\documentclass[journal=jctcce,manuscript=article,layout=traditional]{achemso} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,hyperref,multirow,amsmath,amssymb,amsfonts,physics,float,lscape,soul,rotating,longtable,tabularx} \usepackage[version=4]{mhchem} \newcommand{\alert}[1]{\textcolor{red}{#1}} \newcommand{\mc}{\multicolumn} \newcommand{\mcc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\mr}{\multirow} \newcommand{\EFCI}{E_\text{FCI}} \newcommand{\EexCI}{E_\text{exCI}} \newcommand{\EsCI}{E_\text{sCI}} \newcommand{\EPT}{E_\text{PT2}} \newcommand{\PsisCI}{\Psi_\text{sCI}} \newcommand{\Ndet}{N_\text{det}} \newcommand{\ex}[6]{$^{#1}#2_{#3}^{#4}(#5 \rightarrow #6)$} \newcommand{\pis}{\pi^\star} \newcommand{\si}{\sigma} \newcommand{\sis}{\sigma^\star} % methods \newcommand{\TDDFT}{TD-DFT} \newcommand{\CASSCF}{CASSCF} \newcommand{\CASPT}{CASPT2} \newcommand{\ADC}[1]{ADC(#1)} \newcommand{\AD}{ADC(2)} \newcommand{\CCD}{CC2} \newcommand{\CCT}{CC3} \newcommand{\STEOM}{STEOM-CCSD} \newcommand{\AT}{ADC(3)} \newcommand{\CC}[1]{CC#1} \newcommand{\CCSD}{CCSD} \newcommand{\EOMCCSD}{EOM-CCSD} \newcommand{\CCSDT}{CCSDT} \newcommand{\CCSDTQ}{CCSDTQ} \newcommand{\CI}{CI} \newcommand{\sCI}{sCI} \newcommand{\exCI}{exFCI} \newcommand{\FCI}{FCI} % basis \newcommand{\Pop}{6-31+G(d)} \newcommand{\AVDZ}{\emph{aug}-cc-pVDZ} \newcommand{\AVTZ}{\emph{aug}-cc-pVTZ} \newcommand{\DAVTZ}{d-\emph{aug}-cc-pVTZ} \newcommand{\AVQZ}{\emph{aug}-cc-pVQZ} \newcommand{\DAVQZ}{d-\emph{aug}-cc-pVQZ} \newcommand{\TAVQZ}{t-\emph{aug}-cc-pVQZ} \newcommand{\AVFZ}{\emph{aug}-cc-pV5Z} \newcommand{\DAVFZ}{d-\emph{aug}-cc-pV5Z} % units \newcommand{\IneV}[1]{#1 eV} \newcommand{\InAU}[1]{#1 a.u.} \newcommand{\Ryd}{\mathrm{R}} \newcommand{\Val}{\mathrm{V}} \newcommand{\Fl}{\mathrm{F}} \newcommand{\ra}{\rightarrow} \newcommand{\SI}{Supporting Information} \setcounter{table}{0} \setcounter{figure}{0} \setcounter{page}{1} \setcounter{equation}{0} \renewcommand{\thepage}{S\arabic{page}} \renewcommand{\thefigure}{S\arabic{figure}} \renewcommand{\theequation}{S\arabic{equation}} \renewcommand{\thetable}{S\arabic{table}} \renewcommand{\thesection}{S\arabic{section}} \renewcommand\floatpagefraction{.99} \renewcommand\topfraction{.99} \renewcommand\bottomfraction{.99} \renewcommand\textfraction{.01} % addresses \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques, Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\CEISAM}{Laboratoire CEISAM - UMR CNRS 6230, Universit\'e de Nantes, 2 Rue de la Houssini\`ere, BP 92208, 44322 Nantes Cedex 3, France} \newcommand{\Pisa}{Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy} \title{Highly-Accurate Reference Excitation Energies and Benchmarks: Medium Size Molecules\\Supporting Information} \author{Pierre-Fran{\c c}ois Loos} \email{loos@irsamc.ups-tlse.fr} \affiliation[LCPQ, Toulouse]{\LCPQ} \author{Filippo Lipparini} \affiliation[DC, Pisa]{\Pisa} \email{filippo.lipparini@unipi.it} \author{Martial Boggio-Pasqua} \affiliation[LCPQ, Toulouse]{\LCPQ} \author{Anthony Scemama} \affiliation[LCPQ, Toulouse]{\LCPQ} \author{Denis Jacquemin} \email{Denis.Jacquemin@univ-nantes.fr} \affiliation[UN, Nantes]{\CEISAM} \begin{document} \clearpage \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of acetone.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Acetone &$^1A_2 (\Val; n \ra \pis)$ &4.57$^a$,4.48$^b$ \\ &$^1B_2 (\Ryd; n \ra 3s)$ &6.81$^c$ \\ &$^1A_2 (\Ryd; n \ra 3p)$ &7.65$^b$ \\ &$^1A_1 (\Ryd; n \ra 3p)$ &7.75$^d$ \\ &$^1B_2 (\Ryd; n \ra 3p)$ &7.91$^c$ \\ &$^3A_2 (\Val; n \ra \pis)$ &4.20$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ &6.28$^e$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,5o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$ and $3p_x$ orbitals. $^c$Using reference (6e,7o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$, 3s and $3p_z$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$ and $3p_y$ orbitals. $^e$Using reference (4e,4o) active space including valence $\pi$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of acrolein.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Acrolein &$^1A'' (\Val; n \ra \pis)$ &3.76$^a$,3.73$^b$ \\ &$^1A' (\Val; \pi \ra \pis)$ &6.67$^a$ \\ &$^1A'' (\Val; n \ra \pis)$ &7.16$^{a,c}$,7.57$^{b,c}$ \\ &$^1A' (\Ryd; n \ra 3s)$ &7.05$^a$ \\ &$^3A'' (\Val; n \ra \pis)$ &3.46$^a$,3.44$^b$ \\ &$^3A' (\Val; \pi \ra \pis)$ &3.95$^a$ \\ &$^3A' (\Val; \pi \ra \pis)$ &6.23$^a$ \\ &$^3A'' (\Val; n \ra \pis)$ &6.83$^{a,d}$,7.06$^{b,d}$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (12e,12o) active space including valence $\pi$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$, $n_\text{O}$ and 3s orbitals. $^b$Using reference (12e,13o) active space including valence $\pi$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$, $n_\text{O}$, 3s and $3p_z$ orbitals. $^c$Substantial Rydberg and doubly-excited character. $^d$Substantial doubly-excited character. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of benzene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Benzene &$^1B_{2u} (\Val; \pi \ra \pis)$ &5.32$^a$,5.32$^b$ \\ &$^1B_{1u} (\Val; \pi \ra \pis)$ &6.01$^a$,6.43$^b$ \\ &$^1E_{1g} (\Ryd; \pi \ra 3s)$ &6.75$^c$ \\ &$^1A_{2u} (\Ryd; \pi \ra 3p)$ &7.40$^d$\\ &$^1E_{2u} (\Ryd; \pi \ra 3p)$ &7.45$^d$ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ &4.44$^a$,4.32$^b$\\ &$^3E_{1u}(\Val; \pi \ra \pis)$ &4.99$^a$,4.92$^b$\\ &$^3B_{2u} (\Val; \pi \ra \pis)$ &5.30$^a$,5.51$^b$\\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^b$Using reference (6e,9o) active space including valence $\pi$ and three $3p_z$ orbitals. $^c$Using reference (6e,7o) active space including valence $\pi$ and 3s orbitals. $^d$Using reference (6e,8o) active space including valence $\pi$, $3p_x$ and $3p_y$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of butadiene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Butadiene &$^1B_u (\Val; \pi \ra \pis)$ &6.04$^a$,6.73$^b$,6.68$^c$ \\ &$^1B_g (\Ryd; \pi \ra 3s)$ &6.44$^d$ \\ &$^1A_g (\Val; \pi \ra \pis)$ &6.70$^a$ \\ &$^1A_u (\Ryd; \pi \ra 3p)$ &6.84$^e$ \\ &$^1A_u (\Ryd; \pi \ra 3p)$ &7.01$^e$ \\ &$^1B_u (\Ryd; \pi \ra 3p)$ &6.99$^b$,7.45$^c$ \\ &$^3B_u (\Val; \pi \ra \pis)$ &3.40$^a$ \\ &$^3A_g (\Val; \pi \ra \pis)$ &5.30$^a$ \\ &$^3B_g (\Ryd; \pi \ra 3s)$ &6.38$^d$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (10e,10o) active space including valence $\pi$, $\si_\text{CC}$ and $\si^*_\text{CC}$ orbitals. $^b$Using reference (10e,11o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and $3p_z$ orbitals. $^c$Using reference (4e,8o) active space including valence $\pi$ and four $3p_z$. $^d$Using reference (10e,11o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and 3s orbitals. $^e$Using reference (10e,12o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$, $3p_x$ and $3p_y$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanoacetylene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2$^a$ \\ \hline Cyanoacetylene &$^1\Sigma^- (\Val; \pi \ra \pis)$ & 5.78 \\ &$^1\Delta (\Val; \pi \ra \pis)$ & 6.10 \\ &$^3\Sigma^+ (\Val; \pi \ra \pis)$ & 4.45 \\ &$^3\Delta (\Val; \pi \ra \pis)$ & 5.19 \\ &$^1A'' [\mathrm{F}] (\Val; \pi \ra \pis)$ & 3.50 \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$All calculations using a full valence $\pi$ active space of (8e,8o). \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanoformaldehyde.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Cyanoformaldehyde &$^1A'' (\Val; n \ra \pis)$ &3.98$^a$ \\ &$^1A'' (\Val; \pi \ra \pis)$ & 6.44$^a$ \\ &$^3A'' (\Val; n \ra \pis)$ & 3.58$^a$ \\ &$^3A' (\Val; \pi \ra \pis)$ & 5.35$^b$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$ Using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. $^b$ Using reference (6e,6o) active space including valence $\pi$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanogen.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2$^a$ \\ \hline Cyanogen & $^1\Sigma_u^- (\Val; \pi \ra \pis)$ & 6.32 \\ & $^1\Delta_u (\Val; \pi \ra \pis)$ & 6.66 \\ & $^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & 4.88 \\ & $^1\Sigma_u^- [\mathrm{F}] (\Val; \pi \ra \pis)$ & 4.97 \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$All calculations using a full valence $\pi$ active space of (8e,8o). \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopentadiene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Cyclopentadiene &$^1B_2 (\Val; \pi \ra \pis)$ &4.96$^a$,4.92$^b$,5.65$^c$ \\ &$^1A_2 (\Ryd; \pi \ra 3s)$ &5.92$^d$ \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ &6.42$^e$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ &6.59$^d$ \\ &$^1B_2 (\Ryd; \pi \ra 3p)$ &6.58$^b$,6.60$^c$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &6.75$^{a,f}$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ &3.41$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ &5.30$^a$ \\ &$^3A_2 (\Ryd; \pi \ra 3s)$ &5.73$^g$ \\ &$^3B_1 (\Ryd; \pi \ra 3p)$ &6.40$^e$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (4e,4o) active space including valence $\pi$ orbitals. $^b$Using reference (4e,5o) active space including valence $\pi$ and $3p_x$ orbitals. $^c$Using reference (4e,8o) active space including valence $\pi$ and four $3p_x$ orbitals. $^d$Using reference (4e,6o) active space including valence $\pi$, 3s and $3p_z$ orbitals. $^e$Using reference (4e,5o) active space including valence $\pi$ and $3p_y$ orbitals. $^f$Strong double-excitation character. $^g$Using reference (4e,5o) active space including valence $\pi$ and 3s orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopropenone.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2$^a$ \\ \hline Cyclopropenone &$^1B_1 (\Val; n \ra \pis)$ & 4.04 \\ &$^1A_2 (\Val; n \ra \pis)$ & 5.85 \\ &$^1B_2 (\Ryd; n \ra 3s)$ & 6.51 \\ &$^1B_2 (\Val; \pi \ra \pis$) & 6.82 \\ &$^1B_2 (\Ryd; n \ra 3p)$ & 7.07 \\ &$^1A_1 (\Ryd; n \ra 3p)$ & 7.28 \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 8.19 \\ &$^3B_1 (\Val; n \ra \pis)$ & 3.51 \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 5.10 \\ &$^3A_2 (\Val; n \ra \pis)$ & 5.60 \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 7.16 \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$All calculation using reference (6e,7o) active space averaging with the ground state for each irreducible representation. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopropenethione.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Cyclopropenethione &$^1A_2 (\Val; n \ra \pis)$ &3.52$^a$ \\ &$^1B_1 (\Val; n \ra \pis)$ &3.50$^a$ \\ &$^1B_2 (\Val; \pi \ra \pis)$ &4.77$^b$ \\ &$^1B_2 (\Ryd; n \ra 3s)$ &5.35$^b$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &5.54$^c$ \\ &$^1B_2 (\Ryd; n \ra 3p)$ &5.99$^b$ \\ &$^3A_2 (\Val; n \ra \pis)$ &3.38$^a$ \\ &$^3B_1 (\Val; n \ra \pis)$ &3.40$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ &4.21$^c$,4.17$^b$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ &4.13$^c$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,5o) active space. $^b$Using reference (6e,7o) active space. $^c$Using reference (4e,4o) active space. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of diacetylene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2$^a$ \\ \hline Diacetylene &$^1\Sigma_u^- (\Val; \pi \ra \pis)$ & 5.33 \\ &$^1\Delta_u (\Val; \pi \ra \pis)$ & 5.61 \\ &$^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & 4.08 \\ &$^3\Delta_u (\Val; \pi \ra \pis)$ & 4.78 \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$All calculations using a full valence $\pi$ active space of (8e,8o). \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of furan.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Furan &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.28$^a$ \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 5.92$^b$,6.20$^{c,d}$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.77$^{b,e}$ \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ & 6.71$^f$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ & 6.99$^a$ \\ &$^1B_2 (\Ryd; \pi \ra 3p)$ & 7.01$^{c,d}$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.42$^b$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 5.60$^b$ \\ &$^3A_2 (\Ryd; \pi \ra 3s)$ & 6.08$^g$ \\ &$^3B_1 (\Ryd; \pi \ra 3p)$ & 6.68$^f$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,7o) active space including valence $\pi$, 3s and $3p_z$ orbitals. $^b$Using reference (6e,5o) active space including valence $\pi$ orbitals. $^c$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. $^d$Increasing the $\pi$ $3p_x$ active space leads to strong mixing in the zeroth-order wavefunction requiring QD-NEVPT2 (see Pastore et al., Chem. Phys. Lett. 2006, 426, 445--451). $^e$Strong double-excitation character. $^f$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. $^g$Using reference (4e,5o) active space including valence $\pi$ and 3s orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of glyoxal.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Glyoxal &$^1A_u (\Val; n \ra \pis)$ & 2.90$^a$ \\ &$^1B_g (\Val; n \ra \pis)$ & 4.31$^a$,4.30$^b$ \\ &$^1A_g (\Val; n,n \ra \pis,\pis)$ & 5.52$^a$ \\ &$^1B_g (\Val; n \ra \pis)$ & 6.91$^{a,c}$,6.64$^{b,c}$ \\ &$^1B_u (\Ryd; n \ra 3p)$ & 7.84$^d$ \\ &$^3A_u (\Val; n \ra \pis)$ & 2.49$^a$ \\ &$^3B_g (\Val; n \ra \pis)$ & 3.99$^a$ \\ &$^3B_u (\Val; \pi \ra \pis)$ & 5.17$^a$ \\ &$^3A_g (\Val; \pi \ra \pis)$ & 6.33$^a$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (14e,12o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$ and $\si^*_\text{CO}$ orbitals. $^b$Using reference (14e,13o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_z$ orbitals. $^c$Non-negligible doubly-excited and Rydberg character. $^d$Using reference (14e,13o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_x$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of imidazole.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Imidazole &$^1A'' (\Ryd; \pi \ra 3s)$ &5.97$^a$,5.93$^b$ \\ &$^1A' (\Val; \pi \ra \pis)$ &6.86$^c$,6.81$^d$,6.73$^e$ \\ &$^1A'' (\Val; n \ra \pis)$ &6.97$^f$,6.96$^b$ \\ &$^1A' (\Ryd; \pi \ra 3p)$ &7.08$^d$,7.00$^e$ \\ &$^3A' (\Val; \pi \ra \pis)$ &4.98$^c$,4.86$^e$ \\ &$^3A'' (\Ryd; \pi \ra 3s)$ &5.93$^a$,5.91$^b$ \\ &$^3A' (\Val; \pi \ra \pis)$ &6.09$^c$,5.91$^e$ \\ &$^3A'' (\Val; n \ra \pis)$ &6.49$^f$,6.48$^b$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,6o) active space including valence $\pi$ and 3s orbitals. $^b$Using reference (8e,7o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^c$Using reference (6e,5o) active space including valence $\pi$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$ and one $3p_z$ orbitals. $^e$Using reference (6e,9o) active space including valence $\pi$ and four $3p_z$ orbitals. $^f$Using reference (8e,6o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^g$Using reference (8e,9o) active space including valence $\pi$, $n_\text{N}$, two $3p_z$ and 3s orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of isobutene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Isobutene &$^1B_1 (\Ryd; \pi \ra 3s)$ &6.63$^a$ \\ &$^1A_1 (\Ryd; \pi \ra 3p)$ &7.20$^b$ \\ &$^3A_1 (\Val; (\pi \ra \pis)$ &4.61$^c$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (4e,5o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and 3s orbitals. $^b$Using reference (4e,5o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and $3p_x$ orbitals. $^c$Using reference (4e,4o) active space including valence $\pi$, $\si_\text{CC}$ and $\si^*_\text{CC}$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of methylenecyclopropene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Methylenecyclopropene& $^1B_2 (\Val; \pi \ra \pis)$ &4.37$^a$ \\ &$^1B_1 (\Ryd; \pi \ra 3s)$ &5.51$^b$,5.49$^c$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ &6.00$^c$ \\ &$^1A_1(\Val; \pi \ra \pis)$ &6.33$^d$,6.36$^e$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ &3.66$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ &4.87$^d$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (4e,4o) active space. $^b$Using reference (6e,6o) active space. $^c$Using reference (4e,5o) active space. $^d$Using reference (4e,6o) active space. $^e$Using reference (4e,7o) active space. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of propynal.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Propynal & $^1A'' (\Val; n \ra \pis)$ &3.95$^a$ \\ &$^1A'' (\Val; \pi \ra \pis)$ & 5.50$^a$ \\ &$^3A'' (\Val; n \ra \pis)$ & 3.59$^a$ \\ &$^3A' (\Val; \pi \ra \pis)$ & 4.63$^b$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyrazine.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Pyrazine &$^1B_{3u} (\Val; n \ra \pis)$ & 4.17$^a$ \\ &$^1A_{u} (\Val; n \ra \pis)$ & 4.77$^a$ \\ &$^1B_{2u} (\Val; \pi \ra \pis)$ & 5.32$^b$,5.37$^c$ \\ &$^1B_{2g} (\Val; n \ra \pis)$ & 5.88$^a$ \\ &$^1A_{g} (\Ryd; n \ra 3s)$ & 6.70$^d$\\ &$^1B_{1g} (\Val; n \ra \pis)$ & 6.75$^a$ \\ &$^1B_{1u} (\Val; \pi \ra \pis)$ & 6.38$^b$,6.31$^e$,6.81$^f$ \\ &$^1B_{1g} (\Ryd; \pi \ra 3s)$ & 7.33$^g$ \\ &$^1B_{2u} (\Ryd; n \ra 3p)$ & 7.25$^c$ \\ &$^1B_{1u} (\Ryd; n \ra 3p)$ & 7.42$^e$ \\ &$^1B_{1u} (\Val; \pi \ra \pis)$ & 7.29$^b$,6.96$^e$,8.25$^f$\\ &$^3B_{3u} (\Val; n \ra \pis)$ & 3.56$^a$ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & 4.68$^b$,4.57$^f$ \\ &$^3B_{2u} (\Val; (\pi \ra \pis)$ & 4.42$^b$ \\ &$^3A_{u} (\Val; n \ra \pis)$ & 4.75$^a$ \\ &$^3B_{2g} (\Val; n \ra \pis)$ & 5.21$^a$ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & 5.43$^b$,5.35$^f$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and $3p_y$ orbitals. $^d$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^e$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and $3p_z$ orbitals. $^f$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyridazine.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & 3.80$^a$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 4.40$^a$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 5.58$^b$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 5.88$^a$ \\ &$^1B_2 (\Ryd; n \ra 3s)$ & 6.21$^c$ \\ &$^1B_1 (\Val; n \ra \pis)$ & 6.64$^a$ \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 7.82$^b$,7.19$^d$,7.10$^e$ \\ &$^3B_1 (\Val; n \ra \pis)$ & 3.13$^a$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 4.14$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.65$^b$,4.55$^d$,4.49$^e$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 4.94$^a$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^d$Using reference (6e,9o) active space including valence $\pi$, $n_\text{N}$ and three $3p_x$ orbitals. $^e$Using reference (6e,12o) active space including valence $\pi$, $n_\text{N}$ and six $3p_x$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyridine.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Pyridine &$^1B_1 (\Val; n \ra \pis)$ & 5.17$^a$,5.15$^b$ \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 5.44$^c$,5.31$^d$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 5.32$^a$,5.29$^e$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.69$^c$ \\ &$^1A_1 (\Ryd; n \ra 3s)$ & 6.99$^e$ \\ &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.96$^f$,6.86$^e$\\ &$^1B_2 (\Val; \pi \ra \pis)$ & 8.61$^a$,7.83$^d$ \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ & 7.57$^g$,7.45$^b$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.97$^c$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 4.60$^c$ \\ &$^3B_1 (\Val; n \ra \pis)$ & 4.58$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.90$^c$,4.88$^d$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 5.19$^c$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 5.33$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 7.00$^c$,6.29$^d$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (8e,7o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^b$Using reference (8e,8o) active space including valence $\pi$, $n_\text{N}$ and $3p_y$ orbitals. $^c$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^d$Using reference (6e,10o) active space including valence $\pi$ and four $3p_x$ orbitals. $^e$Using reference (8e,8o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^d$Using reference (6e,8o) active space including valence $\pi$ and 3s orbitals. $^g$Using reference (6e,7o) active space including valence $\pi$ and $3p_y$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyrimidine.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Pyrimidine &$^1B_1 (\Val; n \ra \pis)$ & 4.55$^a$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 4.84$^a$ \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 5.71$^b$,5.57$^d$,5.53$^e$ \\ &$^1A_2 (\Val; n \ra \pis)$ & 6.02$^a$ \\ &$^1B_1 (\Val; n \ra \pis)$ & 6.40$^a$ \\ &$^1B_2 (\Ryd; n \ra 3s)$ & 6.77$^c$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 7.47$^b$,7.11$^e$ \\ &$^3B_1 (\Val; n \ra \pis)$ & 4.17$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 4.84$^b$,4.67$^e$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 4.72$^a$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 5.08$^b$,5.01$^e$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^d$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. $^e$Using reference (6e,11o) active space including valence $\pi$ and five $3p_x$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyrrole.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Pyrrole &$^1A_2 (\Ryd; \pi \ra 3s)$ & 5.51$^a$ \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ & 6.32$^b$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ & 6.44$^c$ \\ &$^1B_2 (\Val; (\pi \ra \pis)$ & 6.48$^{e,f}$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.53$^d$ \\ &$^1B_2 (\Ryd; \pi \ra 3p)$ & 6.50$^d$,6.62$^e$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.74$^d$ \\ &$^3A_2 (\Ryd; \pi \ra 3s)$ & 5.49$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 5.56$^d$ \\ &$^3B_1 (\Ryd; \pi \ra 3p)$ & 6.28$^b$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,6o) active space including valence $\pi$ and 3s orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. $^c$Using reference (6e,7o) active space including valence $\pi$, 3s and $3p_z$ orbitals. $^d$Using reference (6e,5o) active space including valence $\pi$ orbitals. $^e$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. $^f$Increasing the $\pi$ $3p_x$ active space leads to strong mixing in the zeroth-order wavefunction requiring a multi-state treatment (see Roos et al., J. Chem. Phys. 2002, 116, 7526--7536). \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of tetrazine.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Tetrazine &$^1B_{3u} (\Val; n \ra \pis)$ & 2.35$^a$ \\ &$^1A_{u} (\Val; n \ra \pis)$ & 3.58$^a$ \\ &$^1A_{g} (\Val; n,n \ra \pis, \pis)$ & 4.61$^a$ \\ &$^1B_{1g} (\Val; n \ra \pis)$ & 4.95$^a$ \\ &$^1B_{2u} (\Val; \pi \ra \pis)$ & 5.56$^b$ \\ &$^1B_{2g} (\Val; n \ra \pis)$ & 5.63$^a$ \\ &$^1A_{u} (\Val; n \ra \pis)$ & 5.62$^a$ \\ &$^1B_{3g} (\Val; n,n \ra \pis, \pis)$ & 6.15$^a$ \\ &$^1B_{2g} (\Val; n \ra \pis)$ & 6.13$^a$ \\ &$^1B_{1g} (\Val; n \ra \pis)$ & 6.76$^a$ \\ &$^3B_{3u} (\Val; n \ra \pis)$ & 1.73$^a$ \\ &$^3A_{u} (\Val; n \ra \pis)$ & 3.36$^a$ \\ &$^3B_{1g} (\Val; n \ra \pis)$ & 4.24$^a$ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & 4.80$^b$,4.70$^a$ \\ &$^3B_{2u} (\Val; \pi \ra \pis)$ & 4.58$^b$ \\ &$^3B_{2g} (\Val; n \ra \pis)$ & 5.27$^a$ \\ &$^3A_{u} (\Val; n \ra \pis)$ & 5.13$^a$ \\ &$^3B_{3g} (\Val; n,n \ra \pis, \pis)$ & 5.51$^a$ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & 5.64$^b$,5.56$^c$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (14e,10o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thioacetone.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Thioacetone &$^1A_2 (\Val; n \ra \pis)$ & 2.55$^a$ \\ &$^1B_2 (\Ryd; n \ra 4s)$ & 5.72$^b$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 6.09$^c$,6.24$^d$ \\ &$^1B_2 (\Ryd; n \ra 4p)$ & 6.62$^b$ \\ &$^1A_1 (\Ryd; n \ra 4p)$ & 6.52$^d$ \\ &$^3A_2 (\Val; n \ra \pis)$ & 2.32$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 3.48$^c$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,5o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. $^b$Using reference (6e,7o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$, 4s and $4p_z$ orbitals. $^c$Using reference (4e,4o) active space including valence $\pi$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$ and $4p_y$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thiophene.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Thiophene &$^1A_1 (\Val; \pi \ra \pis)$ & 5.84$^a$ \\ &$^1B_2 (\Val; \pi \ra \pis)$ & 5.64$^a$,5.54$^b$,6.10$^c$ \\ &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.20$^d$ \\ &$^1B_1 (\Ryd; \pi \ra 3p)$ & 6.19$^e$ \\ &$^1A_2 (\Ryd; \pi \ra 3p)$ & 6.40$^e$,6.52$^f$ \\ &$^1B_1 (\Ryd; \pi \ra 3s)$ & 6.73$^d$, 6.71$^f$ \\ &$^1B_2 (\Ryd; \pi \ra 3p)$ & 77.42$^b$,7.25$^c$ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 7.39$^{a,h}$ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & 4.13$^a$ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & 4.84$^a$ \\ &$^3B_1 (\Ryd; \pi \ra 3p)$ & 5.98$^e$ \\ &$^3A_2 (\Ryd; \pi \ra 3s)$ & 6.14$^d$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (6e,5o) active space including valence $\pi$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. $^c$Using reference (6e,7o) active space including valence $\pi$ and two $3p_x$ orbitals. $^d$Using reference (6e,6o) active space including valence $\pi$ and 3s orbitals. $^e$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. $^f$Using reference (6e,7o) active space including valence $\pi$, 3s and $3p_y$ orbitals. $^g$Using reference (6e,8o) active space including valence $\pi$, 3s, $3p_y$ and $3p_z$ orbitals. $^h$Strong double-excitation character. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thiopropynal.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2$^a$ \\ \hline Thiopropynal &$^1A'' (\Val; n \ra \pis)$ & 2.05 \\ &$^3A'' (\Val; n \ra \pis)$ & 1.81 \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$All calculations using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \begin{table} \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of triazine.} \begin{tabularx}{\textwidth}{XXX} \hline Molecule & State & NEVPT2 \\ \hline Triazine &$^1A_1'' (\Val; n \ra \pis)$ & 4.61$^a$ \\ &$^1A_2'' (\Val; n \ra \pis)$ & 4.89$^a$ \\ &$^1E'' (\Val; n \ra \pis)$ & 4.88$^a$ \\ &$^1A_2' (\Val; \pi \ra \pis)$ & 6.10$^b$,6.15$^c$,5.95$^d$ \\ &$^1A_1' (\Val; \pi \ra \pis)$ & 7.06$^b$,7.30$^d$ \\ &$^1E' (\Ryd; n \ra 3s)$ & 7.45$^c$ \\ &$^1E'' (\Val; n \ra \pis)$ & 7.98$^a$ \\ &$^1E' (\Val; \pi \ra \pis)$ & 7.74$^b$,8.34$^d$ \\ &$^3A_2'' (\Val; n \ra \pis)$ & 4.51$^a$ \\ &$^3E'' (\Val; n \ra \pis)$ & 4.61$^a$ \\ &$^3A_1'' (\Val; n \ra \pis)$ & 4.71$^a$ \\ &$^3A_1' (\Val; \pi \ra \pis)$ & 5.20$^b$,5.05$^d$ \\ &$^3E' (\Val; \pi \ra \pis)$ & 5.83$^b$,5.73$^d$ \\ &$^3A_2' (\Val; (\pi \ra \pis)$ & 5.83$^b$,6.36$^d$ \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} $^a$Using reference (12e,9o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. $^c$Using reference (12e,10o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^d$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. \end{footnotesize} \end{flushleft} \end{table} \end{document}