starting correction bench

This commit is contained in:
Pierre-Francois Loos 2019-11-11 12:39:54 +01:00
parent d1a5bd4d1a
commit 987f517ce0

View File

@ -51,15 +51,23 @@
% basis % basis
\newcommand{\Pop}{6-31+G(d)} \newcommand{\Pop}{6-31+G(d)}
\newcommand{\AVDZ}{\emph{aug}-cc-pVDZ} %\newcommand{\AVDZ}{\emph{aug}-cc-pVDZ}
\newcommand{\AVTZ}{\emph{aug}-cc-pVTZ} %\newcommand{\AVTZ}{\emph{aug}-cc-pVTZ}
\newcommand{\DAVTZ}{d-\emph{aug}-cc-pVTZ} %\newcommand{\DAVTZ}{d-\emph{aug}-cc-pVTZ}
\newcommand{\AVQZ}{\emph{aug}-cc-pVQZ} %\newcommand{\AVQZ}{\emph{aug}-cc-pVQZ}
\newcommand{\AVFZ}{\emph{aug}-cc-pV5Z} %\newcommand{\AVFZ}{\emph{aug}-cc-pV5Z}
\newcommand{\DAVQZ}{d-\emph{aug}-cc-pVQZ} %\newcommand{\DAVQZ}{d-\emph{aug}-cc-pVQZ}
\newcommand{\TAVQZ}{t-\emph{aug}-cc-pVQZ} %\newcommand{\TAVQZ}{t-\emph{aug}-cc-pVQZ}
\newcommand{\AVPZ}{\emph{aug}-cc-pV5Z} %\newcommand{\AVPZ}{\emph{aug}-cc-pV5Z}
\newcommand{\DAVPZ}{d-\emph{aug}-cc-pV5Z} %\newcommand{\DAVPZ}{d-\emph{aug}-cc-pV5Z}
\newcommand{\AVDZ}{aVDZ}
\newcommand{\AVTZ}{aVTZ}
\newcommand{\DAVTZ}{daVTZ}
\newcommand{\AVQZ}{aVQZ}
\newcommand{\DAVQZ}{daVQZ}
\newcommand{\TAVQZ}{taVQZ}
\newcommand{\AVPZ}{aV5Z}
\newcommand{\DAVPZ}{dapV5Z}
% units % units
\newcommand{\IneV}[1]{#1 eV} \newcommand{\IneV}[1]{#1 eV}
@ -105,14 +113,14 @@
Following our previous work focussing on compounds containing up to 3 non-hydrogen atoms [\emph{J. Chem. Theory Comput.} {\bfseries 14} (2018) 4360--4379], we present here highly-accurate vertical transition energies Following our previous work focussing on compounds containing up to 3 non-hydrogen atoms [\emph{J. Chem. Theory Comput.} {\bfseries 14} (2018) 4360--4379], we present here highly-accurate vertical transition energies
obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione,
diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine. diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine.
To obtain these energies, we use equation-of-motion coupled cluster theory up to the highest technically possible excitation order for these systems ({\CCT}, {\CCSDT}, and {\CCSDTQ}), selected configuration interaction ({\SCI}) calculations (with tens of millions of determinants in the reference space), To obtain these energies, we use equation-of-motion coupled cluster theory up to the highest technically possible excitation order for these systems (CCT3, EOM-CCSDT, and EOM-CCSDTQ), selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space),
as well as the multiconfigurational $n$-electron valence state perturbation theory (NEVPT2) method. as well as the multiconfigurational $n$-electron valence state perturbation theory (NEVPT2) method.
All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least {\CCT}/{\AVQZ} vertical excitation All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/aug-cc-pVQZ vertical excitation
energies as well as {\CCT}/{\AVTZ} oscillator strengths for each dipole-allowed transition. We show that {\CCT} almost systematically delivers transition energies in agreement with higher-level theoretical methods with a typically deviation of $\pm 0.04$ eV, except for transitions with a dominant double excitation character where the error is much larger. energies as well as CC3/aug-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level theoretical methods with a typically deviation of $\pm 0.04$ eV, except for transitions with a dominant double excitation character where the error is much larger.
The present contribution gathers a large, diverse and accurate set of more than 200 highly-accurate transition energies for states of various natures The present contribution gathers a large, diverse and accurate set of more than 200 highly-accurate transition energies for states of various natures
(valence, Rydberg, singlet, triplet, $n \ra \pis$, $\pi \ra \pis$, \ldots). (valence, Rydberg, singlet, triplet, $n \ra \pis$, $\pi \ra \pis$, \ldots).
We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), {\AD}, We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2),
{\CCD}, {\STEOM}, {\CCSD}, CCSDR(3), CCSDT-3, and {\CCT}. The results of these benchmarks are compared to the available literature data. CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, and CC3. The results of these benchmarks are compared to the available literature data.
\end{abstract} \end{abstract}
\clearpage \clearpage
@ -179,6 +187,8 @@ corrections (up to quadruple-$\zeta$ at least) are also provided for {\CCT}. Tog
Unless otherwise stated, all transition energies are computed in the frozen-core approximation (with a large core for the sulfur atoms). Unless otherwise stated, all transition energies are computed in the frozen-core approximation (with a large core for the sulfur atoms).
Pople's {\Pop} and Dunning's \emph{aug}-cc-pVXZ (X $=$ D, T, Q, and 5) atomic basis sets are systematically employed in our excited-state calculations. Pople's {\Pop} and Dunning's \emph{aug}-cc-pVXZ (X $=$ D, T, Q, and 5) atomic basis sets are systematically employed in our excited-state calculations.
In the following, we employ the aVXZ shorthand notations for these diffuse-containing Dunning basis sets.
Various statistical quantities are reported in the remaining of this paper: the mean signed error (MSE), mean absolute error (MAE), root mean square error (RMSE), standard deviation of the errors (SDE), as well as the positive [\MaxP] and negative [\MaxN] maximum errors.
Here, we globally follow the same procedure as in Ref.~\citenum{Loo18a}, so that we only briefly outline the various theoretical methods that we have employed in the subsections below. Here, we globally follow the same procedure as in Ref.~\citenum{Loo18a}, so that we only briefly outline the various theoretical methods that we have employed in the subsections below.
@ -256,7 +266,7 @@ relevant and are therefore unlikely to change any of our main conclusions.
\begin{tabular}{l|p{.5cm}p{1.0cm}p{1.2cm}p{1.4cm}|p{.5cm}p{1.0cm}p{1.2cm}p{1.4cm}|p{.5cm}p{1.0cm}p{1.2cm}|p{.5cm}|p{.5cm}|p{.6cm}p{.6cm}} \begin{tabular}{l|p{.5cm}p{1.0cm}p{1.2cm}p{1.4cm}|p{.5cm}p{1.0cm}p{1.2cm}p{1.4cm}|p{.5cm}p{1.0cm}p{1.2cm}|p{.5cm}|p{.5cm}|p{.6cm}p{.6cm}}
\hline \hline
\mc{14}{c}{Cyanoacetylene}\\ \mc{14}{c}{Cyanoacetylene}\\
& \mc{4}{c}{\Pop} & \mc{4}{c}{\AVDZ}& \mc{3}{c}{\AVTZ} & \mc{1}{c}{\AVQZ} & \mc{1}{c}{\AVFZ} & \mc{2}{c}{Litt.}\\ & \mc{4}{c}{\Pop} & \mc{4}{c}{\AVDZ}& \mc{3}{c}{\AVTZ} & \mc{1}{c}{\AVQZ} & \mc{1}{c}{\AVPZ} & \mc{2}{c}{Litt.}\\
State & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI} & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI}& {\CCT} & {\CCSDT} & {\NEV} & {\CCT} & {\CCT}& Th.$^a$ & Exp.$^b$ \\ State & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI} & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI}& {\CCT} & {\CCSDT} & {\NEV} & {\CCT} & {\CCT}& Th.$^a$ & Exp.$^b$ \\
\hline \hline
$^1\Sigma^-$ &6.02&6.04&6.02&6.02$\pm$0.01 &5.92&5.92&5.91&5.84$\pm$0.09 &5.80&5.81&5.78& 5.79 &5.79 &5.46&4.77\\ $^1\Sigma^-$ &6.02&6.04&6.02&6.02$\pm$0.01 &5.92&5.92&5.91&5.84$\pm$0.09 &5.80&5.81&5.78& 5.79 &5.79 &5.46&4.77\\
@ -266,7 +276,7 @@ $^3\Delta$ &5.35&5.34& &5.32$\pm$0.03 &5.28&5.27& &5.20$\pm$0.08 &5.
$^1A''$[F]$^c$ &3.70&3.72&3.70&3.67$\pm$0.03 &3.60&3.62&3.60&3.59$\pm$0.02 &3.54&3.56&3.50& 3.54 & &&\\ $^1A''$[F]$^c$ &3.70&3.72&3.70&3.67$\pm$0.03 &3.60&3.62&3.60&3.59$\pm$0.02 &3.54&3.56&3.50& 3.54 & &&\\
\hline \hline
\mc{14}{c}{Cyanogen}\\ \mc{14}{c}{Cyanogen}\\
& \mc{4}{c}{\Pop} & \mc{4}{c}{\AVDZ}& \mc{3}{c}{\AVTZ} & \mc{1}{c}{\AVQZ} & \mc{1}{c}{\AVFZ} & \mc{1}{c}{Litt.}\\ & \mc{4}{c}{\Pop} & \mc{4}{c}{\AVDZ}& \mc{3}{c}{\AVTZ} & \mc{1}{c}{\AVQZ} & \mc{1}{c}{\AVPZ} & \mc{1}{c}{Litt.}\\
State & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI} & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI}& {\CCT} & {\CCSDT} & {\NEV}& {\CCT} & {\CCT}& Exp.$^d$ \\ State & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI} & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI}& {\CCT} & {\CCSDT} & {\NEV}& {\CCT} & {\CCT}& Exp.$^d$ \\
\hline \hline
$^1\Sigma_u^-$ &6.62&6.63&6.62&6.58$\pm$0.03 &6.52&6.52&6.51&6.44$\pm$0.08 &6.39&6.40&6.32& 6.38 &6.38 &5.63\\ $^1\Sigma_u^-$ &6.62&6.63&6.62&6.58$\pm$0.03 &6.52&6.52&6.51&6.44$\pm$0.08 &6.39&6.40&6.32& 6.38 &6.38 &5.63\\
@ -275,7 +285,7 @@ $^3\Sigma_u^+$ &4.92&4.92&4.94&4.91$\pm$0.06 &4.89&4.89& &4.87$\pm$0.07 &4.9
$^1\Sigma_u^-$[F]$^c$ &5.27&5.28&5.26&5.31$\pm$0.05 &5.19&5.20&5.18&5.26$\pm$0.09 &5.06&5.07&4.97& 5.05 &5.05 & \\ $^1\Sigma_u^-$[F]$^c$ &5.27&5.28&5.26&5.31$\pm$0.05 &5.19&5.20&5.18&5.26$\pm$0.09 &5.06&5.07&4.97& 5.05 &5.05 & \\
\hline \hline
\mc{14}{c}{Diacetylene}\\ \mc{14}{c}{Diacetylene}\\
& \mc{4}{c}{\Pop} & \mc{4}{c}{\AVDZ}& \mc{3}{c}{\AVTZ} & \mc{1}{c}{\AVQZ} & \mc{1}{c}{\AVFZ} & \mc{1}{c}{Litt.}\\ & \mc{4}{c}{\Pop} & \mc{4}{c}{\AVDZ}& \mc{3}{c}{\AVTZ} & \mc{1}{c}{\AVQZ} & \mc{1}{c}{\AVPZ} & \mc{1}{c}{Litt.}\\
State & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI} & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI}& {\CCT} & {\CCSDT} & {\NEV}& {\CCT} & {\CCT}& Exp.$^e$ \\ State & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI} & {\CCT} & {\CCSDT} & {\CCSDTQ} & {\FCI}& {\CCT} & {\CCSDT} & {\NEV}& {\CCT} & {\CCT}& Exp.$^e$ \\
\hline \hline
$^1\Sigma_u^-$ &5.57&5.58&5.56&5.52$\pm$0.06 &5.44&5.45&5.43&5.47$\pm$0.02 &5.34&5.35&5.33& 5.33 &5.33 &4.81\\ $^1\Sigma_u^-$ &5.57&5.58&5.56&5.52$\pm$0.06 &5.44&5.45&5.43&5.47$\pm$0.02 &5.34&5.35&5.33& 5.33 &5.33 &4.81\\
@ -389,7 +399,7 @@ results might be slightly too low for the second transition. }
Our results are listed in Tables \ref{Table-2} and S2. As above, considering the {\Pop} basis set, we notice very small differences between {\CCT}, {\CCSDT}, and {\CCSDTQ}, the latter method giving transition energies Our results are listed in Tables \ref{Table-2} and S2. As above, considering the {\Pop} basis set, we notice very small differences between {\CCT}, {\CCSDT}, and {\CCSDTQ}, the latter method giving transition energies
systematically falling within the {\FCI} extrapolation incertitude, except in one case (the lowest totally symmetric state of methylenecyclopropene for which the {\CCSDTQ} value is ``off'' by $0.02$ eV only). Depending on the state, it is systematically falling within the {\FCI} extrapolation incertitude, except in one case (the lowest totally symmetric state of methylenecyclopropene for which the {\CCSDTQ} value is ``off'' by $0.02$ eV only). Depending on the state, it is
either {\CCT} or {\CCSDT} that is closest to {\CCSDTQ}. In fact, considering the {\CCSDTQ}/{\Pop} data listed in Table \ref{Table-2} as reference, the mean absolute deviation of {\CCT} and {\CCSDT} is $0.019$ and $0.016$ eV, respectively, either {\CCT} or {\CCSDT} that is closest to {\CCSDTQ}. In fact, considering the {\CCSDTQ}/{\Pop} data listed in Table \ref{Table-2} as reference, the MAE of {\CCT} and {\CCSDT} is $0.019$ and $0.016$ eV, respectively,
hinting that the improvement brought by the latter, more expensive method is limited for this set of compounds. For the lowest $B_2$ state of methylenecyclopropene, one of the most challenging cases (\%$T_1 = 85\%$), hinting that the improvement brought by the latter, more expensive method is limited for this set of compounds. For the lowest $B_2$ state of methylenecyclopropene, one of the most challenging cases (\%$T_1 = 85\%$),
it is clear from the {\FCI} value that only {\CCSDTQ} is close, the {\CCT} and {\CCSDT} results being slightly too large by $\sim 0.05$ eV. It seems reasonable to believe that the same observation can be made for the corresponding state of it is clear from the {\FCI} value that only {\CCSDTQ} is close, the {\CCT} and {\CCSDT} results being slightly too large by $\sim 0.05$ eV. It seems reasonable to believe that the same observation can be made for the corresponding state of
cyclopropenethione, although in that case the FCI error bar is too large to prevent any definitive conclusion. Interestingly, at the {\CCT} level of theory, the rather small {\Pop} basis set provides data within $0.10$ eV of the CBS limit for 80\%\ of cyclopropenethione, although in that case the FCI error bar is too large to prevent any definitive conclusion. Interestingly, at the {\CCT} level of theory, the rather small {\Pop} basis set provides data within $0.10$ eV of the CBS limit for 80\%\ of
@ -619,11 +629,11 @@ This is further confirmed by the {\FCI} data.
As we have seen for the 15 four-atom molecules considered here, we found extremely consistent transition energies between CC and {\FCI} estimates in the vast majority of the cases. As we have seen for the 15 four-atom molecules considered here, we found extremely consistent transition energies between CC and {\FCI} estimates in the vast majority of the cases.
Importantly, we confirm our previous conclusions obtained on smaller compounds: \cite{Loo18a} i) {\CCSDTQ} values systematically fall within (or are extremely close to) the {\FCI} error bar, Importantly, we confirm our previous conclusions obtained on smaller compounds: \cite{Loo18a} i) {\CCSDTQ} values systematically fall within (or are extremely close to) the {\FCI} error bar,
ii) both {\CCT} and {\CCSDT} are also highly trustable when the considered ES does not exhibit a strong double excitation character. Indeed, considering the 54 ``single'' excitations ii) both {\CCT} and {\CCSDT} are also highly trustable when the considered ES does not exhibit a strong double excitation character. Indeed, considering the 54 ``single'' excitations
for which {\CCSDTQ} estimates could be obtained (only excluding the lowest $^1A_g$ ES of butadiene and glyoxal), we determined negligible mean signed errors (MSE of $0.00$ eV), tiny for which {\CCSDTQ} estimates could be obtained (only excluding the lowest $^1A_g$ ES of butadiene and glyoxal), we determined negligible MSE of $0.00$ eV, tiny
MAE ($0.01$ and $0.02$ eV), and small maximal deviations ($0.05$ and $0.04$ eV) for {\CCT} and {\CCSDT}, respectively. This clearly indicates that these two approaches provide chemically-accurate MAE ($0.01$ and $0.02$ eV), and small maximal deviations ($0.05$ and $0.04$ eV) for {\CCT} and {\CCSDT}, respectively. This clearly indicates that these two approaches provide chemically-accurate
estimates (errors below $1$ kcal.mol$^{-1}$ or $0.043$ eV) for most electronic transitions. Interestingly, some of us have shown that {\CCT} also provides chemically-accurate 0-0 energies as compared estimates (errors below $1$ kcal.mol$^{-1}$ or $0.043$ eV) for most electronic transitions. Interestingly, some of us have shown that {\CCT} also provides chemically-accurate 0-0 energies as compared
to experimental values for most valence transitions. \cite{Loo18b,Loo19a,Sue19} When comparing the {\NEV} and {\CCT} ({\CCSDT}) results obtained with {\AVTZ} for the 91 (65) ES for which comparisons are possible (again excluding only the lowest $^1A_g$ states of butadiene and glyoxal), to experimental values for most valence transitions. \cite{Loo18b,Loo19a,Sue19} When comparing the {\NEV} and {\CCT} ({\CCSDT}) results obtained with {\AVTZ} for the 91 (65) ES for which comparisons are possible (again excluding only the lowest $^1A_g$ states of butadiene and glyoxal),
one obtains a mean signed deviation of $+0.09$ ($+0.09$) eV and a mean absolute deviation of $0.11$ ($0.12$) eV. one obtains a MSE of $+0.09$ ($+0.09$) eV and a MAE of $0.11$ ($0.12$) eV.
This seems to indicate that {\NEV}, as applied here, has a slight tendency to overestimate the transition energies. This contrasts with {\CASPT} that is known to generally underestimate transition energies, as further illustrated and discussed above. This seems to indicate that {\NEV}, as applied here, has a slight tendency to overestimate the transition energies. This contrasts with {\CASPT} that is known to generally underestimate transition energies, as further illustrated and discussed above.
\subsection{Five-atom molecules} \subsection{Five-atom molecules}
@ -1104,7 +1114,7 @@ our previous works indicated that {\CCSDT} tends to overshoot the transition ene
results are unavailable, it is hard to make the final call. For the other transitions, we relied either on the current or previous FCI or the {\NEV} values as reference. We indicate some transition energies results are unavailable, it is hard to make the final call. For the other transitions, we relied either on the current or previous FCI or the {\NEV} values as reference. We indicate some transition energies
in italics in Table \ref{Table-tbe} to stress that they are (relatively) less accurate. This is the case when: i) {\NEV} results have to be selected; ii) the affordable CC calculations yield quite large changes from one expansion order to another in italics in Table \ref{Table-tbe} to stress that they are (relatively) less accurate. This is the case when: i) {\NEV} results have to be selected; ii) the affordable CC calculations yield quite large changes from one expansion order to another
despite large $\Td$; and iii) there is a very large ES mixing making hard to follow a specific transition from one method (or one basis) to another. To determine the basis set corrections beyond augmented triple-$\zeta$, despite large $\Td$; and iii) there is a very large ES mixing making hard to follow a specific transition from one method (or one basis) to another. To determine the basis set corrections beyond augmented triple-$\zeta$,
we use the {\CCT}/{\AVQZ} or {\CCT}/{\AVFZ} results. For several compounds, we also provide in the SI, {\CCT}/{\DAVQZ} transition energies. However, we are not using these values as reference. This is because, we use the {\CCT}/{\AVQZ} or {\CCT}/{\AVPZ} results. For several compounds, we also provide in the SI, {\CCT}/{\DAVQZ} transition energies. However, we are not using these values as reference. This is because,
the addition of a second set of diffuse orbitals tends to modify the computed transition energies significantly only when it induces a more complex state mixing. We also stick to the the addition of a second set of diffuse orbitals tends to modify the computed transition energies significantly only when it induces a more complex state mixing. We also stick to the
frozen-core approximation for two reasons: i) the corrections brought by ``full-correlation'' are generally trifling (typically $\pm 0.02$ eV) for the compounds under study (see the SI for many examples); and ii) it would be, frozen-core approximation for two reasons: i) the corrections brought by ``full-correlation'' are generally trifling (typically $\pm 0.02$ eV) for the compounds under study (see the SI for many examples); and ii) it would be,
in principle, necessary to add core polarization functions in such ``full'' calculations. in principle, necessary to add core polarization functions in such ``full'' calculations.
@ -1137,154 +1147,154 @@ that have always been obtained at the {\CCT} level. Values displayed in italics
\endfoot \endfoot
\hline \hline
\endlastfoot \endlastfoot
Acetone &$^1A_2 (\Val; n \ra \pis)$ & & 91.1 & 4.47 & B & 4.48 & AVQZ \\ Acetone &$^1A_2 (\Val; n \ra \pis)$ & & 91.1 & 4.47 & B & 4.48 & \AVQZ \\
&$^1B_2 (\mathrm{R}; n \ra 3s)$ &0.000 & 90.5 & 6.46 & B & 6.51 & AVQZ \\ &$^1B_2 (\mathrm{R}; n \ra 3s)$ &0.000 & 90.5 & 6.46 & B & 6.51 & \AVQZ \\
&$^1A_2 (\mathrm{R}; n \ra 3p)$ & & 90.9 & 7.47 & B & 7.44 & AVQZ \\ &$^1A_2 (\mathrm{R}; n \ra 3p)$ & & 90.9 & 7.47 & B & 7.44 & \AVQZ \\
&$^1A_1 (\mathrm{R}; n \ra 3p)$ &0.004 & 90.6 & 7.51 & B & 7.55 & AVQZ \\ &$^1A_1 (\mathrm{R}; n \ra 3p)$ &0.004 & 90.6 & 7.51 & B & 7.55 & \AVQZ \\
&$^1B_2 (\mathrm{R}; n \ra 3p)$ &0.029 & 91.2 & 7.62 & B & 7.63 & AVQZ \\ &$^1B_2 (\mathrm{R}; n \ra 3p)$ &0.029 & 91.2 & 7.62 & B & 7.63 & \AVQZ \\
&$^3A_2 (\Val; n \ra \pis)$ & & 97.8 & 4.13 & D & 4.15 & AVQZ \\ &$^3A_2 (\Val; n \ra \pis)$ & & 97.8 & 4.13 & D & 4.15 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.7 & 6.25 & D & 6.27 & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.7 & 6.25 & D & 6.27 & \AVQZ \\
Acrolein &$^1A'' (\Val; n \ra \pis)$ &0.000 & 87.6 & 3.73 & {\CCSDT}/AVTZ & 3.74 & AVQZ \\ Acrolein &$^1A'' (\Val; n \ra \pis)$ &0.000 & 87.6 & 3.73 & {\CCSDT}/\AVTZ & 3.74 & \AVQZ \\
&$^1A' (\Val; \pi \ra \pis)$ &0.344 & 91.2 & 6.69 & {\CCSDT}/AVTZ & 6.69 & AVQZ \\ &$^1A' (\Val; \pi \ra \pis)$ &0.344 & 91.2 & 6.69 & {\CCSDT}/\AVTZ & 6.69 & \AVQZ \\
&$^1A'' (\Val; n \ra \pis)$ &0.000 & 79.4 & \emph{6.72} & D &\emph{6.74} & AVQZ \\ &$^1A'' (\Val; n \ra \pis)$ &0.000 & 79.4 & \emph{6.72} & D &\emph{6.74} & \AVQZ \\
&$^1A' (\mathrm{R}; n \ra 3s)$ &0.109 & 89.4 & 7.08 & D & 7.12 & AVQZ \\ &$^1A' (\mathrm{R}; n \ra 3s)$ &0.109 & 89.4 & 7.08 & D & 7.12 & \AVQZ \\
&$^3A'' (\Val; n \ra \pis)$ & & 97.0 & 3.44 & D & 3.43 & AVQZ \\ &$^3A'' (\Val; n \ra \pis)$ & & 97.0 & 3.44 & D & 3.43 & \AVQZ \\
&$^3A' (\Val; \pi \ra \pis)$ & & 98.6 & 3.94 & D & 3.95 & AVQZ \\ &$^3A' (\Val; \pi \ra \pis)$ & & 98.6 & 3.94 & D & 3.95 & \AVQZ \\
&$^3A' (\Val; \pi \ra \pis)$ & & 98.4 & 6.18 & D & 6.19 & AVQZ \\ &$^3A' (\Val; \pi \ra \pis)$ & & 98.4 & 6.18 & D & 6.19 & \AVQZ \\
&$^3A'' (\Val; n \ra \pis)$ & & 92.7 & \emph{6.54} & E & \emph{6.55}& AVQZ \\%remove &$^3A'' (\Val; n \ra \pis)$ & & 92.7 & \emph{6.54} & E & \emph{6.55}& \AVQZ \\%remove
Benzene &$^1B_{2u} (\Val; \pi \ra \pis)$ & & 86.3 & 5.06 & {\CCSDT}/AVTZ & 5.06 &AVQZ \\ Benzene &$^1B_{2u} (\Val; \pi \ra \pis)$ & & 86.3 & 5.06 & {\CCSDT}/\AVTZ & 5.06 &\AVQZ \\
&$^1B_{1u} (\Val; \pi \ra \pis)$ & & 92.9 & 6.45 & {\CCSDT}/AVTZ &6.44 &AVQZ \\ &$^1B_{1u} (\Val; \pi \ra \pis)$ & & 92.9 & 6.45 & {\CCSDT}/\AVTZ &6.44 &\AVQZ \\
&$^1E_{1g} (\mathrm{R}; \pi \ra 3s)$ & & 92.8 & 6.52 & {\CCSDT}/AVTZ &6.54 &AVQZ \\ &$^1E_{1g} (\mathrm{R}; \pi \ra 3s)$ & & 92.8 & 6.52 & {\CCSDT}/\AVTZ &6.54 &\AVQZ \\
&$^1A_{2u} (\mathrm{R}; \pi \ra 3p)$ &0.066 & 93.4 & 7.08 & {\CCSDT}/AVTZ &7.10 &AVQZ \\ &$^1A_{2u} (\mathrm{R}; \pi \ra 3p)$ &0.066 & 93.4 & 7.08 & {\CCSDT}/\AVTZ &7.10 &\AVQZ \\
&$^1E_{2u} (\mathrm{R}; \pi \ra 3p)$ & & 92.8 & 7.15 & {\CCSDT}/AVTZ &7.16 &AVQZ \\ &$^1E_{2u} (\mathrm{R}; \pi \ra 3p)$ & & 92.8 & 7.15 & {\CCSDT}/\AVTZ &7.16 &\AVQZ \\
&$^3B_{1u} (\Val; \pi \ra \pis)$ & & 98.6 & 4.16 & D &4.17 &AVQZ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & & 98.6 & 4.16 & D &4.17 &\AVQZ \\
&$^3E_{1u}(\Val; \pi \ra \pis)$ & & 97.1 & 4.85 & D &4.86 &AVQZ \\ &$^3E_{1u}(\Val; \pi \ra \pis)$ & & 97.1 & 4.85 & D &4.86 &\AVQZ \\
&$^3B_{2u} (\Val; \pi \ra \pis)$ & & 98.1 & 5.81 & D & 5.81 &AVQZ \\ &$^3B_{2u} (\Val; \pi \ra \pis)$ & & 98.1 & 5.81 & D & 5.81 &\AVQZ \\
Butadiene &$^1B_u (\Val; \pi \ra \pis)$ &0.664 & 93.3 & 6.22 & B & 6.21 & AVQZ \\ Butadiene &$^1B_u (\Val; \pi \ra \pis)$ &0.664 & 93.3 & 6.22 & B & 6.21 & \AVQZ \\
&$^1B_g (\mathrm{R}; \pi \ra 3s)$ & & 94.1 & 6.33 & B & 6.35 & AVQZ \\ &$^1B_g (\mathrm{R}; \pi \ra 3s)$ & & 94.1 & 6.33 & B & 6.35 & \AVQZ \\
&$^1A_g (\Val; \pi \ra \pis)$ & & 75.1 & 6.50 & F & 6.50 & AVQZ \\ &$^1A_g (\Val; \pi \ra \pis)$ & & 75.1 & 6.50 & F & 6.50 & \AVQZ \\
&$^1A_u (\mathrm{R}; \pi \ra 3p)$ &0.001 & 94.1 & 6.64 & B & 6.66 & AVQZ \\ &$^1A_u (\mathrm{R}; \pi \ra 3p)$ &0.001 & 94.1 & 6.64 & B & 6.66 & \AVQZ \\
&$^1A_u (\mathrm{R}; \pi \ra 3p)$ &0.049 & 94.1 & 6.80 & B & 6.82 & AVQZ \\ &$^1A_u (\mathrm{R}; \pi \ra 3p)$ &0.049 & 94.1 & 6.80 & B & 6.82 & \AVQZ \\
&$^1B_u (\mathrm{R}; \pi \ra 3p)$ &0.055 & 93.8 & 7.68 & C & 7.54 & AVQZ \\ &$^1B_u (\mathrm{R}; \pi \ra 3p)$ &0.055 & 93.8 & 7.68 & C & 7.54 & \AVQZ \\
&$^3B_u (\Val; \pi \ra \pis)$ & & 98.4 & 3.36 & D & 3.37 & AVQZ \\ &$^3B_u (\Val; \pi \ra \pis)$ & & 98.4 & 3.36 & D & 3.37 & \AVQZ \\
&$^3A_g (\Val; \pi \ra \pis)$ & & 98.7 & 5.20 & D & 5.21 & AVQZ \\ &$^3A_g (\Val; \pi \ra \pis)$ & & 98.7 & 5.20 & D & 5.21 & \AVQZ \\
&$^3B_g (\mathrm{R}; \pi \ra 3s)$ & & 97.9 & 6.29 & D & 6.31 & AVQZ \\ &$^3B_g (\mathrm{R}; \pi \ra 3s)$ & & 97.9 & 6.29 & D & 6.31 & \AVQZ \\
Cyanoacetylene &$^1\Sigma^- (\Val; \pi \ra \pis)$ & & 94.3 & 5.80 & A & 5.79 & AV5Z\\ Cyanoacetylene &$^1\Sigma^- (\Val; \pi \ra \pis)$ & & 94.3 & 5.80 & A & 5.79 & \AVPZ\\
&$^1\Delta (\Val; \pi \ra \pis)$ & & 94.0 & 6.07 & A & 6.05 &AV5Z\\ &$^1\Delta (\Val; \pi \ra \pis)$ & & 94.0 & 6.07 & A & 6.05 &\AVPZ\\
&$^3\Sigma^+ (\Val; \pi \ra \pis)$ & & 98.5 & 4.44 & {\CCSDT}/AVTZ & 4.46 &AV5Z \\ &$^3\Sigma^+ (\Val; \pi \ra \pis)$ & & 98.5 & 4.44 & {\CCSDT}/\AVTZ & 4.46 &\AVPZ \\
&$^3\Delta (\Val; \pi \ra \pis)$ & & 98.2 & 5.21 & {\CCSDT}/AVTZ & 5.21 & AV5Z\\ &$^3\Delta (\Val; \pi \ra \pis)$ & & 98.2 & 5.21 & {\CCSDT}/\AVTZ & 5.21 & \AVPZ\\
&$^1A'' [\mathrm{F}] (\Val; \pi \ra \pis)$ & 0.004 & 93.6 & 3.54 & A & 3.54 & AVQZ \\ &$^1A'' [\mathrm{F}] (\Val; \pi \ra \pis)$ & 0.004 & 93.6 & 3.54 & A & 3.54 & \AVQZ \\
Cyanoformaldehyde &$^1A'' (\Val; n \ra \pis)$ & 0.001 & 89.8 & 3.81 & {\CCSDT}/AVTZ & 3.82 & AVQZ \\ Cyanoformaldehyde &$^1A'' (\Val; n \ra \pis)$ & 0.001 & 89.8 & 3.81 & {\CCSDT}/\AVTZ & 3.82 & \AVQZ \\
&$^1A'' (\Val; \pi \ra \pis)$ & 0.000 & 91.9 & 6.46 & {\CCSDT}/AVTZ & 6.45 & AVQZ \\ &$^1A'' (\Val; \pi \ra \pis)$ & 0.000 & 91.9 & 6.46 & {\CCSDT}/\AVTZ & 6.45 & \AVQZ \\
&$^3A'' (\Val; n \ra \pis)$ & & 97.6 & 3.44 & D & 3.45 & AVQZ \\ &$^3A'' (\Val; n \ra \pis)$ & & 97.6 & 3.44 & D & 3.45 & \AVQZ \\
&$^3A' (\Val; \pi \ra \pis)$ & & 98.4 & 5.01 & D & 5.02 & AVQZ \\ &$^3A' (\Val; \pi \ra \pis)$ & & 98.4 & 5.01 & D & 5.02 & \AVQZ \\
Cyanogen & $^1\Sigma_u^- (\Val; \pi \ra \pis)$ & & 94.1 & 6.39 & A & 6.38 & AV5Z\\ Cyanogen & $^1\Sigma_u^- (\Val; \pi \ra \pis)$ & & 94.1 & 6.39 & A & 6.38 & \AVPZ\\
& $^1\Delta_u (\Val; \pi \ra \pis)$ & & 93.4 & 6.66 & A & 6.64 & AV5Z\\ & $^1\Delta_u (\Val; \pi \ra \pis)$ & & 93.4 & 6.66 & A & 6.64 & \AVPZ\\
& $^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & & 98.5 & 4.91 & B & 4.93 & AV5Z \\ & $^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & & 98.5 & 4.91 & B & 4.93 & \AVPZ \\
& $^1\Sigma_u^- [\mathrm{F}] (\Val; \pi \ra \pis)$ & & 93.4 & 5.05 & A & 5.03 & AV5Z \\ & $^1\Sigma_u^- [\mathrm{F}] (\Val; \pi \ra \pis)$ & & 93.4 & 5.05 & A & 5.03 & \AVPZ \\
Cyclopentadiene &$^1B_2 (\Val; \pi \ra \pis)$ &0.084 & 93.8 & 5.56 & {\CCSDT}/AVTZ & 5.55 & AVQZ \\ Cyclopentadiene &$^1B_2 (\Val; \pi \ra \pis)$ &0.084 & 93.8 & 5.56 & {\CCSDT}/\AVTZ & 5.55 & \AVQZ \\
&$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 94.0 & 5.78 & {\CCSDT}/AVTZ & 5.80 & AVQZ \\ &$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 94.0 & 5.78 & {\CCSDT}/\AVTZ & 5.80 & \AVQZ \\
&$^1B_1 (\mathrm{R}; \pi \ra 3p)$ &0.037 & 94.2 & 6.41 & {\CCSDT}/AVTZ & 6.42 & AVQZ \\ &$^1B_1 (\mathrm{R}; \pi \ra 3p)$ &0.037 & 94.2 & 6.41 & {\CCSDT}/\AVTZ & 6.42 & \AVQZ \\
&$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 93.8 & 6.46 & {\CCSDT}/AVTZ & 6.47 & AVQZ \\ &$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 93.8 & 6.46 & {\CCSDT}/\AVTZ & 6.47 & \AVQZ \\
&$^1B_2 (\mathrm{R}; \pi \ra 3p)$ &0.046 & 94.2 & 6.56 &{\CCSDT}/AVTZ & 6.55 & AVQZ\\ &$^1B_2 (\mathrm{R}; \pi \ra 3p)$ &0.046 & 94.2 & 6.56 &{\CCSDT}/\AVTZ & 6.55 & \AVQZ\\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.001 & 78.9 & \emph{6.51} & D & \emph{6.51} & AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.001 & 78.9 & \emph{6.51} & D & \emph{6.51} & \AVQZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 98.4 & 3.31 & D & 3.31 & AVQZ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 98.4 & 3.31 & D & 3.31 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.6 & 5.11 & D & 5.12 & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.6 & 5.11 & D & 5.12 & \AVQZ \\
&$^3A_2 (\mathrm{R}; \pi \ra 3s)$ & & 97.9 & 5.73 & D & 5.75 & AVQZ \\ &$^3A_2 (\mathrm{R}; \pi \ra 3s)$ & & 97.9 & 5.73 & D & 5.75 & \AVQZ \\
&$^3B_1 (\mathrm{R}; \pi \ra 3p)$ & & 97.9 & 6.36 & D & 6.38 & AVQZ \\ &$^3B_1 (\mathrm{R}; \pi \ra 3p)$ & & 97.9 & 6.36 & D & 6.38 & \AVQZ \\
Cyclopropenone &$^1B_1 (\Val; n \ra \pis)$ &0.000 & 87.7 & 4.26 & B & 4.28 & AV5Z \\ Cyclopropenone &$^1B_1 (\Val; n \ra \pis)$ &0.000 & 87.7 & 4.26 & B & 4.28 & \AVPZ \\
&$^1A_2 (\Val; n \ra \pis)$ & & 91.0 & 5.55 & B & 5.56 &AV5Z \\ &$^1A_2 (\Val; n \ra \pis)$ & & 91.0 & 5.55 & B & 5.56 &\AVPZ \\
&$^1B_2 (\mathrm{R}; n \ra 3s)$ &0.003 & 90.8 & 6.34 & B & 6.40 & AV5Z \\ &$^1B_2 (\mathrm{R}; n \ra 3s)$ &0.003 & 90.8 & 6.34 & B & 6.40 & \AVPZ \\
&$^1B_2 (\Val; \pi \ra \pis$) &0.047 & 86.5 & 6.54 & B & 6.56 & AV5Z\\ &$^1B_2 (\Val; \pi \ra \pis$) &0.047 & 86.5 & 6.54 & B & 6.56 & \AVPZ\\
&$^1B_2 (\mathrm{R}; n \ra 3p)$ &0.018 & 91.1 & 6.98 & B & 7.01 & AV5Z \\ &$^1B_2 (\mathrm{R}; n \ra 3p)$ &0.018 & 91.1 & 6.98 & B & 7.01 & \AVPZ \\
&$^1A_1 (\mathrm{R}; n \ra 3p)$ &0.003 & 91.2 & 7.02 & B & 7.08 &AV5Z \\ &$^1A_1 (\mathrm{R}; n \ra 3p)$ &0.003 & 91.2 & 7.02 & B & 7.08 &\AVPZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.320 & 90.8 & 8.28 & B & 8.26 &AV5Z \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.320 & 90.8 & 8.28 & B & 8.26 &\AVPZ \\
&$^3B_1 (\Val; n \ra \pis)$ & & 96.0 & 3.93 & {\CCSDT}/AVTZ & 3.96 & AV5Z \\ &$^3B_1 (\Val; n \ra \pis)$ & & 96.0 & 3.93 & {\CCSDT}/\AVTZ & 3.96 & \AVPZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 97.9 & 4.88 & {\CCSDT}/AVTZ & 4.91 & AV5Z \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 97.9 & 4.88 & {\CCSDT}/\AVTZ & 4.91 & \AVPZ \\
&$^3A_2 (\Val; n \ra \pis)$ & & 97.5 & 5.35 & {\CCSDT}/AVTZ & 5.37 & AV5Z \\ &$^3A_2 (\Val; n \ra \pis)$ & & 97.5 & 5.35 & {\CCSDT}/\AVTZ & 5.37 & \AVPZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.1 & 6.79 & {\CCSDT}/AVTZ & 6.81 & AV5Z\\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.1 & 6.79 & {\CCSDT}/\AVTZ & 6.81 & \AVPZ\\
Cyclopropenethione &$^1A_2 (\Val; n \ra \pis)$ & & 89.6 & 3.41 & B & 3.41 & AV5Z \\ Cyclopropenethione &$^1A_2 (\Val; n \ra \pis)$ & & 89.6 & 3.41 & B & 3.41 & \AVPZ \\
&$^1B_1 (\Val; n \ra \pis)$ &0.000 & 84.8 & 3.45 & B & 3.48 & AV5Z \\ &$^1B_1 (\Val; n \ra \pis)$ &0.000 & 84.8 & 3.45 & B & 3.48 & \AVPZ \\
&$^1B_2 (\Val; \pi \ra \pis)$ &0.007 & 83.0 & 4.60 & B & 4.62 & AV5Z \\ &$^1B_2 (\Val; \pi \ra \pis)$ &0.007 & 83.0 & 4.60 & B & 4.62 & \AVPZ \\
&$^1B_2 (\mathrm{R}; n \ra 3s)$ &0.048 & 91.8 & 5.34 & B & 5.40 & AV5Z \\ &$^1B_2 (\mathrm{R}; n \ra 3s)$ &0.048 & 91.8 & 5.34 & B & 5.40 & \AVPZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.228 & 89.0 & 5.46 & B & 5.46 & AV5Z \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.228 & 89.0 & 5.46 & B & 5.46 & \AVPZ \\
&$^1B_2 (\mathrm{R}; n \ra 3p)$ &0.084 & 91.3 & 5.92 & B & 5.94 & AV5Z \\ &$^1B_2 (\mathrm{R}; n \ra 3p)$ &0.084 & 91.3 & 5.92 & B & 5.94 & \AVPZ \\
&$^3A_2 (\Val; n \ra \pis)$ & & 97.2 & 3.28 & D & 3.28 & AV5Z \\ &$^3A_2 (\Val; n \ra \pis)$ & & 97.2 & 3.28 & D & 3.28 & \AVPZ \\
&$^3B_1 (\Val; n \ra \pis)$ & & 94.5 & 3.32 & {\CCSDT}/AVTZ & 3.36 & AV5Z \\ &$^3B_1 (\Val; n \ra \pis)$ & & 94.5 & 3.32 & {\CCSDT}/\AVTZ & 3.36 & \AVPZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 96.5 & 4.01 & D & 4.04 & AV5Z \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 96.5 & 4.01 & D & 4.04 & \AVPZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.2 & 4.01 & D & 4.01 & AV5Z \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.2 & 4.01 & D & 4.01 & \AVPZ \\
Diacetylene &$^1\Sigma_u^- (\Val; \pi \ra \pis)$ & & 94.4 & 5.33 & A & 5.32 & AV5Z \\ Diacetylene &$^1\Sigma_u^- (\Val; \pi \ra \pis)$ & & 94.4 & 5.33 & A & 5.32 & \AVPZ \\
&$^1\Delta_u (\Val; \pi \ra \pis)$ & & 94.1 & 5.61 & A & 5.60 & AV5Z \\ &$^1\Delta_u (\Val; \pi \ra \pis)$ & & 94.1 & 5.61 & A & 5.60 & \AVPZ \\
&$^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & & 98.5 & 4.10 & C & 4.13 & AV5Z \\ &$^3\Sigma_u^+ (\Val; \pi \ra \pis)$ & & 98.5 & 4.10 & C & 4.13 & \AVPZ \\
&$^3\Delta_u (\Val; \pi \ra \pis)$ & & 98.2 & 4.78 & B & 4.78 &AV5Z \\ &$^3\Delta_u (\Val; \pi \ra \pis)$ & & 98.2 & 4.78 & B & 4.78 &\AVPZ \\
Furan &$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 93.8 & 6.09 &{\CCSDT}/AVTZ & 6.11 &AVQZ \\ Furan &$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 93.8 & 6.09 &{\CCSDT}/\AVTZ & 6.11 &\AVQZ \\
&$^1B_2 (\Val; \pi \ra \pis)$ &0.163 & 93.0 & 6.37 &{\CCSDT}/AVTZ & 6.37 &AVQZ \\ &$^1B_2 (\Val; \pi \ra \pis)$ &0.163 & 93.0 & 6.37 &{\CCSDT}/\AVTZ & 6.37 &\AVQZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.000 & 92.4 & 6.56 &{\CCSDT}/AVTZ & 6.56 &AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.000 & 92.4 & 6.56 &{\CCSDT}/\AVTZ & 6.56 &\AVQZ \\
&$^1B_1 (\mathrm{R}; \pi \ra 3p)$ &0.038 & 93.9 & 6.64 &{\CCSDT}/AVTZ & 6.66 &AVQZ \\ &$^1B_1 (\mathrm{R}; \pi \ra 3p)$ &0.038 & 93.9 & 6.64 &{\CCSDT}/\AVTZ & 6.66 &\AVQZ \\
&$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 93.6 & 6.81 &{\CCSDT}/AVTZ & 6.83 &AVQZ \\ &$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 93.6 & 6.81 &{\CCSDT}/\AVTZ & 6.83 &\AVQZ \\
&$^1B_2 (\mathrm{R}; \pi \ra 3p)$ &0.008 & 93.5 & 7.24 & D & 7.14 &AVQZ \\ &$^1B_2 (\mathrm{R}; \pi \ra 3p)$ &0.008 & 93.5 & 7.24 & D & 7.14 &\AVQZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 98.4 & 4.20 & D & 4.20 &AVQZ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 98.4 & 4.20 & D & 4.20 &\AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.1 & 5.46 & D & 5.47 &AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.1 & 5.46 & D & 5.47 &\AVQZ \\
&$^3A_2 (\mathrm{R}; \pi \ra 3s)$ & & 97.9 & 6.02 & D & 6.05 &AVQZ \\ &$^3A_2 (\mathrm{R}; \pi \ra 3s)$ & & 97.9 & 6.02 & D & 6.05 &\AVQZ \\
&$^3B_1 (\mathrm{R}; \pi \ra 3p)$ & & 97.9 & 6.59 & D & 6.61 &AVQZ \\ &$^3B_1 (\mathrm{R}; \pi \ra 3p)$ & & 97.9 & 6.59 & D & 6.61 &\AVQZ \\
Glyoxal &$^1A_u (\Val; n \ra \pis)$ & 0.000 & 91.0 & 2.88 & B & 2.88 & AV5Z \\ Glyoxal &$^1A_u (\Val; n \ra \pis)$ & 0.000 & 91.0 & 2.88 & B & 2.88 & \AVPZ \\
&$^1B_g (\Val; n \ra \pis)$ & & 88.3 & 4.24 & B & 4.24 & AVQZ \\ &$^1B_g (\Val; n \ra \pis)$ & & 88.3 & 4.24 & B & 4.24 & \AVQZ \\
&$^1A_g (\Val; n,n \ra \pis,\pis)$ & & 0.5 & 5.61 & F & 5.60 & AV5Z \\%to be remade with CCSDT correction ?? &$^1A_g (\Val; n,n \ra \pis,\pis)$ & & 0.5 & 5.61 & F & 5.60 & \AVPZ \\%to be remade with CCSDT correction ??
&$^1B_g (\Val; n \ra \pis)$ & & 83.9 & 6.57 & B & 6.58 & AVQZ \\ &$^1B_g (\Val; n \ra \pis)$ & & 83.9 & 6.57 & B & 6.58 & \AVQZ \\
&$^1B_u (\mathrm{R}; n \ra 3p)$ & 0.095 & 91.7 & 7.71 & B & 7.78 & AV5Z \\ &$^1B_u (\mathrm{R}; n \ra 3p)$ & 0.095 & 91.7 & 7.71 & B & 7.78 & \AVPZ \\
&$^3A_u (\Val; n \ra \pis)$ & & 97.6 & 2.49 & {\CCSDT}/AVTZ & 2.50 & AV5Z \\ &$^3A_u (\Val; n \ra \pis)$ & & 97.6 & 2.49 & {\CCSDT}/\AVTZ & 2.50 & \AVPZ \\
&$^3B_g (\Val; n \ra \pis)$ & & 97.4 & 3.89 & {\CCSDT}/AVTZ & 3.90 & AVQZ \\ &$^3B_g (\Val; n \ra \pis)$ & & 97.4 & 3.89 & {\CCSDT}/\AVTZ & 3.90 & \AVQZ \\
&$^3B_u (\Val; \pi \ra \pis)$ & & 98.5 & 5.15 & {\CCSDT}/AVTZ & 5.17 & AV5Z \\ &$^3B_u (\Val; \pi \ra \pis)$ & & 98.5 & 5.15 & {\CCSDT}/\AVTZ & 5.17 & \AVPZ \\
&$^3A_g (\Val; \pi \ra \pis)$ & & 98.8 & 6.30 & {\CCSDT}/AVTZ & 6.31 & AV5Z \\ &$^3A_g (\Val; \pi \ra \pis)$ & & 98.8 & 6.30 & {\CCSDT}/\AVTZ & 6.31 & \AVPZ \\
Imidazole &$^1A'' (\mathrm{R}; \pi \ra 3s)$ & 0.001 & 93.0 & 5.71 & D & 5.73 & AVQZ \\ Imidazole &$^1A'' (\mathrm{R}; \pi \ra 3s)$ & 0.001 & 93.0 & 5.71 & D & 5.73 & \AVQZ \\
&$^1A' (\Val; \pi \ra \pis)$ & 0.124 & 89.6 & 6.41 & D & 6.41s & AVQZ \\ &$^1A' (\Val; \pi \ra \pis)$ & 0.124 & 89.6 & 6.41 & D & 6.41s & \AVQZ \\
&$^1A'' (\Val; n \ra \pis)$ & 0.028 & 93.6 & 6.50 & D & 6.53 & AVQZ \\ &$^1A'' (\Val; n \ra \pis)$ & 0.028 & 93.6 & 6.50 & D & 6.53 & \AVQZ \\
&$^1A' (\mathrm{R};\pi \ra 3p)$ & 0.035 & 88.9 & \emph{6.83} & D &\emph{6.82} & AVQZ \\ &$^1A' (\mathrm{R};\pi \ra 3p)$ & 0.035 & 88.9 & \emph{6.83} & D &\emph{6.82} & \AVQZ \\
&$^3A' (\Val; \pi \ra \pis)$ & & 98.3 & 4.73 & E & 4.74 & AVQZ \\ &$^3A' (\Val; \pi \ra \pis)$ & & 98.3 & 4.73 & E & 4.74 & \AVQZ \\
&$^3A'' (\mathrm{R};(\pi \ra 3s)$ & & 97.6 & 5.66 & D & 5.69 & AVQZ \\ &$^3A'' (\mathrm{R};(\pi \ra 3s)$ & & 97.6 & 5.66 & D & 5.69 & \AVQZ \\
&$^3A' (\Val; \pi \ra \pis)$ & & 97.9 & 5.74 & E & 5.75 & AVQZ \\ &$^3A' (\Val; \pi \ra \pis)$ & & 97.9 & 5.74 & E & 5.75 & \AVQZ \\
&$^3A'' (\Val; n \ra \pis)$ & & 97.3 & 6.31 & D & 6.31 & AVQZ \\ &$^3A'' (\Val; n \ra \pis)$ & & 97.3 & 6.31 & D & 6.31 & \AVQZ \\
Isobutene &$^1B_1 (\mathrm{R}; \pi \ra 3s)$ & 0.006 & 94.1 & 6.46 & {\CCSDT}/AVTZ & 6.48 & AVQZ \\ Isobutene &$^1B_1 (\mathrm{R}; \pi \ra 3s)$ & 0.006 & 94.1 & 6.46 & {\CCSDT}/\AVTZ & 6.48 & \AVQZ \\
&$^1A_1 (\mathrm{R}; \pi \ra 3p)$ & 0.228 & 94.2 & 7.01 & {\CCSDT}/AVTZ & 7.00 & AVQZ \\ &$^1A_1 (\mathrm{R}; \pi \ra 3p)$ & 0.228 & 94.2 & 7.01 & {\CCSDT}/\AVTZ & 7.00 & \AVQZ \\
&$^3A_1 (\Val; (\pi \ra \pis)$ & & 98.9 & 4.53 & D & 4.54 & AVQZ \\ &$^3A_1 (\Val; (\pi \ra \pis)$ & & 98.9 & 4.53 & D & 4.54 & \AVQZ \\
Methylenecyclopropene& $^1B_2 (\Val; \pi \ra \pis)$ & 0.011 & 85.4 & 4.28 & B & 4.29 & AV5Z \\ Methylenecyclopropene& $^1B_2 (\Val; \pi \ra \pis)$ & 0.011 & 85.4 & 4.28 & B & 4.29 & \AVPZ \\
&$^1B_1 (\mathrm{R}; \pi \ra 3s)$ & 0.005 & 93.6 & 5.44 & B & 5.47 & AV5Z \\ &$^1B_1 (\mathrm{R}; \pi \ra 3s)$ & 0.005 & 93.6 & 5.44 & B & 5.47 & \AVPZ \\
&$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 93.3 & 5.96 & B & 5.99 & AVQZ \\ &$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 93.3 & 5.96 & B & 5.99 & \AVQZ \\
&$^1A_1(\Val; \pi \ra \pis)$ & 0.224 & 92.8 & \emph{6.12} & B & \emph{6.03} & AV5Z \\ &$^1A_1(\Val; \pi \ra \pis)$ & 0.224 & 92.8 & \emph{6.12} & B & \emph{6.03} & \AVPZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 97.2 & 3.49 & {\CCSDT}/AVTZ & 3.49 & AVQZ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 97.2 & 3.49 & {\CCSDT}/\AVTZ & 3.49 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.6 & 4.74 & D & 4.75 & AV5Z \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.6 & 4.74 & D & 4.75 & \AVPZ \\
Propynal & $^1A'' (\Val; n \ra \pis)$ & 0.000 & 89.0 & 3.80 & {\CCSDT}/AVTZ & 3.81 & AVQZ \\ Propynal & $^1A'' (\Val; n \ra \pis)$ & 0.000 & 89.0 & 3.80 & {\CCSDT}/\AVTZ & 3.81 & \AVQZ \\
&$^1A'' (\Val; \pi \ra \pis)$ & 0.000 & 92.9 & 5.54 & {\CCSDT}/AVTZ & 5.53 & AVQZ \\ &$^1A'' (\Val; \pi \ra \pis)$ & 0.000 & 92.9 & 5.54 & {\CCSDT}/\AVTZ & 5.53 & \AVQZ \\
&$^3A'' (\Val; n \ra \pis)$ & & 97.4 & 3.47 & D & 3.48 & AVQZ \\ &$^3A'' (\Val; n \ra \pis)$ & & 97.4 & 3.47 & D & 3.48 & \AVQZ \\
&$^3A' (\Val; \pi \ra \pis)$ & & 98.3 & 4.47 & D & 4.48 & AVQZ \\ &$^3A' (\Val; \pi \ra \pis)$ & & 98.3 & 4.47 & D & 4.48 & \AVQZ \\
Pyrazine &$^1B_{3u} (\Val; n \ra \pis)$ &0.006 & 90.1 & 4.15 & {\CCSDT}/AVTZ & 4.15 & AVQZ \\ Pyrazine &$^1B_{3u} (\Val; n \ra \pis)$ &0.006 & 90.1 & 4.15 & {\CCSDT}/\AVTZ & 4.15 & \AVQZ \\
&$^1A_{u} (\Val; n \ra \pis)$ & & 88.6 & 4.98 & {\CCSDT}/AVTZ & 4.99 & AVQZ \\ &$^1A_{u} (\Val; n \ra \pis)$ & & 88.6 & 4.98 & {\CCSDT}/\AVTZ & 4.99 & \AVQZ \\
&$^1B_{2u} (\Val; \pi \ra \pis)$ &0.078 & 86.9 & 5.02 & {\CCSDT}/AVTZ & 5.01 & AVQZ \\ &$^1B_{2u} (\Val; \pi \ra \pis)$ &0.078 & 86.9 & 5.02 & {\CCSDT}/\AVTZ & 5.01 & \AVQZ \\
&$^1B_{2g} (\Val; n \ra \pis)$ & & 85.6 & 5.71 & {\CCSDT}/AVTZ & 5.71 & AVQZ \\ &$^1B_{2g} (\Val; n \ra \pis)$ & & 85.6 & 5.71 & {\CCSDT}/\AVTZ & 5.71 & \AVQZ \\
&$^1A_{g} (\mathrm{R};n \ra 3s)$ & & 91.1 & 6.65 & {\CCSDT}/AVTZ & 6.69 & AVQZ \\ &$^1A_{g} (\mathrm{R};n \ra 3s)$ & & 91.1 & 6.65 & {\CCSDT}/\AVTZ & 6.69 & \AVQZ \\
&$^1B_{1g} (\Val; n \ra \pis)$ & & 84.2 & 6.74 & {\CCSDT}/AVTZ & 6.74 & AVQZ \\ &$^1B_{1g} (\Val; n \ra \pis)$ & & 84.2 & 6.74 & {\CCSDT}/\AVTZ & 6.74 & \AVQZ \\
&$^1B_{1u} (\Val; \pi \ra \pis)$ &0.063 & 92.8 & 6.88 & {\CCSDT}/AVTZ & 6.87 & AVQZ \\ &$^1B_{1u} (\Val; \pi \ra \pis)$ &0.063 & 92.8 & 6.88 & {\CCSDT}/\AVTZ & 6.87 & \AVQZ \\
&$^1B_{1g} (\mathrm{R};n \ra 3p)$ & & 93.8 & 7.21 & {\CCSDT}/AVTZ & 7.24 & AVQZ \\ &$^1B_{1g} (\mathrm{R};n \ra 3p)$ & & 93.8 & 7.21 & {\CCSDT}/\AVTZ & 7.24 & \AVQZ \\
&$^1B_{2u} (\mathrm{R};n \ra 3p)$ &0.037 & 90.8 & 7.24 & D & 7.28 &AVQZ \\ &$^1B_{2u} (\mathrm{R};n \ra 3p)$ &0.037 & 90.8 & 7.24 & D & 7.28 &\AVQZ \\
&$^1B_{1u} (\mathrm{R};\pi \ra 3s)$ &0.128 & 91.4 & 7.44 & D & 7.47 &AVQZ \\ &$^1B_{1u} (\mathrm{R};\pi \ra 3s)$ &0.128 & 91.4 & 7.44 & D & 7.47 &\AVQZ \\
&$^1B_{1u} (\Val; \pi \ra \pis)$ &0.285 & 90.5 & \emph{7.98}& D & \emph{7.97} &AVQZ \\ &$^1B_{1u} (\Val; \pi \ra \pis)$ &0.285 & 90.5 & \emph{7.98}& D & \emph{7.97} &\AVQZ \\
&$^3B_{3u} (\Val; n \ra \pis)$ & & 97.3 & 3.59 & D & 3.59 & AVQZ \\ &$^3B_{3u} (\Val; n \ra \pis)$ & & 97.3 & 3.59 & D & 3.59 & \AVQZ \\
&$^3B_{1u} (\Val; \pi \ra \pis)$ & & 98.5 & 4.35 & D & 4.36 & AVQZ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & & 98.5 & 4.35 & D & 4.36 & \AVQZ \\
&$^3B_{2u} (\Val; (\pi \ra \pis)$ & & 97.6 & 4.39 & D & 4.39 & AVQZ \\ &$^3B_{2u} (\Val; (\pi \ra \pis)$ & & 97.6 & 4.39 & D & 4.39 & \AVQZ \\
&$^3A_{u} (\Val; n \ra \pis)$ & & 96.1 & 4.93 & D & 4.94 & AVQZ \\ &$^3A_{u} (\Val; n \ra \pis)$ & & 96.1 & 4.93 & D & 4.94 & \AVQZ \\
&$^3B_{2g} (\Val; n \ra \pis)$ & & 97.0 & 5.08 & D & 5.09 & AVQZ \\ &$^3B_{2g} (\Val; n \ra \pis)$ & & 97.0 & 5.08 & D & 5.09 & \AVQZ \\
&$^3B_{1u} (\Val; \pi \ra \pis)$ & & 97.0 & 5.28 & D & 5.28 & AVQZ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & & 97.0 & 5.28 & D & 5.28 & \AVQZ \\
Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & & 89.0 & 3.83 & D &\hl{XXXX} & \hl{XXXXX} \\ Pyridazine &$^1B_1 (\Val; n \ra \pis)$ & & 89.0 & 3.83 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1A_2 (\Val; n \ra \pis)$ & & 86.9 & 4.37 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1A_2 (\Val; n \ra \pis)$ & & 86.9 & 4.37 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1A_1 (\Val; \pi \ra \pis)$ & & 85.8 & 5.26 & D & 5.26 & AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & & 85.8 & 5.26 & D & 5.26 & \AVQZ \\
&$^1A_2 (\Val; n \ra \pis)$ & & 86.2 & 5.72 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1A_2 (\Val; n \ra \pis)$ & & 86.2 & 5.72 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1B_2 (\mathrm{R}; n \ra 3s)$ & & 88.5 & 6.17 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1B_2 (\mathrm{R}; n \ra 3s)$ & & 88.5 & 6.17 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1B_1 (\Val; n \ra \pis)$ & & 87.0 & 6.37 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1B_1 (\Val; n \ra \pis)$ & & 87.0 & 6.37 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1B_2 (\Val; \pi \ra \pis)$ & & 90.6 & 6.75 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1B_2 (\Val; \pi \ra \pis)$ & & 90.6 & 6.75 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^3B_1 (\Val; n \ra \pis)$ & & 97.1 & 3.19 & D &3.20 & AVQZ \\ &$^3B_1 (\Val; n \ra \pis)$ & & 97.1 & 3.19 & D &3.20 & \AVQZ \\
&$^3A_2 (\Val; n \ra \pis)$ & & 96.2 & 4.11 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^3A_2 (\Val; n \ra \pis)$ & & 96.2 & 4.11 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 98.5 & \emph{4.34} & D &\hl{XXXX} & \hl{XXXXX} \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 98.5 & \emph{4.34} & D &\hl{XXXX} & \hl{XXXXX} \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 97.3 & 4.82 & D & 4.81 & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 97.3 & 4.82 & D & 4.81 & \AVQZ \\
Pyridine &$^1B_1 (\Val; n \ra \pis)$ & & 88.4 & 4.95 & D &\hl{XXXX} & \hl{XXXXX} \\ Pyridine &$^1B_1 (\Val; n \ra \pis)$ & & 88.4 & 4.95 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1B_2 (\Val; \pi \ra \pis)$ & & 86.5 & 5.14 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1B_2 (\Val; \pi \ra \pis)$ & & 86.5 & 5.14 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1A_2 (\Val; n \ra \pis)$ & & 87.9 & 5.40 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1A_2 (\Val; n \ra \pis)$ & & 87.9 & 5.40 & D &\hl{XXXX} & \hl{XXXXX} \\
@ -1305,76 +1315,76 @@ Pyrimidine &$^1B_1 (\Val; n \ra \pis)$ & 0.005 & 88.6 & 4.44 & D &\hl
&$^1B_2 (\Val; \pi \ra \pis)$ &0.028 & 86.3 & 5.38 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1B_2 (\Val; \pi \ra \pis)$ &0.028 & 86.3 & 5.38 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1A_2 (\Val; n \ra \pis)$ & & 86.7 & 5.92 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1A_2 (\Val; n \ra \pis)$ & & 86.7 & 5.92 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1B_1 (\Val; n \ra \pis)$ &0.005 & 86.7 & 6.26 & D &\hl{XXXX} & \hl{XXXXX} \\ &$^1B_1 (\Val; n \ra \pis)$ &0.005 & 86.7 & 6.26 & D &\hl{XXXX} & \hl{XXXXX} \\
&$^1B_2 (\mathrm{R} ;n \ra 3s)$ &0.005 & 90.3 & 6.70 & D &6.74 & AVQZ \\ &$^1B_2 (\mathrm{R} ;n \ra 3s)$ &0.005 & 90.3 & 6.70 & D &6.74 & \AVQZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.036 & 91.5 & 6.88 & D &6.87 & AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.036 & 91.5 & 6.88 & D &6.87 & \AVQZ \\
&$^3B_1 (\Val; n \ra \pis)$ & & 96.8 & 4.09 & D &4.10 & AVQZ \\ &$^3B_1 (\Val; n \ra \pis)$ & & 96.8 & 4.09 & D &4.10 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.3 & \emph{4.51} & D &\emph{4.52} & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.3 & \emph{4.51} & D &\emph{4.52} & \AVQZ \\
&$^3A_2 (\Val; n \ra \pis)$ & & 96.5 & 4.66 & D &4.67 & AVQZ \\ &$^3A_2 (\Val; n \ra \pis)$ & & 96.5 & 4.66 & D &4.67 & \AVQZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 97.4 & 4.96 & D &4.96 & AVQZ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 97.4 & 4.96 & D &4.96 & \AVQZ \\
Pyrrole &$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 92.9 & 5.24 & {\CCSDT}/AVTZ & 5.27 & AVQZ \\ Pyrrole &$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 92.9 & 5.24 & {\CCSDT}/\AVTZ & 5.27 & \AVQZ \\
&$^1B_1 (\mathrm{R};\pi \ra 3p)$ &0.015 & 92.4 & 6.00 & {\CCSDT}/AVTZ & 6.03 & AVQZ \\ &$^1B_1 (\mathrm{R};\pi \ra 3p)$ &0.015 & 92.4 & 6.00 & {\CCSDT}/\AVTZ & 6.03 & \AVQZ \\
&$^1A_2 (\mathrm{R};\pi \ra 3p)$ & & 93.0 & 6.00 & D & 6.02 & AVQZ \\ &$^1A_2 (\mathrm{R};\pi \ra 3p)$ & & 93.0 & 6.00 & D & 6.02 & \AVQZ \\
&$^1B_2 (\Val; (\pi \ra \pis)$ &0.164 & 92.5 & 6.26 & {\CCSDT}/AVTZ & 6.23 & AVQZ \\ &$^1B_2 (\Val; (\pi \ra \pis)$ &0.164 & 92.5 & 6.26 & {\CCSDT}/\AVTZ & 6.23 & \AVQZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.001 & 86.3 & 6.30 & {\CCSDT}/AVTZ & 6.29 & AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.001 & 86.3 & 6.30 & {\CCSDT}/\AVTZ & 6.29 & \AVQZ \\
&$^1B_2 (\mathrm{R};\pi \ra 3p)$ &0.003 & 92.6 & 6.83 & D & 6.74 & AVQZ \\ &$^1B_2 (\mathrm{R};\pi \ra 3p)$ &0.003 & 92.6 & 6.83 & D & 6.74 & \AVQZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 98.3 & 4.51 & D & 4.51 & AVQZ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 98.3 & 4.51 & D & 4.51 & \AVQZ \\
&$^3A_2 (\mathrm{R};\pi \ra 3s)$ & & 97.6 & 5.21 & D & 5.24 & AVQZ \\ &$^3A_2 (\mathrm{R};\pi \ra 3s)$ & & 97.6 & 5.21 & D & 5.24 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 97.8 & 5.45 & D & 5.46 & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 97.8 & 5.45 & D & 5.46 & \AVQZ \\
&$^3B_1 (\mathrm{R};\pi \ra 3p)$ & & 97.4 & 5.91 & D & 5.94 & AVQZ \\ &$^3B_1 (\mathrm{R};\pi \ra 3p)$ & & 97.4 & 5.91 & D & 5.94 & \AVQZ \\
Tetrazine &$^1B_{3u} (\Val; n \ra \pis)$ & 0.006 & 89.8 & 2.47 & {\CCSDT}/AVTZ & 2.46 & AVQZ \\ Tetrazine &$^1B_{3u} (\Val; n \ra \pis)$ & 0.006 & 89.8 & 2.47 & {\CCSDT}/\AVTZ & 2.46 & \AVQZ \\
&$^1A_{u} (\Val; n \ra \pis)$ & & 87.9 & 3.69 & {\CCSDT}/AVTZ & 3.70 & AVQZ \\ &$^1A_{u} (\Val; n \ra \pis)$ & & 87.9 & 3.69 & {\CCSDT}/\AVTZ & 3.70 & \AVQZ \\
&$^1A_{g} (\Val; n,n \ra \pis, \pis)$ & & 0.7 & \emph{4.61} & {\NEV}/AVTZ & \emph{4.59} & AVQZ\\%to be remade with CCSDT correction ??? &$^1A_{g} (\Val; n,n \ra \pis, \pis)$ & & 0.7 & \emph{4.61} & {\NEV}/\AVTZ & \emph{4.59} & \AVQZ\\%to be remade with CCSDT correction ???
&$^1B_{1g} (\Val; n \ra \pis)$ & & 83.1 & 4.93 & {\CCSDT}/AVTZ & 4.92 & AVQZ \\ &$^1B_{1g} (\Val; n \ra \pis)$ & & 83.1 & 4.93 & {\CCSDT}/\AVTZ & 4.92 & \AVQZ \\
&$^1B_{2u} (\Val; \pi \ra \pis)$ & 0.055 & 85.4 & 5.21 & {\CCSDT}/AVTZ & 5.20 & AVQZ \\ &$^1B_{2u} (\Val; \pi \ra \pis)$ & 0.055 & 85.4 & 5.21 & {\CCSDT}/\AVTZ & 5.20 & \AVQZ \\
&$^1B_{2g} (\Val; n \ra \pis)$ & & 81.7 & 5.45 & {\CCSDT}/AVTZ & 5.45 & AVQZ \\ &$^1B_{2g} (\Val; n \ra \pis)$ & & 81.7 & 5.45 & {\CCSDT}/\AVTZ & 5.45 & \AVQZ \\
&$^1A_{u} (\Val; n \ra \pis)$ & & 87.7 & 5.53 & {\CCSDT}/AVTZ & 5.53 & AVQZ \\ &$^1A_{u} (\Val; n \ra \pis)$ & & 87.7 & 5.53 & {\CCSDT}/\AVTZ & 5.53 & \AVQZ \\
&$^1B_{3g} (\Val; n,n \ra \pis, \pis)$ & & 0.7 & \emph{6.15} & {\NEV}/AVTZ & \emph{6.13} & AVQZ\\ &$^1B_{3g} (\Val; n,n \ra \pis, \pis)$ & & 0.7 & \emph{6.15} & {\NEV}/\AVTZ & \emph{6.13} & \AVQZ\\
&$^1B_{2g} (\Val; n \ra \pis)$ & & 80.2 & 6.12 & D & 6.12 & AVQZ \\ &$^1B_{2g} (\Val; n \ra \pis)$ & & 80.2 & 6.12 & D & 6.12 & \AVQZ \\
&$^1B_{1g} (\Val; n \ra \pis)$ & & 85.1 & 6.91 & D & 6.91 & AVQZ \\ &$^1B_{1g} (\Val; n \ra \pis)$ & & 85.1 & 6.91 & D & 6.91 & \AVQZ \\
&$^3B_{3u} (\Val; n \ra \pis)$ & & 97.1 & 1.85 & D & 1.86 & AVQZ \\ &$^3B_{3u} (\Val; n \ra \pis)$ & & 97.1 & 1.85 & D & 1.86 & \AVQZ \\
&$^3A_{u} (\Val; n \ra \pis)$ & & 96.3 & 3.45 & D & 3.46 & AVQZ \\ &$^3A_{u} (\Val; n \ra \pis)$ & & 96.3 & 3.45 & D & 3.46 & \AVQZ \\
&$^3B_{1g} (\Val; n \ra \pis)$ & & 97.0 & 4.20 & D & 4.21 & AVQZ \\ &$^3B_{1g} (\Val; n \ra \pis)$ & & 97.0 & 4.20 & D & 4.21 & \AVQZ \\
&$^3B_{1u} (\Val; \pi \ra \pis)$ & & 98.5 & \emph{4.49} & D & \emph{4.49} & AVQZ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & & 98.5 & \emph{4.49} & D & \emph{4.49} & \AVQZ \\
&$^3B_{2u} (\Val; \pi \ra \pis)$ & & 97.5 & 4.52 & D & 4.52 & AVQZ \\ &$^3B_{2u} (\Val; \pi \ra \pis)$ & & 97.5 & 4.52 & D & 4.52 & \AVQZ \\
&$^3B_{2g} (\Val; n \ra \pis)$ & & 96.4 & 5.04 & D & 5.04 & AVQZ \\ &$^3B_{2g} (\Val; n \ra \pis)$ & & 96.4 & 5.04 & D & 5.04 & \AVQZ \\
&$^3A_{u} (\Val; n \ra \pis)$ & & 96.6 & 5.11 & D & 5.11 & AVQZ \\ &$^3A_{u} (\Val; n \ra \pis)$ & & 96.6 & 5.11 & D & 5.11 & \AVQZ \\
&$^3B_{3g} (\Val; n,n \ra \pis, \pis)$ & & 5.7 & \emph{5.51} &{\NEV}/AVTZ & \emph{5.50} & AVQZ\\ &$^3B_{3g} (\Val; n,n \ra \pis, \pis)$ & & 5.7 & \emph{5.51} &{\NEV}/\AVTZ & \emph{5.50} & \AVQZ\\
&$^3B_{1u} (\Val; \pi \ra \pis)$ & & 96.6 & 5.42 & D & 5.43 & AVQZ \\ &$^3B_{1u} (\Val; \pi \ra \pis)$ & & 96.6 & 5.42 & D & 5.43 & \AVQZ \\
Thioacetone &$^1A_2 (\Val; n \ra \pis)$ & & 88.9 & 2.53 & B & 2.54 & AVQZ \\ Thioacetone &$^1A_2 (\Val; n \ra \pis)$ & & 88.9 & 2.53 & B & 2.54 & \AVQZ \\
&$^1B_2 (\mathrm{R}; n \ra 4s)$ & 0.052 & 91.3 & 5.56 & B & 5.61 & AVQZ \\ &$^1B_2 (\mathrm{R}; n \ra 4s)$ & 0.052 & 91.3 & 5.56 & B & 5.61 & \AVQZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ & 0.242 & 90.6 & 5.88 & B & 5.86 & AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ & 0.242 & 90.6 & 5.88 & B & 5.86 & \AVQZ \\
&$^1B_2 (\mathrm{R}; n \ra 4p)$ & 0.028 & 92.4 & 6.51 & C & 6.52 & AVQZ \\ &$^1B_2 (\mathrm{R}; n \ra 4p)$ & 0.028 & 92.4 & 6.51 & C & 6.52 & \AVQZ \\
&$^1A_1 (\mathrm{R}; n \ra 4p)$ & 0.023 & 91.6 & 6.61 &B & 6.64 & AVQZ \\ &$^1A_1 (\mathrm{R}; n \ra 4p)$ & 0.023 & 91.6 & 6.61 &B & 6.64 & \AVQZ \\
&$^3A_2 (\Val; n \ra \pis)$ & & 97.4 & 2.33 & D & 2.34 & AVQZ \\ &$^3A_2 (\Val; n \ra \pis)$ & & 97.4 & 2.33 & D & 2.34 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 98.7 & 3.45 & D & 3.46 & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 98.7 & 3.45 & D & 3.46 & \AVQZ \\
Thiophene &$^1A_1 (\Val; \pi \ra \pis)$ &0.070 & 87.6 & 5.64 & {\CCSDT}/AVTZ & 5.63 & AVQZ \\ Thiophene &$^1A_1 (\Val; \pi \ra \pis)$ &0.070 & 87.6 & 5.64 & {\CCSDT}/\AVTZ & 5.63 & \AVQZ \\
&$^1B_2 (\Val; \pi \ra \pis)$ &0.079 & 91.5 & 5.98 & {\CCSDT}/AVTZ & 5.96 & AVQZ \\ &$^1B_2 (\Val; \pi \ra \pis)$ &0.079 & 91.5 & 5.98 & {\CCSDT}/\AVTZ & 5.96 & \AVQZ \\
&$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 92.6 & 6.14 & {\CCSDT}/AVTZ & 6.16 & AVQZ \\ &$^1A_2 (\mathrm{R}; \pi \ra 3s)$ & & 92.6 & 6.14 & {\CCSDT}/\AVTZ & 6.16 & \AVQZ \\
&$^1B_1 (\mathrm{R}; \pi \ra 3p)$ &0.010 & 90.1 & 6.14 & {\CCSDT}/AVTZ & 6.11 & AVQZ \\ &$^1B_1 (\mathrm{R}; \pi \ra 3p)$ &0.010 & 90.1 & 6.14 & {\CCSDT}/\AVTZ & 6.11 & \AVQZ \\
&$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 91.8 & 6.21 & {\CCSDT}/AVTZ & 6.18 & AVQZ \\ &$^1A_2 (\mathrm{R}; \pi \ra 3p)$ & & 91.8 & 6.21 & {\CCSDT}/\AVTZ & 6.18 & \AVQZ \\
&$^1B_1 (\mathrm{R}; \pi \ra 3s)$ &0.000 & 92.8 & 6.49 & {\CCSDT}/AVTZ & 6.52 & AVQZ \\ &$^1B_1 (\mathrm{R}; \pi \ra 3s)$ &0.000 & 92.8 & 6.49 & {\CCSDT}/\AVTZ & 6.52 & \AVQZ \\
&$^1B_2 (\mathrm{R}; \pi \ra 3p)$ &0.082 & 92.4 & 7.29 & {\CCSDT}/AVTZ & 7.18 & AVQZ \\ &$^1B_2 (\mathrm{R}; \pi \ra 3p)$ &0.082 & 92.4 & 7.29 & {\CCSDT}/\AVTZ & 7.18 & \AVQZ \\
&$^1A_1 (\Val; \pi \ra \pis)$ &0.314 & 86.5 & \emph{7.31}& E & \emph{7.29} & AVQZ \\ &$^1A_1 (\Val; \pi \ra \pis)$ &0.314 & 86.5 & \emph{7.31}& E & \emph{7.29} & \AVQZ \\
&$^3B_2 (\Val; \pi \ra \pis)$ & & 98.2 & 3.92 & D & 3.91 & AVQZ \\ &$^3B_2 (\Val; \pi \ra \pis)$ & & 98.2 & 3.92 & D & 3.91 & \AVQZ \\
&$^3A_1 (\Val; \pi \ra \pis)$ & & 97.7 & 4.76 & D & 4.76 & AVQZ \\ &$^3A_1 (\Val; \pi \ra \pis)$ & & 97.7 & 4.76 & D & 4.76 & \AVQZ \\
&$^3B_1 (\mathrm{R}; \pi \ra 3p)$ & & 96.6 & 5.93 & D & 5.90 & AVQZ \\ &$^3B_1 (\mathrm{R}; \pi \ra 3p)$ & & 96.6 & 5.93 & D & 5.90 & \AVQZ \\
&$^3A_2 (\mathrm{R}; \pi \ra 3s)$ & & 97.5 & 6.08 & D & 5.98 & AVQZ \\ &$^3A_2 (\mathrm{R}; \pi \ra 3s)$ & & 97.5 & 6.08 & D & 5.98 & \AVQZ \\
Thiopropynal &$^1A'' (\Val; n \ra \pis)$ & 0.000 & 87.5 & 2.03 & {\CCSDT}/AVTZ & 2.04 & AVQZ \\ Thiopropynal &$^1A'' (\Val; n \ra \pis)$ & 0.000 & 87.5 & 2.03 & {\CCSDT}/\AVTZ & 2.04 & \AVQZ \\
&$^3A'' (\Val; n \ra \pis)$ & & 97.2 & 1.80 & D & 1.81 & AVQZ \\ &$^3A'' (\Val; n \ra \pis)$ & & 97.2 & 1.80 & D & 1.81 & \AVQZ \\
Triazine &$^1A_1'' (\Val; n \ra \pis)$ & & 88.3 & 4.72 & {\CCSDT}/AVTZ & 4.72 & AVQZ \\ Triazine &$^1A_1'' (\Val; n \ra \pis)$ & & 88.3 & 4.72 & {\CCSDT}/\AVTZ & 4.72 & \AVQZ \\
&$^1A_2'' (\Val; n \ra \pis)$ &0.014 & 88.3 & 4.75 & {\CCSDT}/AVTZ & 4.74 & AVQZ \\ &$^1A_2'' (\Val; n \ra \pis)$ &0.014 & 88.3 & 4.75 & {\CCSDT}/\AVTZ & 4.74 & \AVQZ \\
&$^1E'' (\Val; n \ra \pis)$ & & 88.3 & 4.78 & {\CCSDT}/AVTZ & 4.78 & AVQZ \\ &$^1E'' (\Val; n \ra \pis)$ & & 88.3 & 4.78 & {\CCSDT}/\AVTZ & 4.78 & \AVQZ \\
&$^1A_2' (\Val; \pi \ra \pis)$ & & 85.7 & 5.75 & {\CCSDT}/AVTZ &5.75 &AVQZ\\ &$^1A_2' (\Val; \pi \ra \pis)$ & & 85.7 & 5.75 & {\CCSDT}/\AVTZ &5.75 &\AVQZ\\
&$^1A_1' (\Val; \pi \ra \pis)$ & & 90.4 & 7.24 & {\CCSDT}/AVTZ & 7.23 & AVQZ \\ &$^1A_1' (\Val; \pi \ra \pis)$ & & 90.4 & 7.24 & {\CCSDT}/\AVTZ & 7.23 & \AVQZ \\
&$^1E' (\mathrm{R}; n \ra 3s)$ &0.016 & 90.9 & 7.32 & {\CCSDT}/AVTZ & 7.36 & AVQZ \\ &$^1E' (\mathrm{R}; n \ra 3s)$ &0.016 & 90.9 & 7.32 & {\CCSDT}/\AVTZ & 7.36 & \AVQZ \\
&$^1E'' (\Val; n \ra \pis)$ & & 82.6 & 7.78 & {\CCSDT}/AVTZ & 7.76 & AVQZ \\ &$^1E'' (\Val; n \ra \pis)$ & & 82.6 & 7.78 & {\CCSDT}/\AVTZ & 7.76 & \AVQZ \\
&$^1E' (\Val; \pi \ra \pis)$ &0.451 & 90.0 & 7.94 & {\CCSDT}/AVTZ & 7.93 & AVQZ \\ &$^1E' (\Val; \pi \ra \pis)$ &0.451 & 90.0 & 7.94 & {\CCSDT}/\AVTZ & 7.93 & \AVQZ \\
&$^3A_2'' (\Val; n \ra \pis)$ & & 96.7 & 4.33 & D & 4.34 & AVQZ \\ &$^3A_2'' (\Val; n \ra \pis)$ & & 96.7 & 4.33 & D & 4.34 & \AVQZ \\
&$^3E'' (\Val; n \ra \pis)$ & & 96.6 & 4.51 & D & 4.51 & AVQZ \\ &$^3E'' (\Val; n \ra \pis)$ & & 96.6 & 4.51 & D & 4.51 & \AVQZ \\
&$^3A_1'' (\Val; n \ra \pis)$ & & 96.2 & 4.73 & D & 4.74 & AVQZ \\ &$^3A_1'' (\Val; n \ra \pis)$ & & 96.2 & 4.73 & D & 4.74 & \AVQZ \\
&$^3A_1' (\Val; \pi \ra \pis)$ & & 98.2 & 4.85 & D & 4.86 & AVQZ \\ &$^3A_1' (\Val; \pi \ra \pis)$ & & 98.2 & 4.85 & D & 4.86 & \AVQZ \\
&$^3E' (\Val; \pi \ra \pis)$ & & 96.9 & 5.59 & E & 5.59 & AVQZ \\ &$^3E' (\Val; \pi \ra \pis)$ & & 96.9 & 5.59 & E & 5.59 & \AVQZ \\
&$^3A_2' (\Val; (\pi \ra \pis)$ & & 97.6 & 6.62 & D & 6.61 & AVQZ \\ &$^3A_2' (\Val; (\pi \ra \pis)$ & & 97.6 & 6.62 & D & 6.61 & \AVQZ \\
\end{longtable} \end{longtable}
\end{footnotesize} \end{footnotesize}
\begin{flushleft}\begin{footnotesize}\begin{singlespace} \begin{flushleft}\begin{footnotesize}\begin{singlespace}
@ -1394,21 +1404,22 @@ Method F: {\FCI}/{\AVDZ} value (from Ref.~\citenum{Loo19c}) corrected by the dif
\section{Benchmarks} \section{Benchmarks}
Having at hand such a large set of accurate transition energies, it seems natural to pursue previous benchmarking efforts. More specifically, we assess here the performances of eight popular wavefunction approaches, namely, CIS(D), {\AD}, Having at hand such a large set of accurate transition energies, it seems natural to pursue previous benchmarking efforts. More specifically, we assess here the performances of eight popular wavefunction approaches, namely, CIS(D), {\AD},
{\CCD}, {\STEOM}, {\CCSD}, CCSDR(3), CCSDT-3 and {\CCT}. The complete list of results can be found in Table \hl{SXXX} in the SI. As all these approaches are single-reference methods, we have removed from the {\CCD}, {\STEOM}, {\CCSD}, CCSDR(3), CCSDT-3 and {\CCT}. The complete list of results can be found in Table \hl{SXXX} of the SI. Because all these approaches are single-reference methods, we have removed from the
benchmark not only the unsafe transition energies (in italics in Table \ref{Table-tbe}), but also the four transitions with a dominant double excitation character ($\Td < 50\%$ listed in Table \ref{Table-tbe}). reference set the ``unsafe'' transition energies (in italics in Table \ref{Table-tbe}), as well as the four transitions with a dominant double excitation character (with $\Td < 50\%$ as listed in Table \ref{Table-tbe}).
Our global results are collected in Table \ref{Table-bench} that presents the MSE, MAE, root mean square deviation (RMS), standard deviation (SD), as well as the positive [\MaxP] and negative [\MaxN] maximum deviations. A comprehensive list of results are collected in Table \ref{Table-bench} which, more specifically, gathers the MSE, MAE, RMSE, SDE, \MaxP, and \MaxN.
Figure \ref{Fig-1} shows histograms of the error distributions for all eight methods. Before discussing the obtained results, let us underline two obvious bias of this benchmark: i) it encompasses only conjugated organic molecules Figure \ref{Fig-1} shows histograms of the error distributions for these eight methods. Before discussing these, let us stress two obvious biases of this benchmark set: i) it encompasses only conjugated organic molecules
containing 4 to 6 non-hydrogen atoms; and ii) we mainly used {\CCSDTQ} (4 atoms) or {\CCSDT} (5--6 atoms) reference values. As discussed in Section \ref{sec-ic} and in our previous work, \cite{Loo18a} the MAE obtained containing 4 to 6 non-hydrogen atoms; and ii) we mainly used {\CCSDTQ} (4 atoms) or {\CCSDT} (5--6 atoms) reference values. As discussed in Section \ref{sec-ic} and in our previous work, \cite{Loo18a} the MAE obtained
with these two methods are of the order of $0.01$ and $0.03$ eV, respectively. This means that any deviation (or difference of deviations) smaller than ca.~$0.02$--$0.03$ eV is likely irrelevant. with these two methods are of the order of $0.01$ and $0.03$ eV, respectively. This means that any statistical quantity smaller than $\sim 0.02$--$0.03$ eV is very likely to be irrelevant.
\renewcommand*{\arraystretch}{1.0} \renewcommand*{\arraystretch}{1.0}
\begin{table}[htp] \begin{table}[htp]
\caption{Mean signed error (MSE), mean absolute error (MAE), root-mean square deviation (RMS), standard deviation (SD), positive [\MaxP] and negative [\MaxN] maximal deviations with respect to the TBE. \caption{Mean signed error (MSE), mean absolute error (MAE), root-mean square error (RMSE), standard deviation of the errors (SDE), as well as the positive [\MaxP] and negative [\MaxN] maximal errors with respect to the TBE.
All values are in eV and have been obtained with the {\AVTZ} basis set.} All these statistical quantities are reported in eV and have been obtained with the {\AVTZ} basis set.
``Count'' refers to the number of states.}
\label{Table-bench} \label{Table-bench}
\begin{tabular}{lccccccc} \begin{tabular}{lccccccc}
\hline \hline
Method & Nb. States & MSE &MAE &RMS &SD &\MaxP &\MaxN \\ Method & Count & MSE &MAE &RMSE &SDE &\MaxP &\MaxN \\
\hline \hline
CIS(D) &220 &0.16 &0.23 &0.29 &0.24 &0.96 &-0.69\\ CIS(D) &220 &0.16 &0.23 &0.29 &0.24 &0.96 &-0.69\\
{\AD} &217 &0.01 &0.14 &0.20 &0.19 &0.64 &-0.73\\ {\AD} &217 &0.01 &0.14 &0.20 &0.19 &0.64 &-0.73\\
@ -1424,7 +1435,8 @@ CCSDT-3 &126 &0.05 &0.05 &0.07 &0.04 &0.26 &0.00\\
\begin{figure}[htp] \begin{figure}[htp]
\includegraphics[scale=0.98,viewport=2cm 14.5cm 19cm 27.5cm,clip]{Figure-1.pdf} \includegraphics[scale=0.98,viewport=2cm 14.5cm 19cm 27.5cm,clip]{Figure-1.pdf}
\caption{Histograms of the error patterns obtained with various leveles of theory, taking the TBE/{\AVTZ} of Table \ref{Table-bench} as references. Note the different $Y$ scales.} \caption{Histograms of the error patterns obtained with various levels of theory, taking the TBE/{\AVTZ} of Table \ref{Table-bench} as references.
Note the difference of scaling in the vertical axes.}
\label{Fig-1} \label{Fig-1}
\end{figure} \end{figure}
@ -1443,7 +1455,7 @@ of being too large, an error sign likely inherited from the parent {\CCSD} model
are considered. The {\CCSD} MAE ($0.13$ eV) is much smaller than the one reported by Thiel in its original work ($0.49$ eV) \cite{Sch08} but of the same order of magnitude as in the more recent study of Kannar and Szalay performed are considered. The {\CCSD} MAE ($0.13$ eV) is much smaller than the one reported by Thiel in its original work ($0.49$ eV) \cite{Sch08} but of the same order of magnitude as in the more recent study of Kannar and Szalay performed
on Thiel's set ($0.18$ eV for transitions with $\Td > 90\%$ ). \cite{Kan14} In retrospect, the much larger value obtained by Thiel is likely related to the use of {\CASPT} reference values in the 2008 work. Indeed, as we have shown on Thiel's set ($0.18$ eV for transitions with $\Td > 90\%$ ). \cite{Kan14} In retrospect, the much larger value obtained by Thiel is likely related to the use of {\CASPT} reference values in the 2008 work. Indeed, as we have shown
in many of the proposed examples, {\CASPT} transitions energies tend to be significantly too low, therefore exacerbating {\CCSD}'s overestimation. The {\STEOM} approach, which received relatively less attention to date -- we are in many of the proposed examples, {\CASPT} transitions energies tend to be significantly too low, therefore exacerbating {\CCSD}'s overestimation. The {\STEOM} approach, which received relatively less attention to date -- we are
aware of one detailed benchmark \cite{Dut18} only -- provides a smaller MSE than {\CCSD} and comparable MAE and RMS. The spread of the error is however slightly larger as can be seen in Figure \ref{Fig-1} and from the SD values aware of one detailed benchmark \cite{Dut18} only -- provides a smaller MSE than {\CCSD} and comparable MAE and RMSE. The spread of the error is however slightly larger as can be seen in Figure \ref{Fig-1} and from the SD values
in Table \ref{Table-bench}. These trends are the same as for smaller compounds. \cite{Loo18a} For Thiel's set using {\CCT}/TZVP results as references, Dutta and coworkers also reported a rather good performance in Table \ref{Table-bench}. These trends are the same as for smaller compounds. \cite{Loo18a} For Thiel's set using {\CCT}/TZVP results as references, Dutta and coworkers also reported a rather good performance
of {\STEOM}, though in that case a slightly negative MSE is obtained, \cite{Dut18} which could possibly be due to the different basis sets used. It should be nevertheless stressed that we consider here only ``clean'' {\STEOM} results of {\STEOM}, though in that case a slightly negative MSE is obtained, \cite{Dut18} which could possibly be due to the different basis sets used. It should be nevertheless stressed that we consider here only ``clean'' {\STEOM} results
(see Computational details), therefore removing several difficult cases that are included in the {\CCSD} statistics, \eg, the $A_g$ excitation in butadiene, which can slightly bias the relative accuracies when comparing the two models. Finally, for the three (see Computational details), therefore removing several difficult cases that are included in the {\CCSD} statistics, \eg, the $A_g$ excitation in butadiene, which can slightly bias the relative accuracies when comparing the two models. Finally, for the three
@ -1491,7 +1503,7 @@ We have computed highly-accurate vertical transition energies for a set of 27 me
However, most of our theoretical best estimates are based on {\CCSDTQ} (4 atoms) or {\CCSDT} (5 and 6 atoms) excitation energies. For the vast majority of the However, most of our theoretical best estimates are based on {\CCSDTQ} (4 atoms) or {\CCSDT} (5 and 6 atoms) excitation energies. For the vast majority of the
listed excited states, the present contribution is the very first to disclose (sometimes basis-set extrapolated) {\CCSDT}/{\AVTZ} and (true) {\CCT}/{\AVQZ} transition energies as well as {\CCT}/{\AVTZ} oscillator strengths listed excited states, the present contribution is the very first to disclose (sometimes basis-set extrapolated) {\CCSDT}/{\AVTZ} and (true) {\CCT}/{\AVQZ} transition energies as well as {\CCT}/{\AVTZ} oscillator strengths
for each dipole-allowed transition. Our set contains a total of 238 transition energies and 90 oscillator strengths, with a reasonably good balance between singlet, triplet, valence, for each dipole-allowed transition. Our set contains a total of 238 transition energies and 90 oscillator strengths, with a reasonably good balance between singlet, triplet, valence,
and Rydberg states. Amongst these 238 transitions, we believe that 224 are ``solid'' TBE, \ie, they are chemically accurate (mean error below $0.043$ eV or $1$ kcal.mol$^{-1}$) for the considered geometry. and Rydberg states. Amongst these 238 transitions, we believe that 224 are ``solid'' TBE, \ie, they are chemically accurate (MAE below $0.043$ eV or $1$ kcal.mol$^{-1}$) for the considered geometry.
It allows us to establish a reasonable error bar for several popular ES models with lower computational cost: CIS(D), {\AD}, {\CCD}, {\STEOM}, {\CCSD}, It allows us to establish a reasonable error bar for several popular ES models with lower computational cost: CIS(D), {\AD}, {\CCD}, {\STEOM}, {\CCSD},
CCSDR(3), CCSDT-3, and {\CCT}. It turns out that the latter approach is extremely accurate, and, very likely should be considered as more robust and trustworthy than {\CASPT} or {\NEV}, except for ES with a predominant double CCSDR(3), CCSDT-3, and {\CCT}. It turns out that the latter approach is extremely accurate, and, very likely should be considered as more robust and trustworthy than {\CASPT} or {\NEV}, except for ES with a predominant double
excitation character. Other methods including corrections for the triples yield a mean absolute deviation around $0.05$ eV, whereas none of the second-order approach has been found to be chemically accurate with MAE excitation character. Other methods including corrections for the triples yield a mean absolute deviation around $0.05$ eV, whereas none of the second-order approach has been found to be chemically accurate with MAE