From c0d8e6048a885bab71cdddaa2c612d6df78506c8 Mon Sep 17 00:00:00 2001 From: Pierre-Francois Loos Date: Wed, 4 Dec 2019 20:33:17 +0100 Subject: [PATCH] merge SI --- Manuscript/FCI2-MC.tex | 12 +- Manuscript/FCI2-SI.tex | 774 ++++++++++++++++++++++++++++++++++++++++- 2 files changed, 773 insertions(+), 13 deletions(-) diff --git a/Manuscript/FCI2-MC.tex b/Manuscript/FCI2-MC.tex index af65abd..6813ca5 100644 --- a/Manuscript/FCI2-MC.tex +++ b/Manuscript/FCI2-MC.tex @@ -640,7 +640,7 @@ Pyridine &$^1B_1 (\Val; n \ra \pis)$ & 5.17$^a$,5.15$^b$ \\ $^a$Using reference (8e,7o) active space including valence $\pi$ and $n_\text{N}$ orbitals. $^b$Using reference (8e,8o) active space including valence $\pi$, $n_\text{N}$ and $3p_y$ orbitals. $^c$Using reference (6e,6o) active space including valence $\pi$ orbitals. -$^d$Using reference (6e,10o) active space including valence $\pi$and four $3p_x$ orbitals. +$^d$Using reference (6e,10o) active space including valence $\pi$ and four $3p_x$ orbitals. $^e$Using reference (8e,8o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. $^d$Using reference (6e,8o) active space including valence $\pi$ and 3s orbitals. $^g$Using reference (6e,7o) active space including valence $\pi$ and $3p_y$ orbitals. @@ -814,16 +814,16 @@ $^h$Strong double-excitation character. \caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thiopropynal.} \begin{tabularx}{\textwidth}{XXX} \hline -Molecule & State & NEVPT2 \\ +Molecule & State & NEVPT2$^a$ \\ \hline -Thiopropynal &$^1A'' (\Val; n \ra \pis)$ & 2.05$^a$ \\ - &$^3A'' (\Val; n \ra \pis)$ & 1.81$^a$ \\ +Thiopropynal &$^1A'' (\Val; n \ra \pis)$ & 2.05 \\ + &$^3A'' (\Val; n \ra \pis)$ & 1.81 \\ \hline \end{tabularx} \begin{flushleft} \begin{footnotesize} -$^a$Using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. +$^a$All calculations using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. \end{footnotesize} \end{flushleft} \end{table} @@ -838,7 +838,7 @@ Molecule & State & NEVPT2 \\ Triazine &$^1A_1'' (\Val; n \ra \pis)$ & 4.61$^a$ \\ &$^1A_2'' (\Val; n \ra \pis)$ & 4.89$^a$ \\ &$^1E'' (\Val; n \ra \pis)$ & 4.88$^a$ \\ - &$^1A_2' (\Val; \pi \ra \pis)$ & 6.10$^v$,6.15$^c$,5.95$^d$ \\ + &$^1A_2' (\Val; \pi \ra \pis)$ & 6.10$^b$,6.15$^c$,5.95$^d$ \\ &$^1A_1' (\Val; \pi \ra \pis)$ & 7.06$^b$,7.30$^d$ \\ &$^1E' (\Ryd; n \ra 3s)$ & 7.45$^c$ \\ &$^1E'' (\Val; n \ra \pis)$ & 7.98$^a$ \\ diff --git a/Manuscript/FCI2-SI.tex b/Manuscript/FCI2-SI.tex index b0617e7..c76a6e0 100644 --- a/Manuscript/FCI2-SI.tex +++ b/Manuscript/FCI2-SI.tex @@ -1,5 +1,5 @@ \documentclass[journal=jctcce,manuscript=article]{achemso} -\usepackage{graphicx,dcolumn,bm,xcolor,microtype,hyperref,multirow,amsmath,amssymb,amsfonts,physics,float,lscape,soul,rotating,longtable} +\usepackage{graphicx,dcolumn,bm,xcolor,microtype,hyperref,multirow,amsmath,amssymb,amsfonts,physics,float,lscape,soul,rotating,longtable,tabularx} \usepackage[version=4]{mhchem} @@ -450,7 +450,7 @@ $^3B_{2u} (\pi \rightarrow \pi^\star)$ &6.06 &5.86 &5.81 &5.81\\ \clearpage \begin{table}[htp] -\caption{\small CC3 vertical transition energies of tetrazine using various atomic basis sets. +\caption{\small CC3 vertical transition energies of pyrazine and tetrazine using various atomic basis sets. FC stands for frozen core. All values are in eV.} \label{Table-S8} \begin{small} @@ -609,7 +609,7 @@ $^3A_2' (\pi \rightarrow \pi^\star)$ & 6.85 &6.69 &6.63 &6.62\\ \clearpage -\section{Multi-reference results} +\section{Multiconfigurational results} \subsection{Basis set effects} @@ -653,9 +653,769 @@ $^3\Delta_u$ & & 4.89 & 4.81 & & & 4.86 & 4.78 & & & 4.90 & 4.82 & \\ \subsection{Active Spaces} +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of acetone.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Acetone &$^1A_2 (\Val; n \ra \pis)$ &4.57$^a$,4.48$^b$ \\ + &$^1B_2 (\Ryd; n \ra 3s)$ &6.81$^c$ \\ + &$^1A_2 (\Ryd; n \ra 3p)$ &7.65$^b$ \\ + &$^1A_1 (\Ryd; n \ra 3p)$ &7.75$^d$ \\ + &$^1B_2 (\Ryd; n \ra 3p)$ &7.91$^c$ \\ + &$^3A_2 (\Val; n \ra \pis)$ &4.20$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ &6.28$^e$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,5o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$ and $3p_x$ orbitals. +$^c$Using reference (6e,7o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$, 3s and $3p_z$ orbitals. +$^d$Using reference (6e,6o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$ and $3p_y$ orbitals. +$^e$Using reference (4e,4o) active space including valence $\pi$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of acrolein.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Acrolein &$^1A'' (\Val; n \ra \pis)$ &3.76$^a$,3.73$^b$ \\ + &$^1A' (\Val; \pi \ra \pis)$ &6.67$^a$ \\ + &$^1A'' (\Val; n \ra \pis)$ &7.16$^{a,c}$,7.57$^{b,c}$ \\ + &$^1A' (\Ryd; n \ra 3s)$ &7.05$^a$ \\ + &$^3A'' (\Val; n \ra \pis)$ &3.46$^a$,3.44$^b$ \\ + &$^3A' (\Val; \pi \ra \pis)$ &3.95$^a$ \\ + &$^3A' (\Val; \pi \ra \pis)$ &6.23$^a$ \\ + &$^3A'' (\Val; n \ra \pis)$ &6.83$^{a,d}$,7.06$^{b,d}$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (12e,12o) active space including valence $\pi$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$, $n_\text{O}$ and 3s orbitals. +$^b$Using reference (12e,13o) active space including valence $\pi$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$, $n_\text{O}$, 3s and $3p_z$ orbitals. +$^c$Substantial Rydberg and doubly-excited character. +$^d$Substantial doubly-excited character. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of benzene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Benzene &$^1B_{2u} (\Val; \pi \ra \pis)$ &5.32$^a$,5.32$^b$ \\ + &$^1B_{1u} (\Val; \pi \ra \pis)$ &6.01$^a$,6.43$^b$ \\ + &$^1E_{1g} (\Ryd; \pi \ra 3s)$ &6.75$^c$ \\ + &$^1A_{2u} (\Ryd; \pi \ra 3p)$ &7.40$^d$\\ + &$^1E_{2u} (\Ryd; \pi \ra 3p)$ &7.45$^d$ \\ + &$^3B_{1u} (\Val; \pi \ra \pis)$ &4.44$^a$,4.32$^b$\\ + &$^3E_{1u}(\Val; \pi \ra \pis)$ &4.99$^a$,4.92$^b$\\ + &$^3B_{2u} (\Val; \pi \ra \pis)$ &5.30$^a$,5.51$^b$\\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^b$Using reference (6e,9o) active space including valence $\pi$ and three $3p_z$ orbitals. +$^c$Using reference (6e,7o) active space including valence $\pi$ and 3s orbitals. +$^d$Using reference (6e,8o) active space including valence $\pi$, $3p_x$ and $3p_y$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of butadiene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Butadiene &$^1B_u (\Val; \pi \ra \pis)$ &6.04$^a$,6.73$^b$,6.68$^c$ \\ + &$^1B_g (\Ryd; \pi \ra 3s)$ &6.44$^d$ \\ + &$^1A_g (\Val; \pi \ra \pis)$ &6.70$^a$ \\ + &$^1A_u (\Ryd; \pi \ra 3p)$ &6.84$^e$ \\ + &$^1A_u (\Ryd; \pi \ra 3p)$ &7.01$^e$ \\ + &$^1B_u (\Ryd; \pi \ra 3p)$ &6.99$^b$,7.45$^c$ \\ + &$^3B_u (\Val; \pi \ra \pis)$ &3.40$^a$ \\ + &$^3A_g (\Val; \pi \ra \pis)$ &5.30$^a$ \\ + &$^3B_g (\Ryd; \pi \ra 3s)$ &6.38$^d$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (10e,10o) active space including valence $\pi$, $\si_\text{CC}$ and $\si^*_\text{CC}$ orbitals. +$^b$Using reference (10e,11o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and $3p_z$ orbitals. +$^c$Using reference (4e,8o) active space including valence $\pi$ and four $3p_z$. +$^d$Using reference (10e,11o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and 3s orbitals. +$^e$Using reference (10e,12o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$, $3p_x$ and $3p_y$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanoacetylene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2$^a$ \\ +\hline +Cyanoacetylene &$^1\Sigma^- (\Val; \pi \ra \pis)$ & 5.78 \\ + &$^1\Delta (\Val; \pi \ra \pis)$ & 6.10 \\ + &$^3\Sigma^+ (\Val; \pi \ra \pis)$ & 4.45 \\ + &$^3\Delta (\Val; \pi \ra \pis)$ & 5.19 \\ + &$^1A'' [\mathrm{F}] (\Val; \pi \ra \pis)$ & 3.50 \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$All calculations using a full valence $\pi$ active space of (8e,8o). +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanoformaldehyde.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Cyanoformaldehyde &$^1A'' (\Val; n \ra \pis)$ &3.98$^a$ \\ + &$^1A'' (\Val; \pi \ra \pis)$ & 6.44$^a$ \\ + &$^3A'' (\Val; n \ra \pis)$ & 3.58$^a$ \\ + &$^3A' (\Val; \pi \ra \pis)$ & 5.35$^b$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$ Using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. +$^b$ Using reference (6e,6o) active space including valence $\pi$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyanogen.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2$^a$ \\ +\hline +Cyanogen & $^1\Sigma_u^- (\Val; \pi \ra \pis)$ & 6.32 \\ + & $^1\Delta_u (\Val; \pi \ra \pis)$ & 6.66 \\ + & $^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & 4.88 \\ + & $^1\Sigma_u^- [\mathrm{F}] (\Val; \pi \ra \pis)$ & 4.97 \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$All calculations using a full valence $\pi$ active space of (8e,8o). +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopentadiene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Cyclopentadiene &$^1B_2 (\Val; \pi \ra \pis)$ &4.96$^a$,4.92$^b$,5.65$^c$ \\ + &$^1A_2 (\Ryd; \pi \ra 3s)$ &5.92$^d$ \\ + &$^1B_1 (\Ryd; \pi \ra 3p)$ &6.42$^e$ \\ + &$^1A_2 (\Ryd; \pi \ra 3p)$ &6.59$^d$ \\ + &$^1B_2 (\Ryd; \pi \ra 3p)$ &6.58$^b$,6.60$^c$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ &6.75$^{a,f}$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ &3.41$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ &5.30$^a$ \\ + &$^3A_2 (\Ryd; \pi \ra 3s)$ &5.73$^g$ \\ + &$^3B_1 (\Ryd; \pi \ra 3p)$ &6.40$^e$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (4e,4o) active space including valence $\pi$ orbitals. +$^b$Using reference (4e,5o) active space including valence $\pi$ and $3p_x$ orbitals. +$^c$Using reference (4e,8o) active space including valence $\pi$ and four $3p_x$ orbitals. +$^d$Using reference (4e,6o) active space including valence $\pi$, 3s and $3p_z$ orbitals. +$^e$Using reference (4e,5o) active space including valence $\pi$ and $3p_y$ orbitals. +$^f$Strong double-excitation character. +$^g$Using reference (4e,5o) active space including valence $\pi$ and 3s orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopropenone.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2$^a$ \\ +\hline +Cyclopropenone &$^1B_1 (\Val; n \ra \pis)$ & 4.04 \\ + &$^1A_2 (\Val; n \ra \pis)$ & 5.85 \\ + &$^1B_2 (\Ryd; n \ra 3s)$ & 6.51 \\ + &$^1B_2 (\Val; \pi \ra \pis$) & 6.82 \\ + &$^1B_2 (\Ryd; n \ra 3p)$ & 7.07 \\ + &$^1A_1 (\Ryd; n \ra 3p)$ & 7.28 \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 8.19 \\ + &$^3B_1 (\Val; n \ra \pis)$ & 3.51 \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 5.10 \\ + &$^3A_2 (\Val; n \ra \pis)$ & 5.60 \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 7.16 \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$All calculation using reference (6e,7o) active space averaging with the ground state for each irreducible representation. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of cyclopropenethione.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Cyclopropenethione &$^1A_2 (\Val; n \ra \pis)$ &3.52$^a$ \\ + &$^1B_1 (\Val; n \ra \pis)$ &3.50$^a$ \\ + &$^1B_2 (\Val; \pi \ra \pis)$ &4.77$^b$ \\ + &$^1B_2 (\Ryd; n \ra 3s)$ &5.35$^b$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ &5.54$^c$ \\ + &$^1B_2 (\Ryd; n \ra 3p)$ &5.99$^b$ \\ + &$^3A_2 (\Val; n \ra \pis)$ &3.38$^a$ \\ + &$^3B_1 (\Val; n \ra \pis)$ &3.40$^a$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ &4.21$^c$,4.17$^b$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ &4.13$^c$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,5o) active space. +$^b$Using reference (6e,7o) active space. +$^c$Using reference (4e,4o) active space. +\end{footnotesize} +\end{flushleft} +\end{table} + + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of diacetylene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2$^a$ \\ +\hline +Diacetylene &$^1\Sigma_u^- (\Val; \pi \ra \pis)$ & 5.33 \\ + &$^1\Delta_u (\Val; \pi \ra \pis)$ & 5.61 \\ + &$^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & 4.08 \\ + &$^3\Delta_u (\Val; \pi \ra \pis)$ & 4.78 \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$All calculations using a full valence $\pi$ active space of (8e,8o). +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of furan.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Furan &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.28$^a$ \\ + &$^1B_2 (\Val; \pi \ra \pis)$ & 5.92$^b$,6.20$^{c,d}$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 6.77$^{b,e}$ \\ + &$^1B_1 (\Ryd; \pi \ra 3p)$ & 6.71$^f$ \\ + &$^1A_2 (\Ryd; \pi \ra 3p)$ & 6.99$^a$ \\ + &$^1B_2 (\Ryd; \pi \ra 3p)$ & 7.01$^{c,d}$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 4.42$^b$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 5.60$^b$ \\ + &$^3A_2 (\Ryd; \pi \ra 3s)$ & 6.08$^g$ \\ + &$^3B_1 (\Ryd; \pi \ra 3p)$ & 6.68$^f$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,7o) active space including valence $\pi$, 3s and $3p_z$ orbitals. +$^b$Using reference (6e,5o) active space including valence $\pi$ orbitals. +$^c$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. +$^d$Increasing the $\pi$ $3p_x$ active space leads to strong mixing in the zeroth-order wavefunction requiring QD-NEVPT2 (see Pastore et al., Chem. Phys. Lett. 2006, 426, 445--451). +$^e$Strong double-excitation character. +$^f$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. +$^g$Using reference (4e,5o) active space including valence $\pi$ and 3s orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of glyoxal.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Glyoxal &$^1A_u (\Val; n \ra \pis)$ & 2.90$^a$ \\ + &$^1B_g (\Val; n \ra \pis)$ & 4.31$^a$,4.30$^b$ \\ + &$^1A_g (\Val; n,n \ra \pis,\pis)$ & 5.52$^a$ \\ + &$^1B_g (\Val; n \ra \pis)$ & 6.91$^{a,c}$,6.64$^{b,c}$ \\ + &$^1B_u (\Ryd; n \ra 3p)$ & 7.84$^d$ \\ + &$^3A_u (\Val; n \ra \pis)$ & 2.49$^a$ \\ + &$^3B_g (\Val; n \ra \pis)$ & 3.99$^a$ \\ + &$^3B_u (\Val; \pi \ra \pis)$ & 5.17$^a$ \\ + &$^3A_g (\Val; \pi \ra \pis)$ & 6.33$^a$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (14e,12o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$ and $\si^*_\text{CO}$ orbitals. +$^b$Using reference (14e,13o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_z$ orbitals. +$^c$Non-negligible doubly-excited and Rydberg character. +$^d$Using reference (14e,13o) active space including valence $\pi$, two $n_\text{O}$, $\si_\text{CC}$, $\si_\text{CO}$, $\si^*_\text{CC}$, $\si^*_\text{CO}$ and $3p_x$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of imidazole.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Imidazole &$^1A'' (\Ryd; \pi \ra 3s)$ &5.97$^a$,5.93$^b$ \\ + &$^1A' (\Val; \pi \ra \pis)$ &6.86$^c$,6.81$^d$,6.73$^e$ \\ + &$^1A'' (\Val; n \ra \pis)$ &6.97$^f$,6.96$^b$ \\ + &$^1A' (\Ryd; \pi \ra 3p)$ &7.08$^d$,7.00$^e$ \\ + &$^3A' (\Val; \pi \ra \pis)$ &4.98$^c$,4.86$^e$ \\ + &$^3A'' (\Ryd; \pi \ra 3s)$ &5.93$^a$,5.91$^b$ \\ + &$^3A' (\Val; \pi \ra \pis)$ &6.09$^c$,5.91$^e$ \\ + &$^3A'' (\Val; n \ra \pis)$ &6.49$^f$,6.48$^b$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,6o) active space including valence $\pi$ and 3s orbitals. +$^b$Using reference (8e,7o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. +$^c$Using reference (6e,5o) active space including valence $\pi$ orbitals. +$^d$Using reference (6e,6o) active space including valence $\pi$ and one $3p_z$ orbitals. +$^e$Using reference (6e,9o) active space including valence $\pi$ and four $3p_z$ orbitals. +$^f$Using reference (8e,6o) active space including valence $\pi$ and $n_\text{N}$ orbitals. +$^g$Using reference (8e,9o) active space including valence $\pi$, $n_\text{N}$, two $3p_z$ and 3s orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of isobutene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Isobutene &$^1B_1 (\Ryd; \pi \ra 3s)$ &6.63$^a$ \\ + &$^1A_1 (\Ryd; \pi \ra 3p)$ &7.20$^b$ \\ + &$^3A_1 (\Val; (\pi \ra \pis)$ &4.61$^c$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (4e,5o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and 3s orbitals. +$^b$Using reference (4e,5o) active space including valence $\pi$, $\si_\text{CC}$, $\si^*_\text{CC}$ and $3p_x$ orbitals. +$^c$Using reference (4e,4o) active space including valence $\pi$, $\si_\text{CC}$ and $\si^*_\text{CC}$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of methylenecyclopropene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Methylenecyclopropene& $^1B_2 (\Val; \pi \ra \pis)$ &4.37$^a$ \\ + &$^1B_1 (\Ryd; \pi \ra 3s)$ &5.51$^b$,5.49$^c$ \\ + &$^1A_2 (\Ryd; \pi \ra 3p)$ &6.00$^c$ \\ + &$^1A_1(\Val; \pi \ra \pis)$ &6.33$^d$,6.36$^e$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ &3.66$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ &4.87$^d$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (4e,4o) active space. +$^b$Using reference (6e,6o) active space. +$^c$Using reference (4e,5o) active space. +$^d$Using reference (4e,6o) active space. +$^e$Using reference (4e,7o) active space. +\end{footnotesize} +\end{flushleft} +\end{table} + + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of propynal.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Propynal & $^1A'' (\Val; n \ra \pis)$ &3.95$^a$ \\ + &$^1A'' (\Val; \pi \ra \pis)$ & 5.50$^a$ \\ + &$^3A'' (\Val; n \ra \pis)$ & 3.59$^a$ \\ + &$^3A' (\Val; \pi \ra \pis)$ & 4.63$^b$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyrazine.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Pyrazine &$^1B_{3u} (\Val; n \ra \pis)$ & 4.17$^a$ \\ + &$^1A_{u} (\Val; n \ra \pis)$ & 4.77$^a$ \\ + &$^1B_{2u} (\Val; \pi \ra \pis)$ & 5.32$^b$,5.37$^c$ \\ + &$^1B_{2g} (\Val; n \ra \pis)$ & 5.88$^a$ \\ + &$^1A_{g} (\Ryd; n \ra 3s)$ & 6.70$^d$\\ + &$^1B_{1g} (\Val; n \ra \pis)$ & 6.75$^a$ \\ + &$^1B_{1u} (\Val; \pi \ra \pis)$ & 6.38$^b$,6.31$^e$,6.81$^f$ \\ + &$^1B_{1g} (\Ryd; \pi \ra 3s)$ & 7.33$^g$ \\ + &$^1B_{2u} (\Ryd; n \ra 3p)$ & 7.25$^c$ \\ + &$^1B_{1u} (\Ryd; n \ra 3p)$ & 7.42$^e$ \\ + &$^1B_{1u} (\Val; \pi \ra \pis)$ & 7.29$^b$,6.96$^e$,8.25$^f$\\ + &$^3B_{3u} (\Val; n \ra \pis)$ & 3.56$^a$ \\ + &$^3B_{1u} (\Val; \pi \ra \pis)$ & 4.68$^b$,4.57$^f$ \\ + &$^3B_{2u} (\Val; (\pi \ra \pis)$ & 4.42$^b$ \\ + &$^3A_{u} (\Val; n \ra \pis)$ & 4.75$^a$ \\ + &$^3B_{2g} (\Val; n \ra \pis)$ & 5.21$^a$ \\ + &$^3B_{1u} (\Val; \pi \ra \pis)$ & 5.43$^b$,5.35$^f$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and $3p_y$ orbitals. +$^d$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. +$^e$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and $3p_z$ orbitals. +$^f$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyridazine.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & 3.80$^a$ \\ + &$^1A_2 (\Val; n \ra \pis)$ & 4.40$^a$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 5.58$^b$ \\ + &$^1A_2 (\Val; n \ra \pis)$ & 5.88$^a$ \\ + &$^1B_2 (\Ryd; n \ra 3s)$ & 6.21$^c$ \\ + &$^1B_1 (\Val; n \ra \pis)$ & 6.64$^a$ \\ + &$^1B_2 (\Val; \pi \ra \pis)$ & 7.82$^b$,7.19$^d$,7.10$^e$ \\ + &$^3B_1 (\Val; n \ra \pis)$ & 3.13$^a$ \\ + &$^3A_2 (\Val; n \ra \pis)$ & 4.14$^a$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 4.65$^b$,4.55$^d$,4.49$^e$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 4.94$^a$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. +$^d$Using reference (6e,9o) active space including valence $\pi$, $n_\text{N}$ and three $3p_x$ orbitals. +$^e$Using reference (6e,12o) active space including valence $\pi$, $n_\text{N}$ and six $3p_x$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyridine.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Pyridine &$^1B_1 (\Val; n \ra \pis)$ & 5.17$^a$,5.15$^b$ \\ + &$^1B_2 (\Val; \pi \ra \pis)$ & 5.44$^c$,5.31$^d$ \\ + &$^1A_2 (\Val; n \ra \pis)$ & 5.32$^a$,5.29$^e$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 6.69$^c$ \\ + &$^1A_1 (\Ryd; n \ra 3s)$ & 6.99$^e$ \\ + &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.96$^f$,6.86$^e$\\ + &$^1B_2 (\Val; \pi \ra \pis)$ & 8.61$^a$,7.83$^d$ \\ + &$^1B_1 (\Ryd; \pi \ra 3p)$ & 7.57$^g$,7.45$^b$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 6.97$^c$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 4.60$^c$ \\ + &$^3B_1 (\Val; n \ra \pis)$ & 4.58$^a$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 4.90$^c$,4.88$^d$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 5.19$^c$ \\ + &$^3A_2 (\Val; n \ra \pis)$ & 5.33$^a$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 7.00$^c$,6.29$^d$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (8e,7o) active space including valence $\pi$ and $n_\text{N}$ orbitals. +$^b$Using reference (8e,8o) active space including valence $\pi$, $n_\text{N}$ and $3p_y$ orbitals. +$^c$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^d$Using reference (6e,10o) active space including valence $\pi$ and four $3p_x$ orbitals. +$^e$Using reference (8e,8o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. +$^d$Using reference (6e,8o) active space including valence $\pi$ and 3s orbitals. +$^g$Using reference (6e,7o) active space including valence $\pi$ and $3p_y$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyrimidine.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Pyrimidine &$^1B_1 (\Val; n \ra \pis)$ & 4.55$^a$ \\ + &$^1A_2 (\Val; n \ra \pis)$ & 4.84$^a$ \\ + &$^1B_2 (\Val; \pi \ra \pis)$ & 5.71$^b$,5.57$^d$,5.53$^e$ \\ + &$^1A_2 (\Val; n \ra \pis)$ & 6.02$^a$ \\ + &$^1B_1 (\Val; n \ra \pis)$ & 6.40$^a$ \\ + &$^1B_2 (\Ryd; n \ra 3s)$ & 6.77$^c$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 7.47$^b$,7.11$^e$ \\ + &$^3B_1 (\Val; n \ra \pis)$ & 4.17$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 4.84$^b$,4.67$^e$ \\ + &$^3A_2 (\Val; n \ra \pis)$ & 4.72$^a$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 5.08$^b$,5.01$^e$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (10e,8o) active space including valence $\pi$ and $n_\text{N}$ orbitals +$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^c$Using reference (10e,9o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. +$^d$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. +$^e$Using reference (6e,11o) active space including valence $\pi$ and five $3p_x$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of pyrrole.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Pyrrole &$^1A_2 (\Ryd; \pi \ra 3s)$ & 5.51$^a$ \\ + &$^1B_1 (\Ryd; \pi \ra 3p)$ & 6.32$^b$ \\ + &$^1A_2 (\Ryd; \pi \ra 3p)$ & 6.44$^c$ \\ + &$^1B_2 (\Val; (\pi \ra \pis)$ & 6.48$^{e,f}$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 6.53$^d$ \\ + &$^1B_2 (\Ryd; \pi \ra 3p)$ & 6.50$^d$,6.62$^e$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 4.74$^d$ \\ + &$^3A_2 (\Ryd; \pi \ra 3s)$ & 5.49$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 5.56$^d$ \\ + &$^3B_1 (\Ryd; \pi \ra 3p)$ & 6.28$^b$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,6o) active space including valence $\pi$ and 3s orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. +$^c$Using reference (6e,7o) active space including valence $\pi$, 3s and $3p_z$ orbitals. +$^d$Using reference (6e,5o) active space including valence $\pi$ orbitals. +$^e$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. +$^f$Increasing the $\pi$ $3p_x$ active space leads to strong mixing in the zeroth-order wavefunction requiring a multi-state treatment (see Roos et al., J. Chem. Phys. 2002, 116, 7526--7536). +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of tetrazine.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Tetrazine &$^1B_{3u} (\Val; n \ra \pis)$ & 2.35$^a$ \\ + &$^1A_{u} (\Val; n \ra \pis)$ & 3.58$^a$ \\ + &$^1A_{g} (\Val; n,n \ra \pis, \pis)$ & 4.61$^a$ \\ + &$^1B_{1g} (\Val; n \ra \pis)$ & 4.95$^a$ \\ + &$^1B_{2u} (\Val; \pi \ra \pis)$ & 5.56$^b$ \\ + &$^1B_{2g} (\Val; n \ra \pis)$ & 5.63$^a$ \\ + &$^1A_{u} (\Val; n \ra \pis)$ & 5.62$^a$ \\ + &$^1B_{3g} (\Val; n,n \ra \pis, \pis)$ & 6.15$^a$ \\ + &$^1B_{2g} (\Val; n \ra \pis)$ & 6.13$^a$ \\ + &$^1B_{1g} (\Val; n \ra \pis)$ & 6.76$^a$ \\ + &$^3B_{3u} (\Val; n \ra \pis)$ & 1.73$^a$ \\ + &$^3A_{u} (\Val; n \ra \pis)$ & 3.36$^a$ \\ + &$^3B_{1g} (\Val; n \ra \pis)$ & 4.24$^a$ \\ + &$^3B_{1u} (\Val; \pi \ra \pis)$ & 4.80$^b$,4.70$^a$ \\ + &$^3B_{2u} (\Val; \pi \ra \pis)$ & 4.58$^b$ \\ + &$^3B_{2g} (\Val; n \ra \pis)$ & 5.27$^a$ \\ + &$^3A_{u} (\Val; n \ra \pis)$ & 5.13$^a$ \\ + &$^3B_{3g} (\Val; n,n \ra \pis, \pis)$ & 5.51$^a$ \\ + &$^3B_{1u} (\Val; \pi \ra \pis)$ & 5.64$^b$,5.56$^c$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (14e,10o) active space including valence $\pi$ and $n_\text{N}$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^c$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thioacetone.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Thioacetone &$^1A_2 (\Val; n \ra \pis)$ & 2.55$^a$ \\ + &$^1B_2 (\Ryd; n \ra 4s)$ & 5.72$^b$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 6.09$^c$,6.24$^d$ \\ + &$^1B_2 (\Ryd; n \ra 4p)$ & 6.62$^b$ \\ + &$^1A_1 (\Ryd; n \ra 4p)$ & 6.52$^d$ \\ + &$^3A_2 (\Val; n \ra \pis)$ & 2.32$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 3.48$^c$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,5o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. +$^b$Using reference (6e,7o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$, 4s and $4p_z$ orbitals. +$^c$Using reference (4e,4o) active space including valence $\pi$, $\si_\text{CO}$ and $\si^*_\text{CO}$ orbitals. +$^d$Using reference (6e,6o) active space including valence $\pi$, $n_\text{O}$, $\si_\text{CO}$, $\si^*_\text{CO}$ and $4p_y$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thiophene.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Thiophene &$^1A_1 (\Val; \pi \ra \pis)$ & 5.84$^a$ \\ + &$^1B_2 (\Val; \pi \ra \pis)$ & 5.64$^a$,5.54$^b$,6.10$^c$ \\ + &$^1A_2 (\Ryd; \pi \ra 3s)$ & 6.20$^d$ \\ + &$^1B_1 (\Ryd; \pi \ra 3p)$ & 6.19$^e$ \\ + &$^1A_2 (\Ryd; \pi \ra 3p)$ & 6.40$^e$,6.52$^f$ \\ + &$^1B_1 (\Ryd; \pi \ra 3s)$ & 6.73$^d$, 6.71$^f$ \\ + &$^1B_2 (\Ryd; \pi \ra 3p)$ & 77.42$^b$,7.25$^c$ \\ + &$^1A_1 (\Val; \pi \ra \pis)$ & 7.39$^{a,h}$ \\ + &$^3B_2 (\Val; \pi \ra \pis)$ & 4.13$^a$ \\ + &$^3A_1 (\Val; \pi \ra \pis)$ & 4.84$^a$ \\ + &$^3B_1 (\Ryd; \pi \ra 3p)$ & 5.98$^e$ \\ + &$^3A_2 (\Ryd; \pi \ra 3s)$ & 6.14$^d$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (6e,5o) active space including valence $\pi$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ and $3p_x$ orbitals. +$^c$Using reference (6e,7o) active space including valence $\pi$ and two $3p_x$ orbitals. +$^d$Using reference (6e,6o) active space including valence $\pi$ and 3s orbitals. +$^e$Using reference (6e,6o) active space including valence $\pi$ and $3p_y$ orbitals. +$^f$Using reference (6e,7o) active space including valence $\pi$, 3s and $3p_y$ orbitals. +$^g$Using reference (6e,8o) active space including valence $\pi$, 3s, $3p_y$ and $3p_z$ orbitals. +$^h$Strong double-excitation character. +\end{footnotesize} +\end{flushleft} +\end{table} + + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of thiopropynal.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2$^a$ \\ +\hline +Thiopropynal &$^1A'' (\Val; n \ra \pis)$ & 2.05 \\ + &$^3A'' (\Val; n \ra \pis)$ & 1.81 \\ + +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$All calculations using reference (8e,7o) active space including valence $\pi$ and $n_\text{O}$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + +\begin{table} +\caption{NEVPT2/aug-cc-pVTZ vertical transition energies (in eV) of triazine.} +\begin{tabularx}{\textwidth}{XXX} +\hline +Molecule & State & NEVPT2 \\ +\hline +Triazine &$^1A_1'' (\Val; n \ra \pis)$ & 4.61$^a$ \\ + &$^1A_2'' (\Val; n \ra \pis)$ & 4.89$^a$ \\ + &$^1E'' (\Val; n \ra \pis)$ & 4.88$^a$ \\ + &$^1A_2' (\Val; \pi \ra \pis)$ & 6.10$^b$,6.15$^c$,5.95$^d$ \\ + &$^1A_1' (\Val; \pi \ra \pis)$ & 7.06$^b$,7.30$^d$ \\ + &$^1E' (\Ryd; n \ra 3s)$ & 7.45$^c$ \\ + &$^1E'' (\Val; n \ra \pis)$ & 7.98$^a$ \\ + &$^1E' (\Val; \pi \ra \pis)$ & 7.74$^b$,8.34$^d$ \\ + &$^3A_2'' (\Val; n \ra \pis)$ & 4.51$^a$ \\ + &$^3E'' (\Val; n \ra \pis)$ & 4.61$^a$ \\ + &$^3A_1'' (\Val; n \ra \pis)$ & 4.71$^a$ \\ + &$^3A_1' (\Val; \pi \ra \pis)$ & 5.20$^b$,5.05$^d$ \\ + &$^3E' (\Val; \pi \ra \pis)$ & 5.83$^b$,5.73$^d$ \\ + &$^3A_2' (\Val; (\pi \ra \pis)$ & 5.83$^b$,6.36$^d$ \\ +\hline +\end{tabularx} +\begin{flushleft} +\begin{footnotesize} +$^a$Using reference (12e,9o) active space including valence $\pi$ and $n_\text{N}$ orbitals. +$^b$Using reference (6e,6o) active space including valence $\pi$ orbitals. +$^c$Using reference (12e,10o) active space including valence $\pi$, $n_\text{N}$ and 3s orbitals. +$^d$Using reference (6e,9o) active space including valence $\pi$ and three $3p_x$ orbitals. +\end{footnotesize} +\end{flushleft} +\end{table} + + \clearpage -\section{sCI results} +\section{Selected CI results} \begin{landscape} \begin{footnotesize} @@ -824,7 +1584,7 @@ Thiopropynal & $^1A'' (\Val; n \ra \pis)$ & $15\,782\,429$ & $2.07$ & $2.0 \LTcapwidth=\textwidth \begin{footnotesize} \begin{longtable}{p{3.73cm}p{3.6cm}p{.55cm}|p{1.2cm}p{1.2cm}p{1.2cm}p{1.2cm}p{1.2cm}p{1.6cm}p{1.2cm}p{1.2cm}}\\ -\caption{Comparisons between the TBE/{\AVTZ} benchmark (see Table 11) and the results obtained with various computational +\caption{Comparisons between the TBE(FC)/{\AVTZ} benchmark (see Table 11) and the results obtained with various computational approaches using the same basis set. STEOM stands for STEOM-CCSD and CC(3) for CCSDR(3).} \label{Table-SI-b1}\\ \hline Compound & State & TBE & CIS(D) & CC2 & CCSD & STEOM & CC(3) &CCSDT-3& CC3& ADC(2) \\ @@ -1082,10 +1842,10 @@ Triazine &$^1A_1'' (\Val; n \ra \pis)$ & 4.72 &4.59 &4.64 &4.92& 4.62 &4. \clearpage -\subsection{MSE determined for the subsets} +\subsection{Statistical analysis} \begin{table}[htp] -\caption{MSE in eV obtained for various subsets of transition energies.} +\caption{MSE (in eV) obtained for various subsets of transition energies.} \label{Table-SI-b2} \begin{tabular}{lcccccc} \hline