
|
|
||
|
\end{document}
|